czczup commited on
Commit
78eedde
β€’
1 Parent(s): f892911

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +169 -271
README.md CHANGED
@@ -10,259 +10,173 @@ language:
10
  - multilingual
11
  tags:
12
  - internvl
13
- - vision
14
- - ocr
15
- - multi-image
16
- - video
17
  - custom_code
18
  ---
19
 
20
  # InternVL2_5-2B
21
 
22
- [\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[πŸ†• Blog\]](https://internvl.github.io/blog/)
23
- [\[πŸ“œ InternVL 2.5 Report\]]()
24
- [\[πŸ“œ InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[πŸ“œ InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
25
- [\[πŸ—¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[πŸ€— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[πŸš€ Quick Start\]](#quick-start) [\[πŸ“– Documents\]](https://internvl.readthedocs.io/en/latest/)
26
 
27
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64564b0e4a7ffb7d5a47f412/c1Vt2ZUFgeD3CjqlzTBTZ.png)
 
 
 
 
28
 
29
  ## Introduction
30
 
31
- We are excited to introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
32
-
33
- Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to achieve over **70%** on the **MMMU benchmark**. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. This repository contains the instruction-tuned **InternVL2_5-2B** model.
34
-
35
- We delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. For more details, please refer to our [blog](), [tech report]() and [GitHub](https://github.com/OpenGVLab/InternVL).
36
-
37
-
38
- | Model Name | Vision Part | Language Part | HF Link |
39
- | :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: |
40
- | InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
41
- | InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
42
- | InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
43
- | InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
44
- | InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
45
- | InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
46
- | InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
47
-
48
- ## Model Details
49
-
50
- InternVL 2.5 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2_5-2B consists of [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5), an MLP projector, and [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) .
51
-
52
- ## Performance
53
-
54
- ### Image Benchmarks
55
-
56
- | Benchmark | LLaVA-OneVision-0.5B | InternVL2.5-1B | Qwen2-VL-2B | Aquila-VL-2B | InternVL2.5-2B |
57
- |----------------------------|----------------------|----------------|-------------|--------------|----------------|
58
- | MMMU (val) | 31.4 | 40.9 | 41.1 | 47.4 | 43.6 |
59
- | MMMU (test) | - | 35.8 | - | - | 38.2 |
60
- | MMMU-PRO (overall) | - | 19.4 | 21.2 | 26.2 | 23.7 |
61
- | MathVista (mini) | 34.8 | 43.2 | 43.0 | 59.0 | 51.3 |
62
- | MathVision (mini) | - | 16.8 | 19.7 | 21.1 | 13.5 |
63
- | MathVision (full) | - | 14.4 | 12.4 | 18.4 | 14.7 |
64
- | MathVerse (mini) | 17.9 | 28.0 | 21.0 | 26.2 | 30.6 |
65
- | Olympiad Bench | - | 1.7 | - | - | 2.0 |
66
- | AI2D (w / wo M) | 57.1 / - | 69.3 / 77.8 | 74.7 / 84.6 | 75.0 / - | 74.9 / 83.5 |
67
- | ChartQA (test avg.) | 61.4 | 75.9 | 73.5 | 76.5 | 79.2 |
68
- | TextVQA (val) | - | 72.0 | 79.7 | 76.4 | 74.3 |
69
- | DocVQA (test) | 70.0 | 84.8 | 90.1 | 85.0 | 88.7 |
