czczup commited on
Commit
de27acf
·
verified ·
1 Parent(s): 6ec3a7e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md CHANGED
@@ -1,3 +1,104 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # Model Card for InternVL-14B-FlickrCN-FT-364px
6
+
7
+ ## What is InternVL?
8
+
9
+ \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\]
10
+
11
+ InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM.
12
+
13
+ It is _**the largest open-source vision/vision-language foundation model (14B)**_ to date, achieving _**32 state-of-the-art**_ performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
14
+
15
+
16
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/k5UATwX5W2b5KJBN5C58x.png)
17
+
18
+
19
+ ## Model Details
20
+ - **Model Type:** fine-tuned retrieval model
21
+ - **Support Tasks:** image-text retrieval
22
+ - **Model Stats:**
23
+ - Params: 14B
24
+ - Image size: 364 x 364
25
+ - **Fine-tune Dataset:** FlickrCN
26
+
27
+ ## Setting
28
+
29
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/yuGYJIUQmgc6o87JulBMK.png)
30
+
31
+ ## Performance
32
+
33
+ See this [document](https://github.com/OpenGVLab/InternVL/tree/main/internvl_g#flickr30k) for more details about the evaluation.
34
+
35
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/6_m-UMr6tBRxuDRXWBFnj.png)
36
+
37
+
38
+ ## Model Usage
39
+
40
+ **Note: the prefix `'summarize:'` and `tokenizer.pad_token_id = 0` are necessary. Their absence will lead to abnormal results.**
41
+
42
+ ```python
43
+ import torch
44
+ from PIL import Image
45
+ from transformers import AutoModel, CLIPImageProcessor
46
+ from transformers import AutoTokenizer
47
+
48
+
49
+ model = AutoModel.from_pretrained(
50
+ 'OpenGVLab/InternVL-14B-FlickrCN-FT-364px',
51
+ torch_dtype=torch.bfloat16,
52
+ low_cpu_mem_usage=True,
53
+ trust_remote_code=True).cuda().eval()
54
+
55
+ image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL-14B-FlickrCN-FT-364px')
56
+
57
+ tokenizer = AutoTokenizer.from_pretrained(
58
+ 'OpenGVLab/InternVL-14B-FlickrCN-FT-364px', use_fast=False, add_eos_token=True)
59
+ tokenizer.pad_token_id = 0 # set pad_token_id to 0
60
+
61
+ images = [
62
+ Image.open('./examples/image1.jpg').convert('RGB'),
63
+ Image.open('./examples/image2.jpg').convert('RGB'),
64
+ Image.open('./examples/image3.jpg').convert('RGB')
65
+ ]
66
+ prefix = 'summarize:'
67
+ texts = [
68
+ prefix + 'a photo of a red panda', # English
69
+ prefix + '一张熊猫的照片', # Chinese
70
+ prefix + '二匹の猫の写真' # Japanese
71
+ ]
72
+
73
+ pixel_values = image_processor(images=images, return_tensors='pt').pixel_values
74
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
75
+ input_ids = tokenizer(texts, return_tensors='pt', max_length=80,
76
+ truncation=True, padding='max_length').input_ids.cuda()
77
+
78
+ # InternVL-C
79
+ logits_per_image, logits_per_text = model(
80
+ image=pixel_values, text=input_ids, mode='InternVL-C')
81
+ probs = logits_per_image.softmax(dim=-1)
82
+
83
+ # InternVL-G
84
+ logits_per_image, logits_per_text = model(
85
+ image=pixel_values, text=input_ids, mode='InternVL-G')
86
+ probs = logits_per_image.softmax(dim=-1)
87
+ ```
88
+
89
+ ## Citation
90
+
91
+ If you find this project useful in your research, please consider citing:
92
+
93
+ ```BibTeX
94
+ @article{chen2023internvl,
95
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
96
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
97
+ journal={arXiv preprint arXiv:2312.14238},
98
+ year={2023}
99
+ }
100
+ ```
101
+
102
+ ## Acknowledgement
103
+
104
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!