cuierfei commited on
Commit
5671375
·
verified ·
1 Parent(s): c26b444
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_audio_chat.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from .configuration_internlm2 import InternLM2Config
10
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
11
+ from transformers.configuration_utils import PretrainedConfig
12
+ from transformers.utils import logging
13
+ from .configuration_whisper import WhisperConfig
14
+
15
+ from .configuration_intern_vit import InternVisionConfig
16
+ from .configuration_internvl_chat import InternVLChatConfig
17
+
18
+ logger = logging.get_logger(__name__)
19
+
20
+
21
+
22
+
23
+ class InternVLChatAudioConfig(InternVLChatConfig):
24
+ model_type = "internvl_chat"
25
+ is_composition = True
26
+
27
+ def __init__(
28
+ self,
29
+ vision_config=None,
30
+ audio_config=None,
31
+ llm_config=None,
32
+ **kwargs):
33
+ super().__init__(vision_config, llm_config, **kwargs)
34
+
35
+ if audio_config is None:
36
+ audio_config = {}
37
+ logger.info('audio_config is None. Initializing the Audioconfig with default values.')
38
+ self.audio_config = WhisperConfig(**audio_config)
39
+
40
+ def to_dict(self):
41
+ """
42
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
43
+
44
+ Returns:
45
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
46
+ """
47
+ output = super().to_dict()
48
+ output['audio_config'] = self.audio_config.to_dict()
49
+ return output
configuration_internvl_chat.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from .configuration_internlm2 import InternLM2Config
10
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
11
+ from transformers.configuration_utils import PretrainedConfig
12
+ from transformers.utils import logging
13
+
14
+ from .configuration_intern_vit import InternVisionConfig
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ pad2square=False,
30
+ select_layer=-1,
31
+ force_image_size=None,
32
+ downsample_ratio=0.5,
33
+ template=None,
34
+ dynamic_image_size=False,
35
+ use_thumbnail=False,
36
+ ps_version='v1',
37
+ min_dynamic_patch=1,
38
+ max_dynamic_patch=6,
39
+ **kwargs):
40
+ super().__init__(**kwargs)
41
+
42
+ if vision_config is None:
43
+ vision_config = {}
44
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
45
+
46
+ if llm_config is None:
47
+ llm_config = {}
48
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
49
+
50
+ self.vision_config = InternVisionConfig(**vision_config)
51
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
52
+ self.llm_config = LlamaConfig(**llm_config)
53
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
54
+ self.llm_config = InternLM2Config(**llm_config)
55
+ elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
56
+ self.llm_config = Phi3Config(**llm_config)
57
+ elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
58
+ self.llm_config = Qwen2Config(**llm_config)
59
+ else:
60
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
61
+ self.use_backbone_lora = use_backbone_lora
62
+ self.use_llm_lora = use_llm_lora
63
+ self.pad2square = pad2square
64
+ self.select_layer = select_layer
65
+ self.force_image_size = force_image_size
66
+ self.downsample_ratio = downsample_ratio
67
+ self.template = template
68
+ self.dynamic_image_size = dynamic_image_size
69
+ self.use_thumbnail = use_thumbnail
70
+ self.ps_version = ps_version # pixel shuffle version
71
+ self.min_dynamic_patch = min_dynamic_patch
72
+ self.max_dynamic_patch = max_dynamic_patch
73
+
74
+ logger.info(f'vision_select_layer: {self.select_layer}')
75
+ logger.info(f'ps_version: {self.ps_version}')
76
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
77
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
78
+
79
+ def to_dict(self):
80
+ """
81
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
82
+
83
+ Returns:
84
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
85
+ """
86
+ output = copy.deepcopy(self.__dict__)
87
+ output['vision_config'] = self.vision_config.to_dict()
88
+ output['llm_config'] = self.llm_config.to_dict()
89
+ output['model_type'] = self.__class__.model_type
90
+ output['use_backbone_lora'] = self.use_backbone_lora
91
+ output['use_llm_lora'] = self.use_llm_lora
92
+ output['pad2square'] = self.pad2square
93
+ output['select_layer'] = self.select_layer
94
+ output['force_image_size'] = self.force_image_size
95
+ output['downsample_ratio'] = self.downsample_ratio
96
+ output['template'] = self.template
97
+ output['dynamic_image_size'] = self.dynamic_image_size
98
+ output['use_thumbnail'] = self.use_thumbnail
99
+ output['ps_version'] = self.ps_version
100
+ output['min_dynamic_patch'] = self.min_dynamic_patch
101
+ output['max_dynamic_patch'] = self.max_dynamic_patch
102
+
103
+ return output
configuration_whisper.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Whisper model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
19
+
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
22
+ from transformers.utils import logging
23
+
24
+
25
+ if TYPE_CHECKING:
26
+ from transformers.feature_extraction_utils import FeatureExtractionMixin
27
+ from transformers.tokenization_utils_base import PreTrainedTokenizerBase
28
+ from transformers.utils import TensorType
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+
33
+ # fmt: off
34
+ NON_SPEECH_TOKENS = [
35
+ 1, 2, 7, 8, 9, 10, 14, 25,
36
+ 26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
37
+ 63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
38
+ 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
39
+ 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
40
+ 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
41
+ 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
42
+ 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
43
+ 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
44
+ ]
45
+ NON_SPEECH_TOKENS_MULTI = [
46
+ 1, 2, 7, 8, 9, 10, 14, 25,
47
+ 26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
48
+ 63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
49
+ 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
50
+ 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
51
+ 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
52
+ 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
53
+ 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
54
+ 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
55
+ ]
56
+ # fmt: on
57
+
58
+
59
+ class WhisperConfig(PretrainedConfig):
60
+ r"""
61
+ This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a
62
+ Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration
63
+ with the defaults will yield a similar configuration to that of the Whisper
64
+ [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
65
+
66
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
67
+ documentation from [`PretrainedConfig`] for more information.
68
+
69
+
70
+ Args:
71
+ vocab_size (`int`, *optional*, defaults to 51865):
72
+ Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the
73
+ `decoder_input_ids` passed when calling [`WhisperModel`]
74
+ num_mel_bins (`int`, *optional*, defaults to 80):
75
+ Number of mel features used per input features. Should correspond to the value used in the
76
+ `WhisperProcessor` class.
77
+ encoder_layers (`int`, *optional*, defaults to 4):
78
+ Number of encoder layers.
79
+ decoder_layers (`int`, *optional*, defaults to 4):
80
+ Number of decoder layers.
81
+ encoder_attention_heads (`int`, *optional*, defaults to 6):
82
+ Number of attention heads for each attention layer in the Transformer encoder.
83
+ decoder_attention_heads (`int`, *optional*, defaults to 6):
84
+ Number of attention heads for each attention layer in the Transformer decoder.
85
+ encoder_ffn_dim (`int`, *optional*, defaults to 1536):
86
+ Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
87
+ decoder_ffn_dim (`int`, *optional*, defaults to 1536):
88
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
89
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
90
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
91
+ for more details.
92
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
93
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
94
+ for more details.
95
+ decoder_start_token_id (`int`, *optional*, defaults to 50257):
96
+ Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
97
+ are provided to the `generate` function. It is used to guide the model`s generation process depending on
98
+ the task.
99
+ use_cache (`bool`, *optional*, defaults to `True`):
100
+ Whether or not the model should return the last key/values attentions (not used by all models).
101
+ is_encoder_decoder (`bool`, *optional*, defaults to `True`):
102
+ Whether the model is used as an encoder/decoder or not.
103
+ activation_function (`str`, *optional*, defaults to `"gelu"`):
104
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
105
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
106
+ d_model (`int`, *optional*, defaults to 384):
107
+ Dimensionality of the layers.
108
+ dropout (`float`, *optional*, defaults to 0.1):
109
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
110
+ attention_dropout (`float`, *optional*, defaults to 0.0):
111
+ The dropout ratio for the attention probabilities.
112
+ activation_dropout (`float`, *optional*, defaults to 0.0):
113
+ The dropout ratio for activations inside the fully connected layer.
114
+ init_std (`float`, *optional*, defaults to 0.02):
115
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
116
+ scale_embedding (`bool`, *optional*, defaults to False):
117
+ Scale embeddings by diving by sqrt(d_model).
118
+ max_source_positions (`int`, *optional*, defaults to 1500):
119
+ The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
120
+ max_target_positions (`int`, *optional*, defaults to 448):
121
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
122
+ just in case (e.g., 512 or 1024 or 2048).
123
+ pad_token_id (`int`, *optional*, defaults to 50256):
124
+ Padding token id.
125
+ bos_token_id (`int`, *optional*, defaults to 50256):
126
+ Begin of stream token id.
127
+ eos_token_id (`int`, *optional*, defaults to 50256):
128
+ End of stream token id.
129
+ suppress_tokens (`List[int]`, *optional*):
130
+ A list containing the non-speech tokens that will be used by the logit processor in the `generate`
131
+ function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
132
+ `multilingual` model.
133
+ begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
134
+ A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
135
+ the token for `" "` (`blank_token_id`) and the `eos_token_id`
136
+ use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
137
+ Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
138
+ instance of [`WhisperForAudioClassification`].
139
+ classifier_proj_size (`int`, *optional*, defaults to 256):
140
+ Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
141
+ instance of [`WhisperForAudioClassification`].
142
+ apply_spec_augment (`bool`, *optional*, defaults to `False`):
143
+ Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
144
+ [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
145
+ Recognition](https://arxiv.org/abs/1904.08779).
146
+ mask_time_prob (`float`, *optional*, defaults to 0.05):
147
+ Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
148
+ procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
149
+ reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
150
+ masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
151
+ actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
152
+ mask_time_length (`int`, *optional*, defaults to 10):
153
+ Length of vector span along the time axis.
154
+ mask_time_min_masks (`int`, *optional*, defaults to 2),:
155
+ The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
156
+ irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
157
+ mask_time_min_masks''
158
+ mask_feature_prob (`float`, *optional*, defaults to 0.0):
159
+ Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
160
+ masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
161
+ the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
162
+ span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
163
+ may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
164
+ True`.
165
+ mask_feature_length (`int`, *optional*, defaults to 10):
166
+ Length of vector span along the feature axis.
167
+ mask_feature_min_masks (`int`, *optional*, defaults to 0),:
168
+ The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
169
+ step, irrespectively of `mask_feature_prob`. Only relevant if
170
+ `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
171
+ median_filter_width (`int`, *optional*, defaults to 7):
172
+ Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
173
+ Should be an odd number.