70
- | InfoVQA (test) | 41.8 | 56.0 | 65.5 | 58.3 | 60.9 |
71
- | OCR-Bench | 565 | 785 | 809 | 772 | 804 |
72
- | SEED-2 Plus | - | 59.0 | 62.4 | 63.0 | 60.9 |
73
- | CharXiv (RQ / DQ) | - | 19.0 / 38.4 | - | - | 21.3 / 49.7 |
74
- | VCR-EN-Easy (EM / Jaccard) | - | 91.5 / 97.0 | 81.5 / - | 70.0 / - | 93.2 / 97.6 |
75
- | BLINK (val) | 52.1 | 42.0 | 44.4 | | 44.0 |
76
- | Mantis Eval | 39.6 | 51.2 | - | - | 54.8 |
77
- | MMIU | - | 38.5 | - | - | 43.5 |
78
- | Muir Bench | 25.5 | 29.9 | - | - | 40.6 |
79
- | MMT (val) | - | 50.3 | 55.1 | - | 54.5 |
80
- | MIRB (avg.) | - | 35.6 | - | - | 36.4 |
81
- | RealWorld QA | 55.6 | 57.5 | 62.6 | - | 60.1 |
82
- | MME-RW (EN) | - | 44.2 | - | - | 48.8 |
83
- | WildVision (win rate) | - | 43.4 | - | - | 44.2 |
84
- | R-Bench | - | 59.0 | - | - | 62.2 |
85
- | MME (sum) | 1438.0 | 1950.5 | 1872.0 | - | 2138.2 |
86
- | MMB (EN / CN) | 61.6 / 55.5 | 70.7 / 66.3 | 74.9 / 73.5 | - | 74.7 / 71.9 |
87
- | MMBv1.1 (EN) | 59.6 | 68.4 | 72.2 | - | 72.2 |
88
- | MMVet (turbo) | 32.2 | 48.8 | 49.5 | - | 60.8 |
89
- | MMVetv2 (0613) | - | 43.2 | - | - | 52.3 |
90
- | MMStar | 37.7 | 50.1 | 48.0 | - | 53.7 |
91
- | HallBench (avg.) | 27.9 | 39.0 | 41.7 | - | 42.6 |
92
- | MMHal (score) | - | 2.49 | - | - | 2.94 |
93
- | CRPE (relation) | - | 60.9 | - | - | 70.2 |
94
- | POPE (avg.) | - | 89.9 | - | - | 90.6 |
95
-
96
-
97
- ### Video Benchmarks
98
-
99
- | Model Name | Video-MME (wo / w sub) | MVBench | MMBench-Video (val) | MLVU (M-Avg) | LongVideoBench (val total) | CG-Bench v1.1 (long / clue acc.) |
100
- |---------------------------------------------|-------------|------|-------|-------|------|-------------|
101
- | **InternVL2.5-1B** | 50.3 / 52.3 | 64.3 | 1.36 | 57.3 | 47.9 | - |
102
- | Qwen2-VL-2B | 55.6 / 60.4 | 63.2 | - | - | - | - |
103
- | **InternVL2.5-2B** | 51.9 / 54.1 | 68.8 | 1.44 | 61.4 | 52.0 | - |
104
- | **InternVL2.5-4B** | 62.3 / 63.6 | 71.6 | 1.73 | 68.3 | 55.2 | - |
105
- | VideoChat2-HD | 45.3 / 55.7 | 62.3 | 1.22 | 47.9 | - | - |
106
- | MiniCPM-V-2.6 | 60.9 / 63.6 | - | 1.70 | - | 54.9 | - |
107
- | LLaVA-OneVision-7B | 58.2 / - | 56.7 | - | - | - | - |
108
- | Qwen2-VL-7B | 63.3 / 69.0 | 67.0 | 1.44 | - | 55.6 | - |
109
- | **InternVL2.5-8B** | 64.2 / 66.9 | 72.0 | 1.68 | 68.9 | 60.0 | - |
110
- | **InternVL2.5-26B** | 66.9 / 69.2 | 75.2 | 1.86 | 72.3 | 59.9 | - |
111
- | Oryx-1.5-32B | 67.3 / 74.9 | 70.1 | 1.52 | 72.3 | - | - |
112
- | VILA-1.5-40B | 60.1 / 61.1 | - | 1.61 | 56.7 | - | - |
113
- | **InternVL2.5-38B** | 70.7 / 73.1 | 74.4 | 1.82 | 75.3 | 63.3 | - |
114
- | GPT-4V/4T | 59.9 / 63.3 | 43.7 | 1.53 | 49.2 | 59.1 | - |
115
- | GPT-4o-20240513 | 71.9 / 77.2 | - | 1.63 | 64.6 | 66.7 | - |
116
- | GPT-4o-20240806 | - | - | 1.87 | - | - | - |
117
- | Gemini-1.5-Pro | 75.0 / 81.3 | - | 1.30 | - | 64.0 | - |
118
- | VideoLLaMA2-72B | 61.4 / 63.1 | 62.0 | - | - | - | - |
119
- | LLaVA-OneVision-72B | 66.2 / 69.5 | 59.4 | - | 66.4 | 61.3 | - |
120
- | Qwen2-VL-72B | 71.2 / 77.8 | 73.6 | 1.70 | - | - | 41.3 / 56.2 |
121
- | InternVL2-Llama3-76B | 64.7 / 67.8 | 69.6 | 1.71 | 69.9 | 61.1 | - |
122
- | **InternVL2.5-78B** | 72.1 / 74.0 | 76.4 | 1.97 | 75.7 | 63.6 | 42.2 / 58.5 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  ### Multimodal Multilingual Understanding
125
 
