Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,277 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
library_name: transformers
|
5 |
+
base_model:
|
6 |
+
- OpenGVLab/InternVL2-1B
|
7 |
+
base_model_relation: merge
|
8 |
+
language:
|
9 |
+
- multilingual
|
10 |
+
tags:
|
11 |
+
- internvl
|
12 |
+
- custom_code
|
13 |
+
---
|
14 |
+
|
15 |
+
# Mini-InternVL2-DA-RS
|
16 |
+
|
17 |
+
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 1.0\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5\]](https://arxiv.org/abs/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)
|
18 |
+
|
19 |
+
[\[🗨️ InternVL Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html#data-preparation)
|
20 |
+
|
21 |
+
|
22 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64564b0e4a7ffb7d5a47f412/Qp9tEtBAjbq39bJZ7od4A.png)
|
23 |
+
|
24 |
+
## Introduction
|
25 |
+
|
26 |
+
We release the adaptation models for the specific domains: autonomous driving, medical images, and remote sensing.
|
27 |
+
|
28 |
+
These models are built upon Mini-InternVL and fine-tuned using a unified adaptation framework, achieving good performance on tasks in specific domains.
|
29 |
+
|
30 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64564b0e4a7ffb7d5a47f412/rlz4XL8DFWXplvp0Yx4lg.png)
|
31 |
+
|
32 |
+
<table>
|
33 |
+
<tr>
|
34 |
+
<th>Model Name</th>
|
35 |
+
<th>HF Link</th>
|
36 |
+
<th>Note</th>
|
37 |
+
</tr>
|
38 |
+
<tr>
|
39 |
+
<td>Mini-InternVL2-DA-Drivelm</td>
|
40 |
+
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-Drivelm">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-Drivelm">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-Drivelm">🤗4B</a></td>
|
41 |
+
<td> Adaptation for <a href="https://github.com/OpenDriveLab/DriveLM/tree/main/challenge"> CVPR 2024 Autonomous Driving Challenge </a></td>
|
42 |
+
</tr>
|
43 |
+
<tr>
|
44 |
+
<td>Mini-InternVL2-DA-BDD</td>
|
45 |
+
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-BDD">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-BDD">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-BDD">🤗4B</a></td>
|
46 |
+
<td> Fine-tuning with data constructed by <a href="https://tonyxuqaq.github.io/projects/DriveGPT4/"> DriveGPT4 </a></td>
|
47 |
+
</tr>
|
48 |
+
<tr>
|
49 |
+
<td>Mini-InternVL2-DA-RS</td>
|
50 |
+
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-RS">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-RS">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-RS">🤗4B</a></td>
|
51 |
+
<td> Adaptation for remote sensing domain </td>
|
52 |
+
</tr>
|
53 |
+
<tr>
|
54 |
+
<td>Mini-InternVL2-DA-Medical</td>
|
55 |
+
<td><a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-1B-DA-Medical">🤗1B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-2B-DA-Medical">🤗2B</a> / <a href="https://huggingface.co/OpenGVLab/Mini-InternVL2-4B-DA-Medical">🤗4B</a></td>
|
56 |
+
<td> Fine-tuning using our <a href="https://huggingface.co/datasets/OpenGVLab/InternVL-Domain-Adaptation-Data/blob/main/train_meta/internvl_1_2_finetune_medical.json">medical data</a>.</td>
|
57 |
+
</tr>
|
58 |
+
</table>
|
59 |
+
|
60 |
+
The script for evaluation is in the [document](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html#id3).
|
61 |
+
|
62 |
+
## Training datasets
|
63 |
+
|
64 |
+
- General domain dataset:
|
65 |
+
|
66 |
+
ShareGPT4V, AllSeeingV2, LLaVA-Instruct-ZH, DVQA, ChartQA, AI2D, DocVQA, GeoQA+, SynthDoG-EN
|
67 |
+
|
68 |
+
- Medicalt dataset:
|
69 |
+
|
70 |
+
PMC-OA, MedICaT, Open-i, MedPix, Quilt-1M, RP3D, MIMIC-CXR, Retina Image Bank and others
|
71 |
+
|
72 |
+
## Quick Start
|
73 |
+
|
74 |
+
We provide an example code to run `Mini-InternVL2-1B` using `transformers`.