174
+
175
+ Example:
176
+
177
+ ```python
178
+ >>> from transformers import WhisperConfig, WhisperModel
179
+
180
+ >>> # Initializing a Whisper tiny style configuration
181
+ >>> configuration = WhisperConfig()
182
+
183
+ >>> # Initializing a model (with random weights) from the tiny style configuration
184
+ >>> model = WhisperModel(configuration)
185
+
186
+ >>> # Accessing the model configuration
187
+ >>> configuration = model.config
188
+ ```"""
189
+
190
+ model_type = "whisper"
191
+ keys_to_ignore_at_inference = ["past_key_values"]
192
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
193
+
194
+ def __init__(
195
+ self,
196
+ vocab_size=51865,
197
+ num_mel_bins=80,
198
+ encoder_layers=4,
199
+ encoder_attention_heads=6,
200
+ decoder_layers=4,
201
+ decoder_attention_heads=6,
202
+ decoder_ffn_dim=1536,
203
+ encoder_ffn_dim=1536,
204
+ encoder_layerdrop=0.0,
205
+ decoder_layerdrop=0.0,
206
+ decoder_start_token_id=50257,
207
+ use_cache=True,
208
+ is_encoder_decoder=True,
209
+ activation_function="gelu",
210
+ d_model=384,
211
+ dropout=0.0,
212
+ attention_dropout=0.0,
213
+ activation_dropout=0.0,
214
+ init_std=0.02,
215
+ scale_embedding=False,
216
+ max_source_positions=1500,
217
+ max_target_positions=448,
218
+ pad_token_id=50256,
219
+ bos_token_id=50256,
220
+ eos_token_id=50256,
221
+ suppress_tokens=None,
222
+ begin_suppress_tokens=[220, 50256],
223
+ use_weighted_layer_sum=False,
224
+ classifier_proj_size=256,
225
+ apply_spec_augment=False,
226
+ mask_time_prob=0.05,
227
+ mask_time_length=10,
228
+ mask_time_min_masks=2,
229
+ mask_feature_prob=0.0,
230
+ mask_feature_length=10,
231
+ mask_feature_min_masks=0,
232
+ median_filter_width=7,
233
+ **kwargs,
234
+ ):
235
+ self.vocab_size = vocab_size
236
+ self.num_mel_bins = num_mel_bins
237
+ self.d_model = d_model
238
+ self.encoder_layers = encoder_layers
239
+ self.encoder_attention_heads = encoder_attention_heads
240
+ self.decoder_layers = decoder_layers
241
+ self.decoder_attention_heads = decoder_attention_heads
242
+ self.decoder_ffn_dim = decoder_ffn_dim
243
+ self.encoder_ffn_dim = encoder_ffn_dim
244
+ self.dropout = dropout
245
+ self.attention_dropout = attention_dropout
246
+ self.activation_dropout = activation_dropout
247
+ self.activation_function = activation_function
248
+ self.init_std = init_std
249
+ self.encoder_layerdrop = encoder_layerdrop
250
+ self.decoder_layerdrop = decoder_layerdrop
251
+ self.use_cache = use_cache
252
+ self.num_hidden_layers = encoder_layers
253
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
254
+ self.max_source_positions = max_source_positions
255
+ self.max_target_positions = max_target_positions
256
+
257
+ # Audio Classification-specific parameters. Feel free to ignore for other classes.
258
+ self.classifier_proj_size = classifier_proj_size
259
+ self.use_weighted_layer_sum = use_weighted_layer_sum
260
+
261
+ # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
262
+ self.apply_spec_augment = apply_spec_augment
263
+ self.mask_time_prob = mask_time_prob
264
+ self.mask_time_length = mask_time_length
265
+ self.mask_time_min_masks = mask_time_min_masks
266
+ self.mask_feature_prob = mask_feature_prob
267
+ self.mask_feature_length = mask_feature_length
268
+ self.mask_feature_min_masks = mask_feature_min_masks
269
+
270
+ self.median_filter_width = median_filter_width
271
+
272
+ super().__init__(
273
+ pad_token_id=pad_token_id,
274
+ bos_token_id=bos_token_id,
275
+ eos_token_id=eos_token_id,
276
+ is_encoder_decoder=is_encoder_decoder,
277
+ decoder_start_token_id=decoder_start_token_id,
278
+ suppress_tokens=suppress_tokens,
279
+ begin_suppress_tokens=begin_suppress_tokens,
280
+ **kwargs,
281
+ )
282
+
283
+
284
+ class WhisperOnnxConfig(OnnxSeq2SeqConfigWithPast):
285
+ @property
286
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
287
+ common_inputs = OrderedDict(
288
+ [
289
+ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
290
+ ]
291
+ )
292
+ if self.use_past:
293
+ common_inputs["decoder_input_ids"] = {0: "batch"}
294
+ else:
295
+ common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
296
+
297
+ if self.use_past:
298
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
299
+
300
+ return common_inputs
301
+
302
+ def generate_dummy_inputs(
303
+ self,
304
+ preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
305
+ batch_size: int = -1,
306
+ seq_length: int = -1,
307
+ is_pair: bool = False,
308
+ framework: Optional["TensorType"] = None,
309
+ sampling_rate: int = 22050,
310
+ time_duration: float = 5.0,
311
+ frequency: int = 220,
312
+ ) -> Mapping[str, Any]:
313
+ dummy_inputs = OrderedDict()
314
+ encoder_inputs = OnnxConfig.generate_dummy_inputs(
315
+ self,
316
+ preprocessor=preprocessor.feature_extractor,
317
+ batch_size=batch_size,
318
+ framework=framework,
319
+ sampling_rate=sampling_rate,
320
+ time_duration=time_duration,
321
+ frequency=frequency,
322
+ )
323
+ encoder_sequence_length = encoder_inputs["input_features"].shape[2]
324
+ seq_length = encoder_sequence_length // 2 if self.use_past else seq_length
325
+
326
+ decoder_inputs = super().generate_dummy_inputs(
327
+ preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
328
+ )
329
+
330
+ dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
331
+ dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")
332
+
333
+ if "past_key_values" in decoder_inputs:
334
+ dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")
335
+
336
+ return dummy_inputs
337
+
338
+ @property
339
+ def atol_for_validation(self) -> float:
340
+ return 1e-3
conversation.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep2, self.sep]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # InternVL-Chat-V1-1 template
334
+ register_conv_template(
335
+ Conversation(
336
+ name='internvl_zh',
337
+ system_template='',
338
+ roles=('<human>', '<bot>'),
339
+ sep_style=SeparatorStyle.INTERNVL_ZH,
340
+ sep='</s>',
341
+ sep2=' ',
342
+ )
343
+ )
344
+
345
+
346
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
347
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
348
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
349
+ # Therefore, they are completely equivalent during inference.
350
+ register_conv_template(
351
+ Conversation(
352
+ name='Hermes-2',
353
+ system_template='<|im_start|>system\n{system_message}',
354
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
355
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
356
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
357
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
358
+ sep_style=SeparatorStyle.MPT,
359
+ sep='<|im_end|>',
360
+ stop_token_ids=[
361
+ 2,
362
+ 6,
363
+ 7,
364
+ 8,
365
+ ],
366
+ stop_str='<|endoftext|>',
367
+ )
368
+ )
369
+
370
+
371
+ register_conv_template(
372
+ Conversation(
373
+ name='internlm2-chat',
374
+ system_template='<|im_start|>system\n{system_message}',
375
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
376
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
377
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
378
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
379
+ sep_style=SeparatorStyle.MPT,
380
+ sep='<|im_end|>',
381
+ stop_token_ids=[
382
+ 2,
383
+ 92543,
384
+ 92542
385
+ ]
386
+ )
387
+ )
388
+
389
+
390
+ register_conv_template(
391
+ Conversation(
392
+ name='phi3-chat',
393
+ system_template='<|system|>\n{system_message}',
394
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
395
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
396
+ system_message='你是由上海人工智能实验室联合商汤科技开���的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
397
+ roles=('<|user|>\n', '<|assistant|>\n'),
398
+ sep_style=SeparatorStyle.MPT,
399
+ sep='<|end|>',
400
+ stop_token_ids=[
401
+ 2,
402
+ 32000,
403
+ 32007
404
+ ]
405
+ )
406
+ )
modeling_intern_vit.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ from .flash_attention import FlashAttention
24
+ has_flash_attn = True
25
+ except:
26
+ print('FlashAttention is not installed.')
27
+ has_flash_attn = False
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+
32
+ class InternRMSNorm(nn.Module):
33
+ def __init__(self, hidden_size, eps=1e-6):
34
+ super().__init__()
35
+ self.weight = nn.Parameter(torch.ones(hidden_size))
36
+ self.variance_epsilon = eps
37
+
38
+ def forward(self, hidden_states):
39
+ input_dtype = hidden_states.dtype
40
+ hidden_states = hidden_states.to(torch.float32)
41
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
42
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
43
+ return self.weight * hidden_states.to(input_dtype)
44
+
45
+
46
+ try:
47
+ from apex.normalization import FusedRMSNorm
48
+
49
+ InternRMSNorm = FusedRMSNorm # noqa
50
+
51
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
52
+ except ImportError:
53
+ # using the normal InternRMSNorm
54
+ pass
55
+ except Exception:
56
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
57
+ pass
58
+
59
+
60
+ NORM2FN = {
61
+ 'rms_norm': InternRMSNorm,
62
+ 'layer_norm': nn.LayerNorm,
63
+ }
64
+
65
+
66
+ class InternVisionEmbeddings(nn.Module):
67
+ def __init__(self, config: InternVisionConfig):
68
+ super().__init__()
69
+ self.config = config
70
+ self.embed_dim = config.hidden_size
71
+ self.image_size = config.image_size
72
+ self.patch_size = config.patch_size
73
+
74
+ self.class_embedding = nn.Parameter(
75
+ torch.randn(1, 1, self.embed_dim),
76
+ )
77
+
78
+ self.patch_embedding = nn.Conv2d(
79
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
80
+ )
81
+
82
+ self.num_patches = (self.image_size // self.patch_size) ** 2
83
+ self.num_positions = self.num_patches + 1
84
+
85
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
86
+
87
+ def _get_pos_embed(self, pos_embed, H, W):
88
+ target_dtype = pos_embed.dtype
89
+ pos_embed = pos_embed.float().reshape(
90
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
91
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
92
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
93
+ return pos_embed
94
+
95
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
96
+ target_dtype = self.patch_embedding.weight.dtype
97
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
98
+ batch_size, _, height, width = patch_embeds.shape
99
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
100
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
101
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
102
+ position_embedding = torch.cat([
103
+ self.position_embedding[:, :1, :],
104
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
105
+ ], dim=1)
106
+ embeddings = embeddings + position_embedding.to(target_dtype)
107
+ return embeddings
108
+
109
+
110
+ class InternAttention(nn.Module):
111
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
112
+
113
+ def __init__(self, config: InternVisionConfig):
114
+ super().__init__()
115
+ self.config = config
116
+ self.embed_dim = config.hidden_size
117
+ self.num_heads = config.num_attention_heads
118
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
119
+ if config.use_flash_attn and not has_flash_attn:
120
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
121
+ self.head_dim = self.embed_dim // self.num_heads
122
+ if self.head_dim * self.num_heads != self.embed_dim:
123
+ raise ValueError(
124
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
125
+ f' {self.num_heads}).'
126
+ )
127
+
128
+ self.scale = self.head_dim ** -0.5
129
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
130
+ self.attn_drop = nn.Dropout(config.attention_dropout)
131
+ self.proj_drop = nn.Dropout(config.dropout)
132
+
133
+ self.qk_normalization = config.qk_normalization
134
+
135
+ if self.qk_normalization:
136
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
137
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
138
+
139
+ if self.use_flash_attn:
140
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
141
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
142
+
143
+ def _naive_attn(self, x):
144
+ B, N, C = x.shape
145
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
146
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
147
+
148
+ if self.qk_normalization:
149
+ B_, H_, N_, D_ = q.shape
150
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
151
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
152
+
153
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
154
+ attn = attn.softmax(dim=-1)
155
+ attn = self.attn_drop(attn)
156
+
157
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
158
+ x = self.proj(x)
159
+ x = self.proj_drop(x)
160
+ return x
161
+
162
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
163
+ qkv = self.qkv(x)
164
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
165
+
166
+ if self.qk_normalization:
167
+ q, k, v = qkv.unbind(2)
168
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
169
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
170
+ qkv = torch.stack([q, k, v], dim=2)
171
+
172
+ context, _ = self.inner_attn(
173
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
174
+ )
175
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
176
+ outs = self.proj_drop(outs)
177
+ return outs
178
+
179
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
180
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
181
+ return x
182
+
183
+
184
+ class InternMLP(nn.Module):
185
+ def __init__(self, config: InternVisionConfig):
186
+ super().__init__()
187
+ self.config = config
188
+ self.act = ACT2FN[config.hidden_act]
189
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
190
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
191
+
192
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
193
+ hidden_states = self.fc1(hidden_states)
194
+ hidden_states = self.act(hidden_states)
195
+ hidden_states = self.fc2(hidden_states)
196
+ return hidden_states
197
+
198
+
199
+ class InternVisionEncoderLayer(nn.Module):
200
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
201
+ super().__init__()
202
+ self.embed_dim = config.hidden_size
203
+ self.intermediate_size = config.intermediate_size
204
+ self.norm_type = config.norm_type
205
+
206
+ self.attn = InternAttention(config)
207
+ self.mlp = InternMLP(config)
208
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
209
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
210
+
211
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
212
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
213
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
214
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
215
+
216
+ def forward(
217
+ self,
218
+ hidden_states: torch.Tensor,
219
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
220
+ """
221
+ Args:
222
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
223
+ """
224
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
225
+
226
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
227
+
228
+ return hidden_states
229
+
230
+
231
+ class InternVisionEncoder(nn.Module):
232
+ """
233
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
234
+ [`InternEncoderLayer`].