126
- <table>
127
- <tr>
128
- <td rowspan="2">Model Name</td>
129
- <td colspan="6">MMMB</td>
130
- <td colspan="6">MultiMMB</td>
131
- <td>MTVQA</td>
132
- </tr>
133
- <tr>
134
- <td>en</td>
135
- <td>zh</td>
136
- <td>pt</td>
137
- <td>ar</td>
138
- <td>tr</td>
139
- <td>ru</td>
140
- <td>en</td>
141
- <td>zh</td>
142
- <td>pt</td>
143
- <td>ar</td>
144
- <td>tr</td>
145
- <td>ru</td>
146
- <td>(avg)</td>
147
- </tr>
148
- <tr>
149
- <td>InternVL2-1B</td>
150
- <td>73.2</td>
151
- <td>67.4</td>
152
- <td>55.5</td>
153
- <td>53.5</td>
154
- <td>43.8</td>
155
- <td>55.2</td>
156
- <td>67.9</td>
157
- <td>61.2</td>
158
- <td>50.8</td>
159
- <td>43.3</td>
160
- <td>31.8</td>
161
- <td>52.7</td>
162
- <td>12.6</td>
163
- </tr>
164
- <tr>
165
- <td>InternVL2.5-1B</td>
166
- <td>78.8</td>
167
- <td>70.2</td>
168
- <td>61.5</td>
169
- <td>55.0</td>
170
- <td>45.3</td>
171
- <td>61.1</td>
172
- <td>72.5</td>
173
- <td>64.7</td>
174
- <td>57.0</td>
175
- <td>43.0</td>
176
- <td>37.8</td>
177
- <td>53.2</td>
178
- <td>21.4</td>
179
- </tr>
180
- <tr>
181
- <td>Qwen2-VL-2B</td>
182
- <td>78.3</td>
183
- <td>74.2</td>
184
- <td>72.6</td>
185
- <td>68.3</td>
186
- <td>61.8</td>
187
- <td>72.8</td>
188
- <td>72.1</td>
189
- <td>71.1</td>
190
- <td>69.9</td>
191
- <td>61.1</td>
192
- <td>54.4</td>
193
- <td>69.3</td>
194
- <td>20.0</td>
195
- </tr>
196
- <tr>
197
- <td>InternVL2-2B</td>
198
- <td>79.4</td>
199
- <td>71.6</td>
200
- <td>54.0</td>
201
- <td>43.5</td>
202
- <td>46.4</td>
203
- <td>48.1</td>
204
- <td>73.8</td>
205
- <td>69.6</td>
206
- <td>51.4</td>
207
- <td>29.8</td>
208
- <td>31.3</td>
209
- <td>42.3</td>
210
- <td>10.9</td>
211
- </tr>
212
- <tr>
213
- <td>InternVL2.5-2B</td>
214
- <td>81.4</td>
215
- <td>74.4</td>
216
- <td>58.2</td>
217