|
75 |
+
|
76 |
+
> Please use transformers>=4.37.2 to ensure the model works normally.
|
77 |
+
|
78 |
+
|
79 |
+
```python
|
80 |
+
import numpy as np
|
81 |
+
import torch
|
82 |
+
import torchvision.transforms as T
|
83 |
+
from decord import VideoReader, cpu
|
84 |
+
from PIL import Image
|
85 |
+
from torchvision.transforms.functional import InterpolationMode
|
86 |
+
from transformers import AutoModel, AutoTokenizer
|
87 |
+
|
88 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
89 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
90 |
+
|
91 |
+
def build_transform(input_size):
|
92 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
93 |
+
transform = T.Compose([
|
94 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
95 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
96 |
+
T.ToTensor(),
|
97 |
+
T.Normalize(mean=MEAN, std=STD)
|
98 |
+
])
|
99 |
+
return transform
|
100 |
+
|
101 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
102 |
+
best_ratio_diff = float('inf')
|
103 |
+
best_ratio = (1, 1)
|
104 |
+
area = width * height
|
105 |
+
for ratio in target_ratios:
|
106 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
107 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
108 |
+
if ratio_diff < best_ratio_diff:
|
109 |
+
best_ratio_diff = ratio_diff
|
110 |
+
best_ratio = ratio
|
111 |
+
elif ratio_diff == best_ratio_diff:
|
112 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
113 |
+
best_ratio = ratio
|
114 |
+
return best_ratio
|
115 |
+
|
116 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
117 |
+
orig_width, orig_height = image.size
|
118 |
+
aspect_ratio = orig_width / orig_height
|
119 |
+
|
120 |
+
# calculate the existing image aspect ratio
|
121 |
+
target_ratios = set(
|
122 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
123 |
+
i * j <= max_num and i * j >= min_num)
|
124 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
125 |
+
|
126 |
+
# find the closest aspect ratio to the target
|
127 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
128 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
129 |
+
|
130 |
+
# calculate the target width and height
|
131 |
+
target_width = image_size * target_aspect_ratio[0]
|
132 |
+
target_height = image_size * target_aspect_ratio[1]
|
133 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
134 |
+
|
135 |
+
# resize the image
|
136 |
+
resized_img = image.resize((target_width, target_height))
|
137 |
+
processed_images = []
|
138 |
+
for i in range(blocks):
|
139 |
+
box = (
|
140 |
+
(i % (target_width // image_size)) * image_size,
|
141 |
+
(i // (target_width // image_size)) * image_size,
|
142 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
143 |
+
((i // (target_width // image_size)) + 1) * image_size
|
144 |
+
)
|
145 |
+
# split the image
|
146 |
+
split_img = resized_img.crop(box)
|
147 |
+
processed_images.append(split_img)
|
148 |
+
assert len(processed_images) == blocks
|
149 |
+
if use_thumbnail and len(processed_images) != 1:
|
150 |
+
thumbnail_img = image.resize((image_size, image_size))
|
151 |
+
processed_images.append(thumbnail_img)
|
152 |
+
return processed_images
|
153 |
+
|
154 |
+
def load_image(image_file, input_size=448, max_num=12):
|
155 |
+
image = Image.open(image_file).convert('RGB')
|
156 |
+
transform = build_transform(input_size=input_size)
|
157 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
158 |
+
pixel_values = [transform(image) for image in images]
|
159 |
+
pixel_values = torch.stack(pixel_values)
|
160 |
+
return pixel_values
|
161 |
+
|
162 |
+
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
163 |
+
path = 'OpenGVLab/Mini-InternVL2-1B-DA-Medical'
|
164 |
+
model = AutoModel.from_pretrained(
|
165 |
+
path,
|
166 |
+
torch_dtype=torch.bfloat16,
|
167 |
+
low_cpu_mem_usage=True,
|
168 |
+
use_flash_attn=True,
|
169 |
+
trust_remote_code=True).eval().cuda()
|
170 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
171 |
+
|
172 |
+
# set the max number of tiles in `max_num`
|
173 |
+
pixel_values = load_image('path/to/image.jpg', max_num=12).to(torch.bfloat16).cuda()
|
174 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
175 |
+
|
176 |
+
# pure-text conversation (纯文本对话)
|
177 |
+
question = 'Hello, who are you?'