235
+
236
+ Args:
237
+ config (`InternConfig`):
238
+ The corresponding vision configuration for the `InternEncoder`.
239
+ """
240
+
241
+ def __init__(self, config: InternVisionConfig):
242
+ super().__init__()
243
+ self.config = config
244
+ # stochastic depth decay rule
245
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
246
+ self.layers = nn.ModuleList([
247
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
248
+ self.gradient_checkpointing = True
249
+
250
+ def forward(
251
+ self,
252
+ inputs_embeds,
253
+ output_hidden_states: Optional[bool] = None,
254
+ return_dict: Optional[bool] = None,
255
+ ) -> Union[Tuple, BaseModelOutput]:
256
+ r"""
257
+ Args:
258
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
259
+ Embedded representation of the inputs. Should be float, not int tokens.
260
+ output_hidden_states (`bool`, *optional*):
261
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
262
+ for more detail.
263
+ return_dict (`bool`, *optional*):
264
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
265
+ """
266
+ output_hidden_states = (
267
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
268
+ )
269
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
270
+
271
+ encoder_states = () if output_hidden_states else None
272
+ hidden_states = inputs_embeds
273
+
274
+ for idx, encoder_layer in enumerate(self.layers):
275
+ if output_hidden_states:
276
+ encoder_states = encoder_states + (hidden_states,)
277
+ if self.gradient_checkpointing and self.training:
278
+ layer_outputs = torch.utils.checkpoint.checkpoint(
279
+ encoder_layer,
280
+ hidden_states)
281
+ else:
282
+ layer_outputs = encoder_layer(
283
+ hidden_states,
284
+ )
285
+ hidden_states = layer_outputs
286
+
287
+ if output_hidden_states:
288
+ encoder_states = encoder_states + (hidden_states,)
289
+
290
+ if not return_dict:
291
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
292
+ return BaseModelOutput(
293
+ last_hidden_state=hidden_states, hidden_states=encoder_states
294
+ )
295
+
296
+
297
+ class InternVisionModel(PreTrainedModel):
298
+ main_input_name = 'pixel_values'
299
+ config_class = InternVisionConfig
300
+ _no_split_modules = ['InternVisionEncoderLayer']
301
+
302
+ def __init__(self, config: InternVisionConfig):
303
+ super().__init__(config)
304
+ self.config = config
305
+
306
+ self.embeddings = InternVisionEmbeddings(config)
307
+ self.encoder = InternVisionEncoder(config)
308
+
309
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
310
+ pos_emb = self.embeddings.position_embedding
311
+ _, num_positions, embed_dim = pos_emb.shape
312
+ cls_emb = pos_emb[:, :1, :]
313
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
314
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
315
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
316
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
317
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
318
+ self.embeddings.image_size = new_size
319
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
320
+
321
+ def get_input_embeddings(self):
322
+ return self.embeddings
323
+
324
+ def forward(
325
+ self,
326
+ pixel_values: Optional[torch.FloatTensor] = None,
327
+ output_hidden_states: Optional[bool] = None,
328
+ return_dict: Optional[bool] = None,
329
+ pixel_embeds: Optional[torch.FloatTensor] = None,
330
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
331
+ output_hidden_states = (
332
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
333
+ )
334
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
335
+
336
+ if pixel_values is None and pixel_embeds is None:
337
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
338
+
339
+ if pixel_embeds is not None:
340
+ hidden_states = pixel_embeds
341
+ else:
342
+ if len(pixel_values.shape) == 4:
343
+ hidden_states = self.embeddings(pixel_values)
344
+ else:
345
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
346
+ encoder_outputs = self.encoder(
347
+ inputs_embeds=hidden_states,
348
+ output_hidden_states=output_hidden_states,
349
+ return_dict=return_dict,
350
+ )
351
+ last_hidden_state = encoder_outputs.last_hidden_state
352
+ pooled_output = last_hidden_state[:, 0, :]
353
+
354
+ if not return_dict:
355
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
356
+
357
+ return BaseModelOutputWithPooling(
358
+ last_hidden_state=last_hidden_state,
359
+ pooler_output=pooled_output,
360
+ hidden_states=encoder_outputs.hidden_states,
361
+ attentions=encoder_outputs.attentions,
362
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ try:
147
+ from functools import partial
148
+
149
+ from apex.normalization import FusedRMSNorm
150
+ InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
151
+ print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
152
+ except ImportError:
153
+ # using the normal LlamaRMSNorm
154
+ pass
155
+ except Exception:
156
+ print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
157
+ pass
158
+
159
+
160
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
161
+ class InternLM2RotaryEmbedding(nn.Module):
162
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
163
+ super().__init__()
164
+
165
+ self.dim = dim
166
+ self.max_position_embeddings = max_position_embeddings
167
+ self.base = base
168
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
169
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
170
+
171
+ # Build here to make `torch.jit.trace` work.
172
+ self._set_cos_sin_cache(
173
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
174
+ )
175
+
176
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
177
+ self.max_seq_len_cached = seq_len
178
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
179
+
180
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
181
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
182
+ emb = torch.cat((freqs, freqs), dim=-1)
183
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
184
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
185
+
186
+ def forward(self, x, seq_len=None):
187
+ # x: [bs, num_attention_heads, seq_len, head_size]
188
+ if seq_len > self.max_seq_len_cached:
189
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
190
+
191
+ return (
192
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
193
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
194
+ )
195
+
196
+
197
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
198
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
199
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
200
+
201
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
202
+ self.scaling_factor = scaling_factor
203
+ super().__init__(dim, max_position_embeddings, base, device)
204
+
205
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
206
+ self.max_seq_len_cached = seq_len
207
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
208
+ t = t / self.scaling_factor
209
+
210
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
211
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
212
+ emb = torch.cat((freqs, freqs), dim=-1)
213
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
214
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
215
+
216
+
217
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
218
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
219
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
220
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
221
+ """
222
+
223
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
224
+ self.scaling_factor = scaling_factor
225
+ super().__init__(dim, max_position_embeddings, base, device)
226
+
227
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
228
+ self.max_seq_len_cached = seq_len
229
+
230
+ if seq_len > self.max_position_embeddings:
231
+ base = self.base * (
232
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
233
+ ) ** (self.dim / (self.dim - 2))
234
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
235
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
236
+
237
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
238
+
239
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
240
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
241
+ emb = torch.cat((freqs, freqs), dim=-1)
242
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
243
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
244
+
245
+
246
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
247
+ def rotate_half(x):
248
+ """Rotates half the hidden dims of the input."""
249
+ x1 = x[..., : x.shape[-1] // 2]
250
+ x2 = x[..., x.shape[-1] // 2:]
251
+ return torch.cat((-x2, x1), dim=-1)
252
+
253
+
254
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
255
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
256
+ """Applies Rotary Position Embedding to the query and key tensors."""
257
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
258
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
259
+ q_embed = (q * cos) + (rotate_half(q) * sin)
260
+ k_embed = (k * cos) + (rotate_half(k) * sin)
261
+ return q_embed, k_embed
262
+
263
+
264
+ class InternLM2MLP(nn.Module):
265
+ def __init__(self, config):
266
+ super().__init__()
267
+ self.config = config
268
+ self.hidden_size = config.hidden_size
269
+ self.intermediate_size = config.intermediate_size
270
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
271
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
272
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
273
+ self.act_fn = ACT2FN[config.hidden_act]
274
+
275
+ def forward(self, x):
276
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
277
+
278
+ return down_proj
279
+
280
+
281
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
282
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
283
+ """
284
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
285
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
286
+ """
287
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
288
+ if n_rep == 1:
289
+ return hidden_states
290
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
291
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
292
+
293
+
294
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
295
+ class InternLM2Attention(nn.Module):
296
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
297
+
298
+ def __init__(self, config: InternLM2Config):
299
+ super().__init__()
300
+ self.config = config
301
+ self.hidden_size = config.hidden_size
302
+ self.num_heads = config.num_attention_heads
303
+ self.head_dim = self.hidden_size // self.num_heads
304
+ self.num_key_value_heads = config.num_key_value_heads
305
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
306
+ self.max_position_embeddings = config.max_position_embeddings
307
+ self.is_causal = True
308
+
309
+ if (self.head_dim * self.num_heads) != self.hidden_size:
310
+ raise ValueError(
311
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
312
+ f' and `num_heads`: {self.num_heads}).'
313
+ )
314
+
315
+ self.wqkv = nn.Linear(
316
+ self.hidden_size,
317
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
318
+ bias=config.bias,
319
+ )
320
+
321
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
322
+ self._init_rope()
323
+
324
+ def _init_rope(self):
325
+ if self.config.rope_scaling is None:
326
+ self.rotary_emb = InternLM2RotaryEmbedding(
327
+ self.head_dim,
328
+ max_position_embeddings=self.max_position_embeddings,
329
+ base=self.config.rope_theta,
330
+ )
331
+ else:
332
+ scaling_type = self.config.rope_scaling['type']
333
+ scaling_factor = self.config.rope_scaling['factor']
334
+ if scaling_type == 'dynamic':
335
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
336
+ self.head_dim,
337
+ max_position_embeddings=self.max_position_embeddings,
338
+ base=self.config.rope_theta,
339
+ scaling_factor=scaling_factor,
340
+ )
341
+ elif scaling_type == 'linear':
342
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
343
+ self.head_dim,
344
+ max_position_embeddings=self.max_position_embeddings,
345
+ base=self.config.rope_theta,
346
+ scaling_factor=scaling_factor,
347
+ )
348
+ else:
349
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
350
+ return self.rotary_emb
351
+
352
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
353
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
354
+
355
+ def forward(
356
+ self,
357
+ hidden_states: torch.Tensor,
358
+ attention_mask: Optional[torch.Tensor] = None,
359
+ position_ids: Optional[torch.LongTensor] = None,
360
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
361
+ output_attentions: bool = False,
362
+ use_cache: bool = False,
363
+ **kwargs,
364
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
365
+ if 'padding_mask' in kwargs:
366
+ warnings.warn(
367
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
368
+ 'Please make sure use `attention_mask` instead.`'
369
+ )
370
+
371
+ bsz, q_len, _ = hidden_states.size()
372
+
373
+ qkv_states = self.wqkv(hidden_states)
374
+
375
+ qkv_states = rearrange(
376
+ qkv_states,
377
+ 'b q (h gs d) -> b q h gs d',
378
+ gs=2 + self.num_key_value_groups,
379
+ d=self.head_dim,
380
+ )
381
+
382
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
383
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
384
+ key_states = qkv_states[..., -2, :]
385
+ value_states = qkv_states[..., -1, :]
386
+
387
+ query_states = query_states.transpose(1, 2)
388
+ key_states = key_states.transpose(1, 2)
389
+ value_states = value_states.transpose(1, 2)
390
+
391
+ kv_seq_len = key_states.shape[-2]
392
+ if past_key_value is not None:
393
+ kv_seq_len += past_key_value[0].shape[-2]
394
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
395
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
396
+
397
+ if past_key_value is not None:
398
+ # reuse k, v, self_attention
399
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
400
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
401
+
402
+ past_key_value = (key_states, value_states) if use_cache else None
403
+
404
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
405
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
406
+
407
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
408
+
409
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
410
+ raise ValueError(
411
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
412
+ f' {attn_weights.size()}'
413
+ )
414
+
415
+ if attention_mask is not None:
416
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
417
+ raise ValueError(
418
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
419
+ )
420
+ attn_weights = attn_weights + attention_mask
421
+
422
+ # upcast attention to fp32
423
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
424
+ attn_output = torch.matmul(attn_weights, value_states)
425
+
426
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
427
+ raise ValueError(
428
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
429
+ f' {attn_output.size()}'
430
+ )
431
+
432
+ attn_output = attn_output.transpose(1, 2).contiguous()
433
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
434
+
435
+ attn_output = self.wo(attn_output)
436
+
437
+ if not output_attentions:
438
+ attn_weights = None
439
+
440
+ return attn_output, attn_weights, past_key_value
441
+
442
+
443
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
444
+ class InternLM2FlashAttention2(InternLM2Attention):
445
+ """
446
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
447
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
448
+ flash attention and deal with padding tokens in case the input contains any of them.