- <td>48.3</td>
218
- <td>46.4</td>
219
- <td>53.2</td>
220
- <td>76.5</td>
221
- <td>71.6</td>
222
- <td>55.9</td>
223
- <td>37.3</td>
224
- <td>33.9</td>
225
- <td>44.8</td>
226
- <td>21.8</td>
227
- </tr>
228
- </table>
229
-
230
- ### Language Benchmarks
231
-
232
- | Dataset | Settings | InternLM2-1.8B-Chat | InternVL2-2B | InternLM2.5-1.8B-Chat | InternVL2.5-2B |
233
- |------------------|----------|---------------------|--------------|-----------------------|----------------|
234
- | MMLU | 5-shot | 47.3 | 46.4 | 50.5 | 52.6 |
235
- | CMMLU | 5-shot | 46.1 | 47.1 | 62.7 | 57.0 |
236
- | C-Eval | 5-shot | 48.6 | 48.6 | 60.4 | 56.2 |
237
- | GAOKAO | 0-shot | 33.1 | 32.3 | 54.7 | 52.6 |
238
- | TriviaQA | 0-shot | 37.3 | 31.5 | 32.3 | 31.2 |
239
- | NaturalQuestions | 0-shot | 15.3 | 13.2 | 10.1 | 11.8 |
240
- | C3 | 0-shot | 75.8 | 76.9 | 61.4 | 78.0 |
241
- | RACE-High | 0-shot | 74.0 | 72.6 | 78.5 | 77.4 |
242
- | WinoGrande | 0-shot | 56.5 | 58.7 | 56.9 | 59.1 |
243
- | HellaSwag | 0-shot | 57.9 | 53.7 | 76.2 | 68.2 |
244
- | BBH | 0-shot | 37.9 | 36.3 | 43.4 | 40.9 |
245
- | GSM8K | 4-shot | 42.7 | 40.7 | 53.3 | 55.1 |
246
- | MATH | 4-shot | 11.0 | 7.0 | 39.5 | 33.5 |
247
- | TheoremQA | 0-shot | 13.9 | 12.3 | 11.4 | 12.0 |
248
- | HumanEval | 4-shot | 34.8 | 32.3 | 41.5 | 52.4 |
249
- | MBPP | 3-shot | 40.9 | 33.1 | 42.8 | 50.6 |
250
- | MBPP-CN | 0-shot | 28.2 | 23.4 | 33.8 | 34.2 |
251
- | Average | - | 41.3 | 39.2 | 47.6 | 48.4 |
252
- | Gain | - | - | **-2.1** | - | **+0.8** |
253
-
254
- ### Invitation to Evaluate InternVL
255
-
256
- We welcome MLLM benchmark developers to assess our InternVL series models. If you need to add your evaluation results here, please contact me at [wztxy89@163.com](mailto:wztxy89@163.com).
257
 