|
178 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
179 |
+
print(f'User: {question}\nAssistant: {response}')
|
180 |
+
|
181 |
+
question = 'Can you tell me a story?'
|
182 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
183 |
+
print(f'User: {question}\nAssistant: {response}')
|
184 |
+
|
185 |
+
# single-image single-round conversation (单图单轮对话)
|
186 |
+
question = '<image>\nPlease describe the image shortly.'
|
187 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
188 |
+
print(f'User: {question}\nAssistant: {response}')
|
189 |
+
|
190 |
+
# single-image multi-round conversation (单图多轮对话)
|
191 |
+
question = '<image>\nPlease describe the image in detail.'
|
192 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
193 |
+
print(f'User: {question}\nAssistant: {response}')
|
194 |
+
|
195 |
+
question = 'Please write a poem according to the image.'
|
196 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
197 |
+
print(f'User: {question}\nAssistant: {response}')
|
198 |
+
|
199 |
+
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
200 |
+
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
201 |
+
pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
202 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
203 |
+
|
204 |
+
question = '<image>\nDescribe the two images in detail.'
|
205 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
206 |
+
history=None, return_history=True)
|
207 |
+
print(f'User: {question}\nAssistant: {response}')
|
208 |
+
|
209 |
+
question = 'What are the similarities and differences between these two images.'
|
210 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
211 |
+
history=history, return_history=True)
|
212 |
+
print(f'User: {question}\nAssistant: {response}')
|
213 |
+
|
214 |
+
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
215 |
+
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
216 |
+
pixel_values2 = load_image('path/to/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
217 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
218 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
219 |
+
|
220 |
+
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
221 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
222 |
+
num_patches_list=num_patches_list,
|
223 |
+
history=None, return_history=True)
|
224 |
+
print(f'User: {question}\nAssistant: {response}')
|
225 |
+
|
226 |
+
question = 'What are the similarities and differences between these two images.'
|
227 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
228 |
+
num_patches_list=num_patches_list,
|
229 |
+
history=history, return_history=True)
|
230 |
+
print(f'User: {question}\nAssistant: {response}')
|
231 |
+
|
232 |
+
# batch inference, single image per sample (单图批处理)
|
233 |
+
pixel_values1 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
234 |
+
pixel_values2 = load_image('path/to/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
235 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
236 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
237 |
+
|
238 |
+
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
239 |
+
responses = model.batch_chat(tokenizer, pixel_values,
|
240 |
+
num_patches_list=num_patches_list,
|
241 |
+
questions=questions,
|
242 |
+
generation_config=generation_config)
|
243 |
+
for question, response in zip(questions, responses):
|
244 |
+
print(f'User: {question}\nAssistant: {response}')
|
245 |
+
|
246 |
+
```
|
247 |
+
## Citation
|
248 |
+
|
249 |
+
If you find this project useful in your research, please consider citing:
|
250 |
+
|
251 |
+
```BibTeX
|
252 |
+
@article{gao2024mini,
|
253 |
+
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
|
254 |
+
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
|
255 |
+
journal={arXiv preprint arXiv:2410.16261},
|
256 |
+
year={2024}
|
257 |
+
}
|
258 |
+
@article{chen2024expanding,
|
259 |
+
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
|
260 |
+
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
|
261 |
+
journal={arXiv preprint arXiv:2412.05271},
|
262 |
+
year={2024}
|
263 |
+
}
|
264 |
+
@article{chen2024far,
|
265 |
+
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
266 |
+
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
267 |
+
journal={arXiv preprint arXiv:2404.16821},
|
268 |
+
year={2024}
|
269 |
+
}
|
270 |
+
@inproceedings{chen2024internvl,
|
271 |
+
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
|
272 |
+
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
|
273 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
274 |
+
pages={24185--24198},
|
275 |
+
year={2024}
|
276 |
+
}
|
277 |
+
```
|