449
+ """
450
+
451
+ def forward(
452
+ self,
453
+ hidden_states: torch.Tensor,
454
+ attention_mask: Optional[torch.LongTensor] = None,
455
+ position_ids: Optional[torch.LongTensor] = None,
456
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
457
+ output_attentions: bool = False,
458
+ use_cache: bool = False,
459
+ **kwargs,
460
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
461
+ # InternLM2FlashAttention2 attention does not support output_attentions
462
+ if 'padding_mask' in kwargs:
463
+ warnings.warn(
464
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
465
+ 'Please make sure use `attention_mask` instead.`'
466
+ )
467
+
468
+ # overwrite attention_mask with padding_mask
469
+ attention_mask = kwargs.pop('padding_mask')
470
+
471
+ output_attentions = False
472
+
473
+ bsz, q_len, _ = hidden_states.size()
474
+
475
+ qkv_states = self.wqkv(hidden_states)
476
+
477
+ qkv_states = rearrange(
478
+ qkv_states,
479
+ 'b q (h gs d) -> b q h gs d',
480
+ gs=2 + self.num_key_value_groups,
481
+ d=self.head_dim,
482
+ )
483
+
484
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
485
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
486
+ key_states = qkv_states[..., -2, :]
487
+ value_states = qkv_states[..., -1, :]
488
+
489
+ query_states = query_states.transpose(1, 2)
490
+ key_states = key_states.transpose(1, 2)
491
+ value_states = value_states.transpose(1, 2)
492
+
493
+ kv_seq_len = key_states.shape[-2]
494
+ if past_key_value is not None:
495
+ kv_seq_len += past_key_value[0].shape[-2]
496
+
497
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
498
+
499
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
500
+
501
+ if past_key_value is not None:
502
+ # reuse k, v, self_attention
503
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
504
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
505
+
506
+ past_key_value = (key_states, value_states) if use_cache else None
507
+
508
+ query_states = query_states.transpose(1, 2)
509
+ key_states = key_states.transpose(1, 2)
510
+ value_states = value_states.transpose(1, 2)
511
+
512
+ attn_output = self._flash_attention_forward(
513
+ query_states, key_states, value_states, attention_mask, q_len
514
+ )
515
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
516
+ attn_output = self.wo(attn_output)
517
+
518
+ if not output_attentions:
519
+ attn_weights = None
520
+
521
+ return attn_output, attn_weights, past_key_value
522
+
523
+ def _flash_attention_forward(
524
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
525
+ ):
526
+ """
527
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
528
+ first unpad the input, then computes the attention scores and pad the final attention scores.
529
+
530
+ Args:
531
+ query_states (`torch.Tensor`):
532
+ Input query states to be passed to Flash Attention API
533
+ key_states (`torch.Tensor`):
534
+ Input key states to be passed to Flash Attention API
535
+ value_states (`torch.Tensor`):
536
+ Input value states to be passed to Flash Attention API
537
+ attention_mask (`torch.Tensor`):
538
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
539
+ position of padding tokens and 1 for the position of non-padding tokens.
540
+ dropout (`int`, *optional*):
541
+ Attention dropout
542
+ softmax_scale (`float`, *optional*):
543
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
544
+ """
545
+ # Contains at least one padding token in the sequence
546
+ causal = self.is_causal and query_length != 1
547
+ if attention_mask is not None:
548
+ batch_size = query_states.shape[0]
549
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
550
+ query_states, key_states, value_states, attention_mask, query_length
551
+ )
552
+
553
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
554
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
555
+
556
+ attn_output_unpad = flash_attn_varlen_func(
557
+ query_states,
558
+ key_states,
559
+ value_states,
560
+ cu_seqlens_q=cu_seqlens_q,
561
+ cu_seqlens_k=cu_seqlens_k,
562
+ max_seqlen_q=max_seqlen_in_batch_q,
563
+ max_seqlen_k=max_seqlen_in_batch_k,
564
+ dropout_p=dropout,
565
+ softmax_scale=softmax_scale,
566
+ causal=causal,
567
+ )
568
+
569
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
570
+ else:
571
+ attn_output = flash_attn_func(
572
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
573
+ )
574
+
575
+ return attn_output
576
+
577
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
578
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
579
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
580
+
581
+ key_layer = index_first_axis(
582
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
583
+ )
584
+ value_layer = index_first_axis(
585
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
586
+ )
587
+
588
+ if query_length == kv_seq_len:
589
+ query_layer = index_first_axis(
590
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
591
+ )
592
+ cu_seqlens_q = cu_seqlens_k
593
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
594
+ indices_q = indices_k
595
+ elif query_length == 1:
596
+ max_seqlen_in_batch_q = 1
597
+ cu_seqlens_q = torch.arange(
598
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
599
+ ) # There is a memcpy here, that is very bad.
600
+ indices_q = cu_seqlens_q[:-1]
601
+ query_layer = query_layer.squeeze(1)
602
+ else:
603
+ # The -q_len: slice assumes left padding.
604
+ attention_mask = attention_mask[:, -query_length:]
605
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
606
+
607
+ return (
608
+ query_layer,
609
+ key_layer,
610
+ value_layer,
611
+ indices_q.to(torch.int64),
612
+ (cu_seqlens_q, cu_seqlens_k),
613
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
614
+ )
615
+
616
+
617
+ INTERNLM2_ATTENTION_CLASSES = {
618
+ 'eager': InternLM2Attention,
619
+ 'flash_attention_2': InternLM2FlashAttention2,
620
+ }
621
+
622
+
623
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
624
+ class InternLM2DecoderLayer(nn.Module):
625
+ def __init__(self, config: InternLM2Config):
626
+ super().__init__()
627
+ self.hidden_size = config.hidden_size
628
+
629
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
630
+
631
+ self.feed_forward = InternLM2MLP(config)
632
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
633
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
634
+
635
+ def forward(
636
+ self,
637
+ hidden_states: torch.Tensor,
638
+ attention_mask: Optional[torch.Tensor] = None,
639
+ position_ids: Optional[torch.LongTensor] = None,
640
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
641
+ output_attentions: Optional[bool] = False,
642
+ use_cache: Optional[bool] = False,
643
+ **kwargs,
644
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
645
+ """
646
+ Args:
647
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
648
+ attention_mask (`torch.FloatTensor`, *optional*):
649
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
650
+ query_sequence_length, key_sequence_length)` if default attention is used.
651
+ output_attentions (`bool`, *optional*):
652
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
653
+ returned tensors for more detail.
654
+ use_cache (`bool`, *optional*):
655
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
656
+ (see `past_key_values`).
657
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
658
+ """
659
+ if 'padding_mask' in kwargs:
660
+ warnings.warn(
661
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
662
+ 'Please make sure use `attention_mask` instead.`'
663
+ )
664
+
665
+ residual = hidden_states
666
+
667
+ hidden_states = self.attention_norm(hidden_states)
668
+
669
+ # Self Attention
670
+ hidden_states, self_attn_weights, present_key_value = self.attention(
671
+ hidden_states=hidden_states,
672
+ attention_mask=attention_mask,
673
+ position_ids=position_ids,
674
+ past_key_value=past_key_value,
675
+ output_attentions=output_attentions,
676
+ use_cache=use_cache,
677
+ **kwargs,
678
+ )
679
+ hidden_states = residual + hidden_states
680
+
681
+ # Fully Connected
682
+ residual = hidden_states
683
+ hidden_states = self.ffn_norm(hidden_states)
684
+ hidden_states = self.feed_forward(hidden_states)
685
+ hidden_states = residual + hidden_states
686
+
687
+ outputs = (hidden_states,)
688
+
689
+ if output_attentions:
690
+ outputs += (self_attn_weights,)
691
+
692
+ if use_cache:
693
+ outputs += (present_key_value,)
694
+
695
+ return outputs
696
+
697
+
698
+ InternLM2_START_DOCSTRING = r"""
699
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
700
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
701
+ etc.)
702
+
703
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
704
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
705
+ and behavior.
706
+
707
+ Parameters:
708
+ config ([`InternLM2Config`]):
709
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
710
+ load the weights associated with the model, only the configuration. Check out the
711
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
712
+ """
713
+
714
+
715
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
716
+ @add_start_docstrings(
717
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
718
+ InternLM2_START_DOCSTRING,
719
+ )
720
+ class InternLM2PreTrainedModel(PreTrainedModel):
721
+ config_class = InternLM2Config
722
+ base_model_prefix = 'model'
723
+ supports_gradient_checkpointing = True
724
+ _no_split_modules = ['InternLM2DecoderLayer']
725
+ _skip_keys_device_placement = 'past_key_values'
726
+ _supports_flash_attn_2 = True
727
+
728
+ def _init_weights(self, module):
729
+ std = self.config.initializer_range
730
+ if isinstance(module, nn.Linear):
731
+ module.weight.data.normal_(mean=0.0, std=std)
732
+ if module.bias is not None:
733
+ module.bias.data.zero_()
734
+ elif isinstance(module, nn.Embedding):
735
+ module.weight.data.normal_(mean=0.0, std=std)
736
+ if module.padding_idx is not None:
737
+ module.weight.data[module.padding_idx].zero_()
738
+
739
+
740
+ InternLM2_INPUTS_DOCSTRING = r"""
741
+ Args:
742
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
743
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
744
+ it.
745
+
746
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
747
+ [`PreTrainedTokenizer.__call__`] for details.
748
+
749
+ [What are input IDs?](../glossary#input-ids)
750
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
751
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
752
+
753
+ - 1 for tokens that are **not masked**,
754
+ - 0 for tokens that are **masked**.
755
+
756
+ [What are attention masks?](../glossary#attention-mask)
757
+
758
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
759
+ [`PreTrainedTokenizer.__call__`] for details.
760
+
761
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
762
+ `past_key_values`).
763
+
764
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
765
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
766
+ information on the default strategy.
767
+
768
+ - 1 indicates the head is **not masked**,
769
+ - 0 indicates the head is **masked**.