 
258
 
259
- ## Quick Start
260
 
261
- We provide an example code to run InternVL2_5-2B using `transformers`.
262
 
263
- We also welcome you to experience the InternVL2_5 series models in our [online demo](https://internvl.opengvlab.com/).
264
 
265
- > Please use transformers ≳ 4.37.2 to ensure the model works normally.
 
 
 
 
 
 
266
 
267
  ### Model Loading
268
 
@@ -295,21 +209,6 @@ model = AutoModel.from_pretrained(
295
  trust_remote_code=True).eval()
296
  ```
297
 
298
- #### BNB 4-bit Quantization
299
-
300
- ```python
301
- import torch
302
- from transformers import AutoTokenizer, AutoModel
303
- path = "OpenGVLab/InternVL2_5-2B"
304
- model = AutoModel.from_pretrained(
305
- path,
306
- torch_dtype=torch.bfloat16,
307
- load_in_4bit=True,
308
- low_cpu_mem_usage=True,
309
- use_flash_attn=True,
310
- trust_remote_code=True).eval()
311
- ```
312
-
313
  #### Multiple GPUs
314
 
315
  The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
@@ -323,7 +222,7 @@ def split_model(model_name):
323
  device_map = {}
324
  world_size = torch.cuda.device_count()
325
  num_layers = {
326
- 'InternVL2_5-1B': 24, 'InternVL_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
327
  'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
328
  # Since the first GPU will be used for ViT, treat it as half a GPU.
329
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
@@ -568,13 +467,13 @@ response, history = model.chat(tokenizer, pixel_values, question, generation_con
568
  num_patches_list=num_patches_list, history=None, return_history=True)
569
  print(f'User: {question}\nAssistant: {response}')
570
 
571
- question = 'Describe this video in detail. Don\'t repeat.'
572
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
573
  num_patches_list=num_patches_list, history=history, return_history=True)
574
  print(f'User: {question}\nAssistant: {response}')
575
  ```
576
 
577
- #### Streaming output
578
 
579
  Besides this method, you can also use the following code to get streamed output.
580
 
@@ -619,7 +518,7 @@ pip install lmdeploy>=0.5.3
619
 
620
  LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
621
 
622
- #### A 'Hello, world' example
623
 
624
  ```python
625
  from lmdeploy import pipeline, TurbomindEngineConfig
@@ -634,11 +533,11 @@ print(response.text)
634
 
635
  If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
636
 
637
- #### Multi-images inference
638
 
639
  When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
640
 
641
- > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
642
 
643
  ```python
644
  from lmdeploy import pipeline, TurbomindEngineConfig
@@ -659,7 +558,7 @@ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe thes
659
  print(response.text)
660
  ```
661
 
662
- #### Batch prompts inference
663
 
664
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
665
 
@@ -679,7 +578,7 @@ response = pipe(prompts)
679
  print(response)
680
  ```
681
 
682
- #### Multi-turn conversation
683
 
684
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
685
 
@@ -742,18 +641,18 @@ print(response)
742
 
743
  ## License
744
 
745
- This project is released under the MIT license, while Qwen2 is licensed under the Tongyi Qianwen LICENSE.
746
 
747
  ## Citation
748
 
749
  If you find this project useful in your research, please consider citing:
750
 
751
  ```BibTeX
752
- @article{chen2023internvl,
753
- title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
754
- author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
755
- journal={arXiv preprint arXiv:2312.14238},
756
- year={2023}
757
  }
758
  @article{chen2024far,
759
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
@@ -761,11 +660,10 @@ If you find this project useful in your research, please consider citing:
761
  journal={arXiv preprint arXiv:2404.16821},
762
  year={2024}
763
  }
764
- @article{gao2024mini,
765
- title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
766
- author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
767
- journal={arXiv preprint arXiv:2410.16261},
768
- year={2024}
769
  }
770
  ```
771
-
 
10
  - multilingual
11
  tags:
12
  - internvl
 
 
 
 
13
  - custom_code
14
  ---
15
 
16
  # InternVL2_5-2B
17
 
18
+ [\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[πŸ†• Blog\]](https://internvl.github.io/blog/) [\[πŸ“œ InternVL 1.0\]](https://arxiv.org/abs/2312.14238) [\[πŸ“œ InternVL 1.5\]](https://arxiv.org/abs/2404.16821) [\[πŸ“œ InternVL 2.5\]](https://github.com/OpenGVLab/InternVL/blob/main/InternVL2_5_report.pdf)
 
 
 
