Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,138 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
library_name: transformers
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
metrics:
|
| 7 |
+
- accuracy
|
| 8 |
+
tags:
|
| 9 |
+
- multimodal
|
| 10 |
+
pipeline_tag: video-text-to-text
|
| 11 |
+
base_model: Qwen/Qwen2.5-VL-7B-Instruct
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# ๐ก VideoChat-R1_5
|
| 16 |
+
|
| 17 |
+
[\[๐ GitHub\]](https://github.com/OpenGVLab/VideoChat-R1)
|
| 18 |
+
[\[๐ Tech Report\]](https://arxiv.org/pdf/2509.21100v1)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## ๐ How to use the model
|
| 22 |
+
|
| 23 |
+
We provide a simple installation example below:
|
| 24 |
+
```
|
| 25 |
+
pip install transformers
|
| 26 |
+
```
|
| 27 |
+
Using qwen_vl_utils in https://github.com/OpenGVLab/VideoChat-R1/blob/main/Videochat-R1.5/src_eval/my_vision_process.py
|
| 28 |
+
|
| 29 |
+
Then you could use our model:
|
| 30 |
+
```python
|
| 31 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 32 |
+
from qwen_vl_utils import process_vision_info
|
| 33 |
+
|
| 34 |
+
model_path = "OpenGVLab/VideoChat-R1_5"
|
| 35 |
+
# default: Load the model on the available device(s)
|
| 36 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 37 |
+
model_path, torch_dtype="auto", device_map="auto",
|
| 38 |
+
attn_implementation="flash_attention_2"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# default processer
|
| 42 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
| 43 |
+
|
| 44 |
+
video_path = "your_video.mp4"
|
| 45 |
+
question = "your_qa.mp4"
|
| 46 |
+
num_percptions = 3
|
| 47 |
+
|
| 48 |
+
QA_THINK_GLUE = """Answer the question: "[QUESTION]" according to the content of the video.
|
| 49 |
+
|
| 50 |
+
Output your think process within the <think> </think> tags.
|
| 51 |
+
|
| 52 |
+
Then, provide your answer within the <answer> </answer> tags, output the corresponding letter of the option. At the same time, in the <glue> </glue> tags, present the precise time period in seconds of the video clips on which you base your answer to this question in the format of [(s1, e1), (s2, e2), ...]. For example: <think>...</think><answer>A</answer><glue>[(5.2, 10.4)]</glue>.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
QA_THINK = """Answer the question: "[QUESTION]" according to the content of the video.
|
| 56 |
+
|
| 57 |
+
Output your think process within the <think> </think> tags.
|
| 58 |
+
|
| 59 |
+
Then, provide your answer within the <answer> </answer> tags, output the corresponding letter of the option. For example: <think>...</think><answer>A</answer><glue>[(5.2, 10.4)]</glue>.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def inference(video_path, prompt, model, processor, max_new_tokens=2048, device="cuda:0", client = None, pred_glue=None):
|
| 64 |
+
messages = [
|
| 65 |
+
{"role": "user", "content": [
|
| 66 |
+
{"type": "video",
|
| 67 |
+
"video": video_path,
|
| 68 |
+
'key_time':pred_glue,
|
| 69 |
+
"total_pixels": 128*12 * 28 * 28,
|
| 70 |
+
"min_pixels": 128 * 28 * 28,
|
| 71 |
+
},
|
| 72 |
+
{"type": "text", "text": prompt},
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
]
|
| 76 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 77 |
+
|
| 78 |
+
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True, client = client)
|
| 79 |
+
fps_inputs = video_kwargs['fps']
|
| 80 |
+
|
| 81 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, fps=fps_inputs, padding=True, return_tensors="pt")
|
| 82 |
+
inputs = inputs.to(device)
|
| 83 |
+
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, use_cache=True)
|
| 86 |
+
|
| 87 |
+
generated_ids = [output_ids[i][len(inputs.input_ids[i]):] for i in range(len(output_ids))]
|
| 88 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 89 |
+
return output_text[0]
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
for percption in range(num_percptions):
|
| 93 |
+
|
| 94 |
+
if percption == num_percptions - 1:
|
| 95 |
+
example_prompt = QA_THINK.replace("[QUESTION]", item["problem"]["question"])
|
| 96 |
+
else:
|
| 97 |
+
example_prompt = QA_THINK_GLUE.replace("[QUESTION]", item["problem"]["question"])
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
ans = inference(video_path, prompt, model, processor, device=device, client=client, pred_glue=pred_glue)
|
| 101 |
+
|
| 102 |
+
pattern_glue = r'<glue>(.*?)</glue>'
|
| 103 |
+
match_glue = re.search(pattern_glue, ans, re.DOTALL)
|
| 104 |
+
# print(f'ann:{ans}')
|
| 105 |
+
answers.append(ans)
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
if match_glue:
|
| 109 |
+
glue = match_glue.group(1)
|
| 110 |
+
pred_glue = ast.literal_eval(glue)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
# iou = 0
|
| 115 |
+
pred_glue = None
|
| 116 |
+
print(ans)
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# :page_facing_up: Citation
|
| 121 |
+
|
| 122 |
+
If you find this project useful in your research, please consider cite:
|
| 123 |
+
```BibTeX
|
| 124 |
+
@article{li2025videochatr1,
|
| 125 |
+
title={VideoChat-R1: Enhancing Spatio-Temporal
|
| 126 |
+
Perception via Reinforcement Fine-Tuning},
|
| 127 |
+
author={Li, Xinhao and Yan, Ziang and Meng, Desen and Dong, Lu and Zeng, Xiangyu and He, Yinan and Wang, Yali and Qiao, Yu and Wang, Yi and Wang, Limin},
|
| 128 |
+
journal={arXiv preprint arXiv:2504.06958},
|
| 129 |
+
year={2025}
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
@article{yan2025videochatr15,
|
| 133 |
+
title={VideoChat-R1.5: Visual Test-Time Scaling to Reinforce Multimodal Reasoning by Iterative Perception},
|
| 134 |
+
author={Yan, Ziang and Li, Xinhao and He, Yinan and Zhengrong Yue and Zeng, Xiangyu and Wang, Yali and Qiao, Yu and Wang, Limin and Wang, Yi},
|
| 135 |
+
journal={arXiv preprint arXiv:2509.21100},
|
| 136 |
+
year={2025}
|
| 137 |
+
}
|
| 138 |
+
```
|