770
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
771
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
772
+ config.n_positions - 1]`.
773
+
774
+ [What are position IDs?](../glossary#position-ids)
775
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
776
+ when `config.use_cache=True`):
777
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
778
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
779
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
780
+
781
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
782
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
783
+
784
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
785
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
786
+ of shape `(batch_size, sequence_length)`.
787
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
788
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
789
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
790
+ model's internal embedding lookup matrix.
791
+ use_cache (`bool`, *optional*):
792
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
793
+ `past_key_values`).
794
+ output_attentions (`bool`, *optional*):
795
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
796
+ tensors for more detail.
797
+ output_hidden_states (`bool`, *optional*):
798
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
799
+ more detail.
800
+ return_dict (`bool`, *optional*):
801
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
802
+ """
803
+
804
+
805
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
806
+ @add_start_docstrings(
807
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
808
+ InternLM2_START_DOCSTRING,
809
+ )
810
+ class InternLM2Model(InternLM2PreTrainedModel):
811
+ """
812
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
813
+
814
+ Args:
815
+ config: InternLM2Config
816
+ """
817
+
818
+ _auto_class = 'AutoModel'
819
+
820
+ def __init__(self, config: InternLM2Config):
821
+ super().__init__(config)
822
+ self.padding_idx = config.pad_token_id
823
+ self.vocab_size = config.vocab_size
824
+ self.config = config
825
+ if not has_flash_attn:
826
+ self.config.attn_implementation = 'eager'
827
+ print('Warning: Flash attention is not available, using eager attention instead.')
828
+
829
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
830
+
831
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
832
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
833
+
834
+ self.gradient_checkpointing = False
835
+ # Initialize weights and apply final processing
836
+ self.post_init()
837
+
838
+ def get_input_embeddings(self):
839
+ return self.tok_embeddings
840
+
841
+ def set_input_embeddings(self, value):
842
+ self.tok_embeddings = value
843
+
844
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
845
+ # create causal mask
846
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
847
+ combined_attention_mask = None
848
+ if input_shape[-1] > 1:
849
+ combined_attention_mask = _make_causal_mask(
850
+ input_shape,
851
+ inputs_embeds.dtype,
852
+ device=inputs_embeds.device,
853
+ past_key_values_length=past_key_values_length,
854
+ )
855
+
856
+ if attention_mask is not None:
857
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
858
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
859
+ inputs_embeds.device
860
+ )
861
+ combined_attention_mask = (
862
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
863
+ )
864
+
865
+ return combined_attention_mask
866
+
867
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
868
+ def forward(
869
+ self,
870
+ input_ids: torch.LongTensor = None,
871
+ attention_mask: Optional[torch.Tensor] = None,
872
+ position_ids: Optional[torch.LongTensor] = None,
873
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
874
+ inputs_embeds: Optional[torch.FloatTensor] = None,
875
+ use_cache: Optional[bool] = None,
876
+ output_attentions: Optional[bool] = None,
877
+ output_hidden_states: Optional[bool] = None,
878
+ return_dict: Optional[bool] = None,
879
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
880
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
881
+ output_hidden_states = (
882
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
883
+ )
884
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
885
+
886
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
887
+
888
+ if self.config.attn_implementation == 'flash_attention_2':
889
+ _import_flash_attn()
890
+
891
+ # retrieve input_ids and inputs_embeds
892
+ if input_ids is not None and inputs_embeds is not None:
893
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
894
+ elif input_ids is not None:
895
+ batch_size, seq_length = input_ids.shape[:2]
896
+ elif inputs_embeds is not None:
897
+ batch_size, seq_length = inputs_embeds.shape[:2]
898
+ else:
899
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
900
+
901
+ seq_length_with_past = seq_length
902
+ past_key_values_length = 0
903
+ if past_key_values is not None:
904
+ past_key_values_length = past_key_values[0][0].shape[2]
905
+ seq_length_with_past = seq_length_with_past + past_key_values_length
906
+
907
+ if position_ids is None:
908
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
909
+ position_ids = torch.arange(
910
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
911
+ )
912
+ position_ids = position_ids.unsqueeze(0)
913
+
914
+ if inputs_embeds is None:
915
+ inputs_embeds = self.tok_embeddings(input_ids)
916
+
917
+ if self.config.attn_implementation == 'flash_attention_2':
918
+ # 2d mask is passed through the layers
919
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
920
+ else:
921
+ if attention_mask is None:
922
+ attention_mask = torch.ones(
923
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
924
+ )
925
+ attention_mask = self._prepare_decoder_attention_mask(
926
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
927
+ )
928
+
929
+ # embed positions
930
+ hidden_states = inputs_embeds
931
+
932
+ if self.gradient_checkpointing and self.training:
933
+ if use_cache:
934
+ logger.warning_once(
935
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
936
+ )
937
+ use_cache = False
938
+
939
+ # decoder layers
940
+ all_hidden_states = () if output_hidden_states else None
941
+ all_self_attns = () if output_attentions else None
942
+ next_decoder_cache = () if use_cache else None
943
+
944
+ for idx, decoder_layer in enumerate(self.layers):
945
+ if output_hidden_states:
946
+ all_hidden_states += (hidden_states,)
947
+
948
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
949
+
950
+ if self.gradient_checkpointing and self.training:
951
+
952
+ def create_custom_forward(module):
953
+ def custom_forward(*inputs):
954
+ # None for past_key_value
955
+ return module(*inputs, output_attentions, None)
956
+
957
+ return custom_forward
958
+
959
+ layer_outputs = torch.utils.checkpoint.checkpoint(
960
+ create_custom_forward(decoder_layer),
961
+ hidden_states,
962
+ attention_mask,
963
+ position_ids,
964
+ None,
965
+ )
966
+ else:
967
+ layer_outputs = decoder_layer(
968
+ hidden_states,
969
+ attention_mask=attention_mask,
970
+ position_ids=position_ids,
971
+ past_key_value=past_key_value,
972
+ output_attentions=output_attentions,
973
+ use_cache=use_cache,
974
+ )
975
+
976
+ hidden_states = layer_outputs[0]
977
+
978
+ if use_cache:
979
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
980
+
981
+ if output_attentions:
982
+ all_self_attns += (layer_outputs[1],)
983
+
984
+ hidden_states = self.norm(hidden_states)
985
+
986
+ # add hidden states from the last decoder layer
987
+ if output_hidden_states:
988
+ all_hidden_states += (hidden_states,)
989
+
990
+ next_cache = next_decoder_cache if use_cache else None
991
+ if not return_dict:
992
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
993
+ return BaseModelOutputWithPast(
994
+ last_hidden_state=hidden_states,
995
+ past_key_values=next_cache,
996
+ hidden_states=all_hidden_states,
997
+ attentions=all_self_attns,
998
+ )
999
+
1000
+
1001
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
1002
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1003
+ _auto_class = 'AutoModelForCausalLM'
1004
+
1005
+ _tied_weights_keys = ['output.weight']
1006
+
1007
+ def __init__(self, config):
1008
+ super().__init__(config)
1009
+ self.model = InternLM2Model(config)
1010
+ self.vocab_size = config.vocab_size
1011
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1012
+
1013
+ # Initialize weights and apply final processing
1014
+ self.post_init()
1015
+
1016
+ def get_input_embeddings(self):
1017
+ return self.model.tok_embeddings
1018
+
1019
+ def set_input_embeddings(self, value):
1020
+ self.model.tok_embeddings = value
1021
+
1022
+ def get_output_embeddings(self):
1023
+ return self.output
1024
+
1025
+ def set_output_embeddings(self, new_embeddings):
1026
+ self.output = new_embeddings
1027
+
1028
+ def set_decoder(self, decoder):
1029
+ self.model = decoder
1030
+
1031
+ def get_decoder(self):
1032
+ return self.model
1033
+
1034
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1035
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1036
+ def forward(
1037
+ self,
1038
+ input_ids: torch.LongTensor = None,
1039
+ attention_mask: Optional[torch.Tensor] = None,
1040
+ position_ids: Optional[torch.LongTensor] = None,
1041
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1042
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1043
+ labels: Optional[torch.LongTensor] = None,
1044
+ use_cache: Optional[bool] = None,
1045
+ output_attentions: Optional[bool] = None,
1046
+ output_hidden_states: Optional[bool] = None,
1047
+ return_dict: Optional[bool] = None,
1048
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1049
+ r"""
1050
+ Args:
1051
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1052
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1053
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1054
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1055
+
1056
+ Returns:
1057
+
1058
+ Example:
1059
+
1060
+ ```python
1061
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1062
+
1063
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1064
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1065
+
1066
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1067
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1068
+
1069
+ >>> # Generate
1070
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1071
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1072
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1073
+ ```"""
1074
+
1075
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1076
+ output_hidden_states = (
1077
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1078
+ )
1079
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1080
+
1081
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1082
+ outputs = self.model(
1083
+ input_ids=input_ids,
1084
+ attention_mask=attention_mask,
1085
+ position_ids=position_ids,
1086
+ past_key_values=past_key_values,
1087
+ inputs_embeds=inputs_embeds,
1088
+ use_cache=use_cache,
1089
+ output_attentions=output_attentions,
1090
+ output_hidden_states=output_hidden_states,
1091
+ return_dict=return_dict,
1092
+ )
1093
+
1094
+ hidden_states = outputs[0]
1095
+ logits = self.output(hidden_states)
1096
+ logits = logits.float()
1097
+
1098
+ loss = None
1099
+ if labels is not None:
1100
+ # Shift so that tokens < n predict n
1101
+ shift_logits = logits[..., :-1, :].contiguous()
1102
+ shift_labels = labels[..., 1:].contiguous()
1103
+ # Flatten the tokens
1104
+ loss_fct = CrossEntropyLoss()
1105
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1106
+ shift_labels = shift_labels.view(-1)
1107
+ # Enable model parallelism
1108
+ shift_labels = shift_labels.to(shift_logits.device)
1109
+ loss = loss_fct(shift_logits, shift_labels)
1110
+
1111
+ if not return_dict:
1112
+ output = (logits,) + outputs[1:]
1113
+ return (loss,) + output if loss is not None else output
1114
+
1115
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1116
+ output = CausalLMOutputWithPast(
1117
+ loss=loss,
1118
+ logits=logits,
1119
+ past_key_values=outputs.past_key_values,
1120
+ hidden_states=outputs.hidden_states,
1121
+ attentions=outputs.attentions,
1122
+ )
1123
+ output['logits'] = output['logits'].to(device)
1124
+ return output
1125
+
1126
+ def prepare_inputs_for_generation(
1127
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1128
+ ):
1129
+ if past_key_values is not None:
1130
+ past_length = past_key_values[0][0].shape[2]
1131
+
1132
+ # Some generation methods already pass only the last input ID
1133
+ if input_ids.shape[1] > past_length:
1134
+ remove_prefix_length = past_length
1135
+ else:
1136
+ # Default to old behavior: keep only final ID
1137
+ remove_prefix_length = input_ids.shape[1] - 1
1138
+
1139
+ input_ids = input_ids[:, remove_prefix_length:]
1140
+
1141
+ position_ids = kwargs.get('position_ids', None)
1142
+ if attention_mask is not None and position_ids is None:
1143
+ # create position_ids on the fly for batch generation
1144
+ position_ids = attention_mask.long().cumsum(-1) - 1
1145
+ position_ids.masked_fill_(attention_mask == 0, 1)
1146
+ if past_key_values:
1147
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1148
+
1149
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1150
+ if inputs_embeds is not None and past_key_values is None:
1151
+ model_inputs = {'inputs_embeds': inputs_embeds}
1152
+ else:
1153
+ model_inputs = {'input_ids': input_ids}
1154
+
1155
+ model_inputs.update(
1156
+ {
1157
+ 'position_ids': position_ids,
1158
+ 'past_key_values': past_key_values,
1159
+ 'use_cache': kwargs.get('use_cache'),
1160
+ 'attention_mask': attention_mask,
1161
+ }
1162
+ )
1163
+ return model_inputs
1164
+
1165
+ @staticmethod
1166
+ def _reorder_cache(past_key_values, beam_idx):
1167
+ reordered_past = ()
1168
+ for layer_past in past_key_values:
1169
+ reordered_past += (
1170
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1171
+ )
1172
+ return reordered_past
1173
+
1174
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1175
+ if tokenizer.add_bos_token:
1176
+ prompt = ''
1177
+ else:
1178
+ prompt = tokenizer.bos_token
1179
+ if meta_instruction:
1180
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1181
+ for record in history:
1182
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1183
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1184
+ return tokenizer([prompt], return_tensors='pt')
1185
+
1186
+ @torch.no_grad()
1187
+ def chat(
1188
+ self,
1189
+ tokenizer,
1190
+ query: str,
1191
+ history: List[Tuple[str, str]] = [],
1192
+ streamer: Optional[BaseStreamer] = None,
1193
+ max_new_tokens: int = 1024,
1194
+ do_sample: bool = True,
1195
+ temperature: float = 0.8,
1196
+ top_p: float = 0.8,
1197
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1198
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1199
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1200
+ **kwargs,
1201
+ ):
1202
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1203
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1204
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1205
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1206
+ outputs = self.generate(
1207
+ **inputs,
1208
+ streamer=streamer,
1209
+ max_new_tokens=max_new_tokens,
1210
+ do_sample=do_sample,
1211
+ temperature=temperature,
1212
+ top_p=top_p,
1213
+ eos_token_id=eos_token_id,
1214
+ **kwargs,
1215
+ )
1216
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
1217
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1218
+ response = response.split('<|im_end|>')[0]
1219
+ history = history + [(query, response)]
1220
+ return response, history
1221
+
1222
+ @torch.no_grad()
1223
+ def stream_chat(
1224
+ self,
1225
+ tokenizer,
1226
+ query: str,
1227
+ history: List[Tuple[str, str]] = [],
1228
+ max_new_tokens: int = 1024,
1229
+ do_sample: bool = True,
1230
+ temperature: float = 0.8,
1231
+ top_p: float = 0.8,
1232
+ **kwargs,
1233
+ ):
1234
+ """
1235
+ Return a generator in format: (response, history)
1236
+ Eg.