19
 
20
+ [\[πŸ—¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[πŸ€— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[πŸš€ Quick Start\]](#quick-start) [\[πŸ“– Documents\]](https://internvl.readthedocs.io/en/latest/)
21
+
22
+ <div align="center">
23
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
24
+ </div>
25
 
26
  ## Introduction
27
 
28
+ We are excited to introduce **InternVL 2.5**, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
29
+
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5HDAGOQOZvS1EtI107Ac-.png)
31
+
32
+ ## InternVL 2.5 Family
33
+
34
+ In the following table, we provide an overview of the InternVL 2.5 series.
35
+
36
+ | Model Name | Vision Part | Language Part | HF Link |
37
+ | :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: |
38
+ | InternVL2_5-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
39
+ | InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
40
+ | InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
41
+ | InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
42
+ | InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
43
+ | InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
44
+ | InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
45
+
46
+ ## Model Architecture
47
+
48
+ As shown in the following figure, InternVL 2.5 retains the same model architecture as its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.
49
+
50
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
51
+
52
+ As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448Γ—448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
53
+
54
+ ## Training Strategy
55
+
56
+ ### Dynamic High-Resolution for Multimodal Data
57
+
58
+ In InternVL 2.0 and 2.5, we extend the dynamic high-resolution training approach, enhancing its capabilities to handle multi-image and video datasets.
59
+
60
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/xoMY6rwRrNxbAGYPNyU8g.png)
61
+
62
+ - For single-image datasets, the total number of tiles `n_max` are allocated to a single image for maximum resolution. Visual tokens are enclosed in `<img>` and `</img>` tags.
63
+
64
+ - For multi-image datasets, the total number of tiles `n_max` are distributed across all images in a sample. Each image is labeled with auxiliary tags like `Image-1` and enclosed in `<img>` and `</img>` tags.
65
+
66
+ - For videos, each frame is resized to 448Γ—448. Frames are labeled with tags like `Frame-1` and enclosed in `<img>` and `</img>` tags, similar to images.
67
+
68
+ ### Single Model Training Pipeline
69
+
70
+ The training pipeline for a single model in InternVL 2.5 is structured across three stages, designed to enhance the model's visual perception and multimodal capabilities.
71
+
72
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5NduZeCPLgPJTFr0RGTq3.png)
73
+
74
+ - **Stage 1: MLP Warmup.** In this stage, only the MLP projector is trained while the vision encoder and language model are frozen. A dynamic high-resolution training strategy is applied for better performance, despite increased cost. This phase ensures robust cross-modal alignment and prepares the model for stable multimodal training.
75
+
76
+ - **Stage 1.5: ViT Incremental Learning (Optional).** This stage allows incremental training of the vision encoder and MLP projector using the same data as Stage 1. It enhances the encoder’s ability to handle rare domains like multilingual OCR and mathematical charts. Once trained, the encoder can be reused across LLMs without retraining, making this stage optional unless new domains are introduced.
77
+
78
+ - **Stage 2: Full Model Instruction Tuning.** The entire model is trained on high-quality multimodal instruction datasets. Strict data quality controls are enforced to prevent degradation of the LLM, as noisy data can cause issues like repetitive or incorrect outputs. After this stage, the training process is complete.
79
+
80
+ ### Progressive Scaling Strategy
81
+
82
+ We introduce a progressive scaling strategy to align the vision encoder with LLMs efficiently. This approach trains with smaller LLMs first (e.g., 20B) to optimize foundational visual capabilities and cross-modal alignment before transferring the vision encoder to larger LLMs (e.g., 72B) without retraining. This reuse skips intermediate stages for larger models.
83
+
84
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/AVb_PSxhJq1z2eUFNYoqQ.png)
85
+
86
+ Compared to Qwen2-VL's 1.4 trillion tokens, InternVL2.5-78B uses only 120 billion tokensβ€”less than one-tenth. This strategy minimizes redundancy, maximizes pre-trained component reuse, and enables efficient training for complex vision-language tasks.
87
+
88
+ ### Training Enhancements