1237
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1238
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1239
+ """
1240
+ if BaseStreamer is None:
1241
+ raise ModuleNotFoundError(
1242
+ 'The version of `transformers` is too low. Please make sure '
1243
+ 'that you have installed `transformers>=4.28.0`.'
1244
+ )
1245
+
1246
+ response_queue = queue.Queue(maxsize=20)
1247
+
1248
+ class ChatStreamer(BaseStreamer):
1249
+ def __init__(self, tokenizer) -> None:
1250
+ super().__init__()
1251
+ self.tokenizer = tokenizer
1252
+ self.queue = response_queue
1253
+ self.query = query
1254
+ self.history = history
1255
+ self.response = ''
1256
+ self.cache = []
1257
+ self.received_inputs = False
1258
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1259
+
1260
+ def put(self, value):
1261
+ if len(value.shape) > 1 and value.shape[0] > 1:
1262
+ raise ValueError('ChatStreamer only supports batch size 1')
1263
+ elif len(value.shape) > 1:
1264
+ value = value[0]
1265
+
1266
+ if not self.received_inputs:
1267
+ # The first received value is input_ids, ignore here
1268
+ self.received_inputs = True
1269
+ return
1270
+
1271
+ self.cache.extend(value.tolist())
1272
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1273
+ if token.strip() != '<|im_end|>':
1274
+ self.response = self.response + token
1275
+ history = self.history + [(self.query, self.response)]
1276
+ self.queue.put((self.response, history))
1277
+ self.cache = []
1278
+ else:
1279
+ self.end()
1280
+
1281
+ def end(self):
1282
+ self.queue.put(None)
1283
+
1284
+ def stream_producer():
1285
+ return self.chat(
1286
+ tokenizer=tokenizer,
1287
+ query=query,
1288
+ streamer=ChatStreamer(tokenizer=tokenizer),
1289
+ history=history,
1290
+ max_new_tokens=max_new_tokens,
1291
+ do_sample=do_sample,
1292
+ temperature=temperature,
1293
+ top_p=top_p,
1294
+ **kwargs,
1295
+ )
1296
+
1297
+ def consumer():
1298
+ producer = threading.Thread(target=stream_producer)
1299
+ producer.start()
1300
+ while True:
1301
+ res = response_queue.get()
1302
+ if res is None:
1303
+ return
1304
+ yield res
1305
+
1306
+ return consumer()
1307
+
1308
+
1309
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1310
+ @add_start_docstrings(
1311
+ """
1312
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1313
+
1314
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1315
+ as other causal models (e.g. GPT-2) do.
1316
+
1317
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1318
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1319
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1320
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1321
+ each row of the batch).
1322
+ """,
1323
+ InternLM2_START_DOCSTRING,
1324
+ )
1325
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1326
+ def __init__(self, config):
1327
+ super().__init__(config)
1328
+ self.num_labels = config.num_labels
1329
+ self.model = InternLM2Model(config)
1330
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1331
+
1332
+ # Initialize weights and apply final processing
1333
+ self.post_init()
1334
+
1335
+ def get_input_embeddings(self):
1336
+ return self.model.tok_embeddings
1337
+
1338
+ def set_input_embeddings(self, value):
1339
+ self.model.tok_embeddings = value
1340
+
1341
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1342
+ def forward(
1343
+ self,
1344
+ input_ids: torch.LongTensor = None,
1345
+ attention_mask: Optional[torch.Tensor] = None,
1346
+ position_ids: Optional[torch.LongTensor] = None,
1347
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1348
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1349
+ labels: Optional[torch.LongTensor] = None,
1350
+ use_cache: Optional[bool] = None,
1351
+ output_attentions: Optional[bool] = None,
1352
+ output_hidden_states: Optional[bool] = None,
1353
+ return_dict: Optional[bool] = None,
1354
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1355
+ r"""
1356
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1357
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1358
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1359
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1360
+ """
1361
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1362
+
1363
+ transformer_outputs = self.model(
1364
+ input_ids,
1365
+ attention_mask=attention_mask,
1366
+ position_ids=position_ids,
1367
+ past_key_values=past_key_values,
1368
+ inputs_embeds=inputs_embeds,
1369
+ use_cache=use_cache,
1370
+ output_attentions=output_attentions,
1371
+ output_hidden_states=output_hidden_states,
1372
+ return_dict=return_dict,
1373
+ )
1374
+ hidden_states = transformer_outputs[0]
1375
+ logits = self.score(hidden_states)
1376
+
1377
+ if input_ids is not None:
1378
+ batch_size = input_ids.shape[0]
1379
+ else:
1380
+ batch_size = inputs_embeds.shape[0]
1381
+
1382
+ if self.config.pad_token_id is None and batch_size != 1:
1383
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1384
+ if self.config.pad_token_id is None:
1385
+ sequence_lengths = -1
1386
+ else:
1387
+ if input_ids is not None:
1388
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1389
+ logits.device
1390
+ )
1391
+ else:
1392
+ sequence_lengths = -1
1393
+
1394
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1395
+
1396
+ loss = None
1397
+ if labels is not None:
1398
+ labels = labels.to(logits.device)
1399
+ if self.config.problem_type is None:
1400
+ if self.num_labels == 1:
1401
+ self.config.problem_type = 'regression'
1402
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1403
+ self.config.problem_type = 'single_label_classification'
1404
+ else:
1405
+ self.config.problem_type = 'multi_label_classification'
1406
+
1407
+ if self.config.problem_type == 'regression':
1408
+ loss_fct = MSELoss()
1409
+ if self.num_labels == 1:
1410
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1411
+ else:
1412
+ loss = loss_fct(pooled_logits, labels)
1413
+ elif self.config.problem_type == 'single_label_classification':
1414
+ loss_fct = CrossEntropyLoss()
1415
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1416
+ elif self.config.problem_type == 'multi_label_classification':
1417
+ loss_fct = BCEWithLogitsLoss()
1418
+ loss = loss_fct(pooled_logits, labels)
1419
+ if not return_dict:
1420
+ output = (pooled_logits,) + transformer_outputs[1:]
1421
+ return ((loss,) + output) if loss is not None else output
1422
+
1423
+ return SequenceClassifierOutputWithPast(
1424
+ loss=loss,
1425
+ logits=pooled_logits,
1426
+ past_key_values=transformer_outputs.past_key_values,
1427
+ hidden_states=transformer_outputs.hidden_states,
1428
+ attentions=transformer_outputs.attentions,
1429
+ )
modeling_internvl_audio.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+ from PIL import Image, ImageDraw
9
+ from io import BytesIO
10
+ import requests
11
+ import torch.distributed as dist
12
+ import torch.utils.checkpoint
13
+ from .modeling_internlm2 import InternLM2ForCausalLM
14
+ from peft import LoraConfig, get_peft_model
15
+ from torch import nn
16
+ from torch.nn import CrossEntropyLoss
17
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
18
+ LlamaTokenizer, Qwen2ForCausalLM)
19
+ from transformers.modeling_outputs import CausalLMOutputWithPast
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.utils import ModelOutput, logging
22
+ from .conversation import get_conv_template
23
+ from .configuration_internvl_chat import InternVLChatConfig
24
+ from .modeling_intern_vit import InternVisionModel
25
+ from .modeling_internvl_chat import InternVLChatModel
26
+ from .configuration_internvl_audio_chat import InternVLChatAudioConfig
27
+ from .modeling_whisper import AudioWhisperModel
28
+ from .conversation import get_conv_template
29
+
30
+
31
+
32
+ def load_audio(audio_file, audio_processor):
33
+ audio_values, _ = librosa.load(audio_file, sr=16000) # sample rate should be 16000
34
+
35
+ audio_process_values = audio_processor(audio_values, sampling_rate=16000, return_tensors="pt")
36
+ input_features = audio_process_values['input_features']
37
+ audio_len_after_cnn = audio_process_values['audio_len_after_cnn']
38
+ audio_token_num = audio_process_values['audio_token_num']
39
+
40
+
41
+ audio_input = {'audio_values': input_features,
42
+ 'audio_len_after_cnn': audio_len_after_cnn,
43
+ 'audio_token_num': audio_token_num,
44
+ }
45
+ return audio_input
46
+
47
+
48
+ class InternVLChatAudioModel(InternVLChatModel):
49
+
50
+ def __init__(self, config: InternVLChatAudioConfig, vision_model=None, language_model=None, audio_model=None):
51
+ super().__init__(config, vision_model, language_model)
52
+ if audio_model is not None:
53
+ self.audio_model = audio_model
54
+ else:
55
+ self.audio_model = AudioWhisperModel(config.audio_config)
56
+
57
+ audio_hidden_size = config.audio_config.d_model
58
+ llm_hidden_size = config.llm_config.hidden_size
59
+ self.mlp2 = nn.Sequential(
60
+ nn.LayerNorm(audio_hidden_size),
61
+ nn.Linear(audio_hidden_size, llm_hidden_size),
62
+ nn.GELU(),
63
+ nn.Linear(llm_hidden_size, llm_hidden_size)
64
+ ) # mlp2: audio feature mapping
65
+
66
+ self.audio_context_token_id = None
67
+
68
+ def _init_weights(self, module):
69
+ """Initialize the weights"""
70
+ if isinstance(module, nn.Linear):
71
+ module.weight.data.normal_(mean=0.0, std=0.02)
72
+ if hasattr(module, "bias") and module.bias is not None:
73
+ module.bias.data.zero_()
74
+ elif isinstance(module, nn.LayerNorm):
75
+ module.bias.data.zero_()
76
+ module.weight.data.fill_(1.0)
77
+ elif isinstance(module, nn.Linear) and module.bias is not None:
78
+ module.bias.data.zero_()
79
+
80
+ def extract_audio_feature(self, audio_values, audio_len_after_cnn):
81
+
82
+ audio_values = audio_values.squeeze(1)
83
+
84
+ #TODO: construct audio padding_mask in loader
85
+ max_len_in_batch = int(torch.max(audio_len_after_cnn).item())
86
+
87
+ padding_mask = torch.ones([audio_values.size(0), max_len_in_batch]).to(dtype=audio_values.dtype,
88
+ device=audio_values.device)
89
+
90
+ for index in range(len(audio_values)):
91
+ padding_mask[index, :int(audio_len_after_cnn[index].item())] = 0
92
+
93
+ last_hidden_state = self.audio_model(audio_values, padding_mask, audio_len_after_cnn) # (bs, max_token_num, 1280)
94
+
95
+ audio_embeds = self.mlp2(last_hidden_state)
96
+
97
+ return audio_embeds
98
+
99
+
100
+ def forward(
101
+ self,
102
+ pixel_values: torch.FloatTensor,
103
+ input_ids: torch.LongTensor = None,
104
+ audio_values: Optional[torch.FloatTensor] = None,
105
+ attention_mask: Optional[torch.Tensor] = None,
106
+ position_ids: Optional[torch.LongTensor] = None,
107
+ image_flags: Optional[torch.LongTensor] = None,
108
+ audio_flags: Optional[torch.LongTensor] = None,
109
+ audio_len_after_cnn: Optional[torch.LongTensor] = None,
110
+ audio_token_num: Optional[torch.LongTensor] = None,
111
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
112
+ labels: Optional[torch.LongTensor] = None,
113
+ use_cache: Optional[bool] = None,
114
+ output_attentions: Optional[bool] = None,
115
+ output_hidden_states: Optional[bool] = None,
116
+ return_dict: Optional[bool] = None,
117
+ statistics: Optional[torch.LongTensor] = None,
118
+ loss_weight: Optional[List] = None,
119
+ loss_reduction_all_gather: Optional[bool] = False,
120
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
121
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
122
+
123
+ image_flags = image_flags.squeeze(-1)
124
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
125
+
126
+ vit_embeds = self.extract_feature(pixel_values)
127
+ vit_embeds = vit_embeds[image_flags == 1]
128
+ vit_batch_size = pixel_values.shape[0]
129
+
130
+ B, N, C = input_embeds.shape
131
+ input_embeds = input_embeds.reshape(B * N, C)
132
+
133
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
134
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
135
+ if statistics is not None:
136
+ num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
137
+ self.num_samples += num_samples
138
+ print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
139
+
140
+
141
+ input_ids = input_ids.reshape(B * N)
142
+ img_selected = (input_ids == self.img_context_token_id)
143
+ try:
144
+ input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds.reshape(-1, C)
145
+ ignore_flag = False
146
+ except Exception as e:
147
+ vit_embeds = vit_embeds.reshape(-1, C)
148
+ print(f'warning: {e}, input_embeds[img_selected].shape={input_embeds[img_selected].shape}, '
149
+ f'vit_embeds.shape={vit_embeds.shape}')
150
+ n_token = img_selected.sum()
151
+ input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds[:n_token]
152
+ ignore_flag = True
153
+
154
+
155
+
156
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
157
+ audio_batch_size = audio_values.shape[0]
158
+ print(f'audio batch size: {audio_batch_size}, audios per sample: {audio_batch_size / B}')
159
+
160
+ audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn) # (audio_num, n_frame, C)
161
+
162
+ output_audios = []
163
+ for i in range(len(audio_token_num)):
164
+ if audio_flags[i] > 0:
165
+ token_num = int(audio_token_num[i].item())
166
+ audio = audio_embeds[i][:token_num] # 提取有效的token
167
+ output_audios.append(audio)
168
+
169
+ if len(output_audios):
170
+ output_audios = torch.cat(output_audios, dim=0)
171
+ audio_selected = (input_ids == self.audio_context_token_id)
172
+ input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + output_audios.reshape(-1, C)
173
+
174
+
175
+ input_embeds = input_embeds.reshape(B, N, C)
176
+
177
+ outputs = self.language_model(
178
+ inputs_embeds=input_embeds,
179
+ attention_mask=attention_mask,
180
+ position_ids=position_ids,
181
+ past_key_values=past_key_values,
182
+ use_cache=use_cache,
183
+ output_attentions=output_attentions,
184
+ output_hidden_states=output_hidden_states,
185
+ return_dict=return_dict,
186
+ )
187
+ logits = outputs.logits
188
+
189
+ loss = None
190
+ if labels is not None and loss_weight is not None:
191
+ loss_weight = torch.tensor(loss_weight,
192
+ dtype=torch.float32,
193
+ device=labels.device)
194
+ # Shift so that tokens < n predict n
195
+ shift_logits = logits[..., :-1, :].contiguous()
196
+ shift_labels = labels[..., 1:].contiguous()
197
+ shift_weights = loss_weight[..., 1:].contiguous()
198
+ # Flatten the tokens
199
+ loss_fct = CrossEntropyLoss(reduction='none')
200
+ shift_logits = shift_logits.view(
201
+ -1, self.language_model.config.vocab_size)
202
+ shift_labels = shift_labels.view(-1)
203
+ shift_weights = shift_weights.view(-1)
204
+ # Enable model parallelism
205
+ shift_labels = shift_labels.to(shift_logits.device)
206
+ shift_weights = shift_weights.to(shift_logits.device)
207
+ loss = loss_fct(shift_logits, shift_labels)
208
+
209
+ shift_weights_sum = shift_weights.sum()
210
+ if loss_reduction_all_gather:
211
+ dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
212
+
213
+ loss = loss * shift_weights
214
+ loss = loss.sum() / shift_weights_sum
215
+ if ignore_flag:
216
+ loss = loss * 0.0
217
+ elif labels is not None:
218
+ # Shift so that tokens < n predict n
219
+ shift_logits = logits[..., :-1, :].contiguous()
220
+ shift_labels = labels[..., 1:].contiguous()
221
+ # Flatten the tokens
222
+ loss_fct = CrossEntropyLoss()
223
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
224
+ shift_labels = shift_labels.view(-1)
225
+ # Enable model parallelism
226
+ shift_labels = shift_labels.to(shift_logits.device)
227
+ loss = loss_fct(shift_logits, shift_labels)
228
+ if ignore_flag:
229
+ loss = loss * 0.0
230
+
231
+ if not return_dict:
232
+ output = (logits,) + outputs[1:]
233
+ return (loss,) + output if loss is not None else output
234
+
235
+ return CausalLMOutputWithPast(
236
+ loss=loss,
237
+ logits=logits,
238
+ past_key_values=outputs.past_key_values,
239
+ hidden_states=outputs.hidden_states,
240
+ attentions=outputs.attentions,
241
+ )
242
+
243
+
244
+ def Audio_chat(self, tokenizer, pixel_values, audio, question, generation_config, history=None, return_history=False,num_patches_list=None,
245
+ IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',AUDIO_START_TOKEN='<audio>',AUDIO_END_TOKEN='</audio>',
246
+ AUDIO_CONTEXT_TOKEN='<AUDIO_CONTEXT>',verbose=None):
247
+
248
+ if history is None and audio is not None:
249
+ if question is None:
250
+ question = '<audio>\n'
251
+ else:
252
+ question = '<audio>\n' + question
253
+
254
+ if history is None and pixel_values is not None:
255
+ if question is None:
256
+ question = '<image>\n'
257
+ else:
258
+ question = '<image>\n' + question
259
+
260
+ if num_patches_list is None:
261
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
+
264
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
+ audio_context_token_id = tokenizer.convert_tokens_to_ids(AUDIO_CONTEXT_TOKEN)
266
+ self.img_context_token_id = img_context_token_id
267
+ self.audio_context_token_id = audio_context_token_id
268
+
269
+ template = get_conv_template(self.template)
270
+ template.system_message = self.system_message
271
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
272
+
273
+ history = [] if history is None else history
274
+ for (old_question, old_answer) in history:
275
+ template.append_message(template.roles[0], old_question)
276
+ template.append_message(template.roles[1], old_answer)
277
+ template.append_message(template.roles[0], question)
278
+ template.append_message(template.roles[1], None)
279
+ query = template.get_prompt()
280
+
281
+ if verbose and pixel_values is not None:
282
+ image_bs = pixel_values.shape[0]
283
+ print(f'dynamic ViT batch size: {image_bs}')
284
+
285
+ for num_patches in num_patches_list:
286
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
287
+ query = query.replace('<image>', image_tokens, 1)
288
+ if audio is not None:
289
+ audio_tokens = AUDIO_START_TOKEN + AUDIO_CONTEXT_TOKEN * audio['audio_token_num'] + AUDIO_END_TOKEN
290
+ query = query.replace('<audio>', audio_tokens, 1)
291
+
292
+ model_inputs = tokenizer(query, return_tensors='pt')
293
+ input_ids = model_inputs['input_ids'].to(self.device)
294
+ attention_mask = model_inputs['attention_mask'].to(self.device)
295
+ generation_config['eos_token_id'] = eos_token_id
296
+ audio['audio_len_after_cnn'] = torch.tensor([audio['audio_len_after_cnn']])
297
+ audio['audio_token_num'] = torch.tensor([audio['audio_token_num']])
298
+ generation_output = self.generate(
299
+ pixel_values=pixel_values,
300
+ audio_values=audio['audio_values'].to(self.device, dtype=self.dtype),
301
+ audio_len_after_cnn=audio['audio_len_after_cnn'],
302
+ audio_token_num=audio['audio_token_num'],
303
+ input_ids=input_ids,
304
+ attention_mask=attention_mask,
305
+ **generation_config
306
+ )
307
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
308
+ response = response.split(template.sep.strip())[0].strip()
309
+ history.append((question, response))
310
+ if return_history:
311
+ return response, history
312
+ else:
313
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
314
+ query_to_print = query.replace(AUDIO_CONTEXT_TOKEN, '')
315
+ query_to_print = query_to_print.replace(f'{AUDIO_START_TOKEN}{AUDIO_END_TOKEN}', '<audio>')
316
+ if verbose:
317
+ print(query_to_print, response)
318
+ return response
319
+
320
+ @torch.no_grad()
321
+ def generate(
322
+ self,
323
+ pixel_values: torch.FloatTensor,
324
+ input_ids: torch.FloatTensor,
325
+ attention_mask: torch.LongTensor,
326
+ visual_features: Optional[torch.FloatTensor] = None,
327
+ audio_values: Optional[torch.FloatTensor] = None,
328
+ audio_len_after_cnn: Optional[bool] = None,
329
+ audio_token_num: Optional[bool] = None,
330
+ generation_config: Optional[GenerationConfig] = None,
331
+ output_hidden_states: Optional[bool] = None,
332
+ return_dict: Optional[bool] = None,
333
+ **generate_kwargs,
334
+ ) -> torch.LongTensor:
335
+
336
+ # assert self.img_context_token_id is not None
337
+ # assert self.audio_context_token_id is not None
338
+
339
+ vit_embeds = None
340
+ if visual_features is not None:
341
+ vit_embeds = visual_features
342
+ elif pixel_values is not None:
343
+ vit_embeds = self.extract_feature(pixel_values)
344
+
345
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
346
+ B, N, C = input_embeds.shape
347
+ input_embeds = input_embeds.reshape(B * N, C)
348
+
349
+ input_ids = input_ids.reshape(B * N)
350
+
351
+ if vit_embeds is not None:
352
+ selected = (input_ids == self.img_context_token_id)
353
+ input_embeds[selected] = vit_embeds.reshape(-1, C)
354
+
355
+ if audio_values is not None and audio_len_after_cnn is not None and audio_token_num is not None:
356
+ audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn)
357
+ output_audios = []
358
+ for i in range(len(audio_token_num)):
359
+ token_num = int(audio_token_num[i].item())
360
+ audio = audio_embeds[i][:token_num]
361
+ output_audios.append(audio)
362
+ output_audios = torch.cat(output_audios, dim=0)
363
+ selected = (input_ids == self.audio_context_token_id)
364
+ input_embeds[selected] = output_audios.reshape(-1, C)
365
+
366
+ input_embeds = input_embeds.reshape(B, N, C)
367
+
368
+ outputs = self.language_model.generate(
369
+ inputs_embeds=input_embeds,
370
+ attention_mask=attention_mask,
371
+ generation_config=generation_config,
372
+ output_hidden_states=output_hidden_states,
373
+ return_dict=return_dict,
374
+ use_cache=True,
375
+ **generate_kwargs,
376
+ )
377
+
378
+ return outputs
modeling_internvl_chat.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
+ LlamaTokenizer)
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import ModelOutput, logging
19
+
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+ from .modeling_internlm2 import InternLM2ForCausalLM
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ def version_cmp(v1, v2, op='eq'):
29
+ import operator