89
+
90
+ To improve real-world adaptability and performance, we introduce two key techniques:
91
+
92
+ - **Random JPEG Compression**: Random JPEG compression with quality levels between 75 and 100 is applied as a data augmentation technique. This simulates image degradation from internet sources, enhancing the model's robustness to noisy images.
93
+
94
+ - **Loss Reweighting**: To balance the NTP loss across responses of different lengths, we use a reweighting strategy called **square averaging**. This method balances contributions from responses of varying lengths, mitigating biases toward longer or shorter responses.
95
+
96
+ ### Data Organization
97
+
98
+ #### Dataset Configuration
99
+
100
+ In InternVL 2.0 and 2.5, the organization of the training data is controlled by several key parameters to optimize the balance and distribution of datasets during training.
101
+
102
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/2LJe24b1ua3gjI9gDitVl.png)
103
+
104
+ - **Data Augmentation:** JPEG compression is applied conditionally: enabled for image datasets to enhance robustness and disabled for video datasets to maintain consistent frame quality.
105
+
106
+ - **Maximum Tile Number:** The parameter `n_max` controls the maximum tiles per dataset. For example, higher values (24–36) are used for multi-image or high-resolution data, lower values (6–12) for standard images, and 1 for videos.
107
+
108
+ - **Repeat Factor:** The repeat factor `r` adjusts dataset sampling frequency. Values below 1 reduce a dataset's weight, while values above 1 increase it. This ensures balanced training across tasks and prevents overfitting or underfitting.
109
+
110
+ #### Data Filtering Pipeline
111
+
112
+ During development, we found that LLMs are highly sensitive to data noise, with even small anomaliesβ€”like outliers or repetitive dataβ€”causing abnormal behavior during inference. Repetitive generation, especially in long-form or CoT reasoning tasks, proved particularly harmful.
113
+
114
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/aka8ZRiKF3ajdyZBnNFZI.png)
115
+
116
+ To address this challenge and support future research, we designed an efficient data filtering pipeline to remove low-quality samples.
117
+
118
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/70l1UxnX-Arn0NoOGwpth.png)
119
+
120
+ The pipeline includes two modules, for **pure-text data**, three key strategies are used:
121
+
122
+ 1. **LLM-Based Quality Scoring**: Each sample is scored (0–10) using a pre-trained LLM with domain-specific prompts. Samples scoring below a threshold (e.g., 7) are removed to ensure high-quality data.
123
+ 2. **Repetition Detection**: Repetitive samples are flagged using LLM-based prompts and manually reviewed. Samples scoring below a stricter threshold (e.g., 3) are excluded to avoid repetitive patterns.
124
+ 3. **Heuristic Rule-Based Filtering**: Anomalies like abnormal sentence lengths or duplicate lines are detected using rules. Flagged samples undergo manual verification to ensure accuracy before removal.
125
+
126
+ For **multimodal data**, two strategies are used:
127
+
128
+ 1. **Repetition Detection**: Repetitive samples in non-academic datasets are flagged and manually reviewed to prevent pattern loops. High-quality datasets are exempt from this process.
129
+ 2. **Heuristic Rule-Based Filtering**: Similar rules are applied to detect visual anomalies, with flagged data verified manually to maintain integrity.
130
+
131
+ #### Training Data
132
+
133
+ As shown in the following figure, from InternVL 1.5 to 2.0 and then to 2.5, the fine-tuning data mixture has undergone iterative improvements in scale, quality, and diversity. For more information about the training data, please refer to our technical report.
134
+
135
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GaTY9Lde02YzclASMthDa.png)
136
+
137
+ ## Evaluation on Multimodal Capability
138
+
139
+ ### Multimodal Reasoning and Mathematics
140
+
141
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/ihFWMRHbF0lpFTkLqnnj1.png)
142
+
143
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Nrzq0kjlitjp_jrJCqtwX.png)
144
+
145
+ ### OCR, Chart, and Document Understanding
146
+
147
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/3yCMoLjlbsqY7ZJViGzih.png)
148
+
149
+ ### Multi-Image & Real-World Comprehension
150
+
151
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/DSnalmEyhDVQ9GE0GPCla.png)
152
+
153
+ ### Comprehensive Multimodal & Hallucination Evaluation
154
+
155
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Z7Raj3TGDiV1H81pDHtoG.png)
156
+
157
+ ### Visual Grounding
158
+
159
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/lPcIrng8MPSg_PM1hpDPt.png)
160
 
161
  ### Multimodal Multilingual Understanding
162
 
163
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BPpbAOX36RV8RTnm3j-gs.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
+ ### Video Understanding
166
 
167
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/uD5aYt2wNYL94Xn8MOVih.png)
168
 
169
+ ## Evaluation on Language Capability
170
 
171
+ Training InternVL 2.0 models led to a decline in pure language capabilities. InternVL 2.5 addresses this by collecting more high-quality open-source data and filtering out low-quality data, achieving better preservation of pure language performance.
172
 
173
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/mxuSKvSY-kfI8zePpXj6y.png)
174
+
175
+ ## Quick Start
176
+
177
+ We provide an example code to run `InternVL2_5-2B` using `transformers`.
178
+
179
+ > Please use transformers>=4.37.2 to ensure the model works normally.
180
 
181
  ### Model Loading
182
 
 
209
  trust_remote_code=True).eval()
210
  ```
211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
  #### Multiple GPUs
213
 
214
  The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
 
222
  device_map = {}
223
  world_size = torch.cuda.device_count()
224
  num_layers = {
225
+ 'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
226
  'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
227
  # Since the first GPU will be used for ViT, treat it as half a GPU.
228
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
 
467
  num_patches_list=num_patches_list, history=None, return_history=True)
468
  print(f'User: {question}\nAssistant: {response}')
469
 
470
+ question = 'Describe this video in detail.'
471
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
472
  num_patches_list=num_patches_list, history=history, return_history=True)
473
  print(f'User: {question}\nAssistant: {response}')
474
  ```
475
 
476
+ #### Streaming Output
477
 
478
  Besides this method, you can also use the following code to get streamed output.
479
 
 
518
 
519
  LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
520
 
521
+ #### A 'Hello, world' Example
522
 
523
  ```python
524
  from lmdeploy import pipeline, TurbomindEngineConfig
 
533
 
534
  If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
535
 
536
+ #### Multi-images Inference
537
 
538
  When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
539
 
540
+ question = 'Describe this video in detail.'
541
 
542
  ```python
543
  from lmdeploy import pipeline, TurbomindEngineConfig
 
558
  print(response.text)
559
  ```
560
 
561
+ #### Batch Prompts Inference
562
 
563
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
564
 
 
578
  print(response)
579
  ```
580
 
581
+ #### Multi-turn Conversation
582
 
583
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
584
 
 
641
 
642
  ## License
643
 
644
+ This project is released under the MIT License. This project uses the pre-trained internlm2_5-1_8b-chat as a component, which is licensed under the Apache License 2.0.
645
 
646
  ## Citation
647
 
648
  If you find this project useful in your research, please consider citing:
649
 
650
  ```BibTeX
651
+ @article{gao2024mini,
652
+ title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
653
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
654
+ journal={arXiv preprint arXiv:2410.16261},
655
+ year={2024}
656
  }
657
  @article{chen2024far,
658
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
 
660
  journal={arXiv preprint arXiv:2404.16821},
661
  year={2024}
662
  }
663
+ @article{chen2023internvl,
664
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
665
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
666
+ journal={arXiv preprint arXiv:2312.14238},
667
+ year={2023}
668
  }
669
  ```