30
+
31
+ from packaging import version
32
+ op_func = getattr(operator, op)
33
+ return op_func(version.parse(v1), version.parse(v2))
34
+
35
+
36
+ class InternVLChatModel(PreTrainedModel):
37
+ config_class = InternVLChatConfig
38
+ main_input_name = 'pixel_values'
39
+ base_model_prefix = 'language_model'
40
+ _supports_flash_attn_2 = True
41
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
42
+
43
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
44
+ super().__init__(config)
45
+
46
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
47
+ image_size = config.force_image_size or config.vision_config.image_size
48
+ patch_size = config.vision_config.patch_size
49
+ self.patch_size = patch_size
50
+ self.select_layer = config.select_layer
51
+ self.template = config.template
52
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
53
+ self.downsample_ratio = config.downsample_ratio
54
+ self.ps_version = config.ps_version
55
+ use_flash_attn = use_flash_attn if has_flash_attn else False
56
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
57
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
58
+
59
+ logger.info(f'num_image_token: {self.num_image_token}')
60
+ logger.info(f'ps_version: {self.ps_version}')
61
+ if vision_model is not None:
62
+ self.vision_model = vision_model
63
+ else:
64
+ self.vision_model = InternVisionModel(config.vision_config)
65
+ if language_model is not None:
66
+ self.language_model = language_model
67
+ else:
68
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
69
+ self.language_model = LlamaForCausalLM(config.llm_config)
70
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
71
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
72
+ else:
73
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
74
+
75
+ vit_hidden_size = config.vision_config.hidden_size
76
+ llm_hidden_size = config.llm_config.hidden_size
77
+
78
+ self.mlp1 = nn.Sequential(
79
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
80
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
81
+ nn.GELU(),
82
+ nn.Linear(llm_hidden_size, llm_hidden_size)
83
+ )
84
+
85
+ self.img_context_token_id = None
86
+ self.conv_template = get_conv_template(self.template)
87
+ self.system_message = self.conv_template.system_message
88
+
89
+ def forward(
90
+ self,
91
+ pixel_values: torch.FloatTensor,
92
+ input_ids: torch.LongTensor = None,
93
+ attention_mask: Optional[torch.Tensor] = None,
94
+ position_ids: Optional[torch.LongTensor] = None,
95
+ image_flags: Optional[torch.LongTensor] = None,
96
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
97
+ labels: Optional[torch.LongTensor] = None,
98
+ use_cache: Optional[bool] = None,
99
+ output_attentions: Optional[bool] = None,
100
+ output_hidden_states: Optional[bool] = None,
101
+ return_dict: Optional[bool] = None,
102
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
103
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
104
+
105
+ image_flags = image_flags.squeeze(-1)
106
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
107
+
108
+ vit_embeds = self.extract_feature(pixel_values)
109
+ vit_embeds = vit_embeds[image_flags == 1]
110
+ vit_batch_size = pixel_values.shape[0]
111
+
112
+ B, N, C = input_embeds.shape
113
+ input_embeds = input_embeds.reshape(B * N, C)
114
+
115
+ if torch.distributed.get_rank() == 0:
116
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
117
+
118
+ input_ids = input_ids.reshape(B * N)
119
+ selected = (input_ids == self.img_context_token_id)
120
+ try:
121
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
122
+ except Exception as e:
123
+ vit_embeds = vit_embeds.reshape(-1, C)
124
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
125
+ f'vit_embeds.shape={vit_embeds.shape}')
126
+ n_token = selected.sum()
127
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
128
+
129
+ input_embeds = input_embeds.reshape(B, N, C)
130
+
131
+ outputs = self.language_model(
132
+ inputs_embeds=input_embeds,
133
+ attention_mask=attention_mask,
134
+ position_ids=position_ids,
135
+ past_key_values=past_key_values,
136
+ use_cache=use_cache,
137
+ output_attentions=output_attentions,
138
+ output_hidden_states=output_hidden_states,
139
+ return_dict=return_dict,
140
+ )
141
+ logits = outputs.logits
142
+
143
+ loss = None
144
+ if labels is not None:
145
+ # Shift so that tokens < n predict n
146
+ shift_logits = logits[..., :-1, :].contiguous()
147
+ shift_labels = labels[..., 1:].contiguous()
148
+ # Flatten the tokens
149
+ loss_fct = CrossEntropyLoss()
150
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
151
+ shift_labels = shift_labels.view(-1)
152
+ # Enable model parallelism
153
+ shift_labels = shift_labels.to(shift_logits.device)
154
+ loss = loss_fct(shift_logits, shift_labels)
155
+
156
+ if not return_dict:
157
+ output = (logits,) + outputs[1:]
158
+ return (loss,) + output if loss is not None else output
159
+
160
+ return CausalLMOutputWithPast(
161
+ loss=loss,
162
+ logits=logits,
163
+ past_key_values=outputs.past_key_values,
164
+ hidden_states=outputs.hidden_states,
165
+ attentions=outputs.attentions,
166
+ )
167
+
168
+ def pixel_shuffle(self, x, scale_factor=0.5):
169
+ n, w, h, c = x.size()
170
+ # N, W, H, C --> N, W, H * scale, C // scale
171
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
172
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
173
+ x = x.permute(0, 2, 1, 3).contiguous()
174
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
175
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
176
+ int(c / (scale_factor * scale_factor)))
177
+ if self.ps_version == 'v1':
178
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
179
+ 'which results in a transposed image.')
180
+ else:
181
+ x = x.permute(0, 2, 1, 3).contiguous()
182
+ return x
183
+
184
+ def extract_feature(self, pixel_values):
185
+ if self.select_layer == -1:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=False,
189
+ return_dict=True).last_hidden_state
190
+ else:
191
+ vit_embeds = self.vision_model(
192
+ pixel_values=pixel_values,
193
+ output_hidden_states=True,
194
+ return_dict=True).hidden_states[self.select_layer]
195
+ vit_embeds = vit_embeds[:, 1:, :]
196
+
197
+ h = w = int(vit_embeds.shape[1] ** 0.5)
198
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
199
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
200
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
201
+ vit_embeds = self.mlp1(vit_embeds)
202
+ return vit_embeds
203
+
204
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
205
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
206
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
207
+ if history is not None or return_history:
208
+ print('Now multi-turn chat is not supported in batch_chat.')
209
+ raise NotImplementedError
210
+
211
+ if image_counts is not None:
212
+ num_patches_list = image_counts
213
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
214
+
215
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
216
+ self.img_context_token_id = img_context_token_id
217
+
218
+ if verbose and pixel_values is not None:
219
+ image_bs = pixel_values.shape[0]
220
+ print(f'dynamic ViT batch size: {image_bs}')
221
+
222
+ queries = []
223
+ for idx, num_patches in enumerate(num_patches_list):
224
+ question = questions[idx]
225
+ if pixel_values is not None and '<image>' not in question:
226
+ question = '<image>\n' + question
227
+ template = get_conv_template(self.template)
228
+ template.system_message = self.system_message
229
+ template.append_message(template.roles[0], question)
230
+ template.append_message(template.roles[1], None)
231
+ query = template.get_prompt()
232
+
233
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
234
+ query = query.replace('<image>', image_tokens, 1)
235
+ queries.append(query)
236
+
237
+ tokenizer.padding_side = 'left'
238
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
239
+ input_ids = model_inputs['input_ids'].to(self.device)
240
+ attention_mask = model_inputs['attention_mask'].to(self.device)
241
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
242
+ generation_config['eos_token_id'] = eos_token_id
243
+ generation_output = self.generate(
244
+ pixel_values=pixel_values,
245
+ input_ids=input_ids,
246
+ attention_mask=attention_mask,
247
+ **generation_config
248
+ )
249
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
250
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
251
+ return responses
252
+
253
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
254
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
255
+ verbose=False):
256
+
257
+ if history is None and pixel_values is not None and '<image>' not in question:
258
+ question = '<image>\n' + question
259
+
260
+ if num_patches_list is None:
261
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
+
264
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
+ self.img_context_token_id = img_context_token_id
266
+
267
+ template = get_conv_template(self.template)
268
+ template.system_message = self.system_message
269
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
270
+
271
+ history = [] if history is None else history
272
+ for (old_question, old_answer) in history:
273
+ template.append_message(template.roles[0], old_question)
274
+ template.append_message(template.roles[1], old_answer)
275
+ template.append_message(template.roles[0], question)
276
+ template.append_message(template.roles[1], None)
277
+ query = template.get_prompt()
278
+
279
+ if verbose and pixel_values is not None:
280
+ image_bs = pixel_values.shape[0]
281
+ print(f'dynamic ViT batch size: {image_bs}')
282
+
283
+ for num_patches in num_patches_list:
284
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
285
+ query = query.replace('<image>', image_tokens, 1)
286
+
287
+ model_inputs = tokenizer(query, return_tensors='pt')
288
+ input_ids = model_inputs['input_ids'].to(self.device)
289
+ attention_mask = model_inputs['attention_mask'].to(self.device)
290
+ generation_config['eos_token_id'] = eos_token_id
291
+ generation_output = self.generate(
292
+ pixel_values=pixel_values,
293
+ input_ids=input_ids,
294
+ attention_mask=attention_mask,
295
+ **generation_config
296
+ )
297
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
298
+ response = response.split(template.sep.strip())[0].strip()
299
+ history.append((question, response))
300
+ if return_history:
301
+ return response, history
302
+ else:
303
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
304
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
305
+ if verbose:
306
+ print(query_to_print, response)
307
+ return response
308
+
309
+ @torch.no_grad()
310
+ def generate(
311
+ self,
312
+ pixel_values: Optional[torch.FloatTensor] = None,
313
+ input_ids: Optional[torch.FloatTensor] = None,
314
+ attention_mask: Optional[torch.LongTensor] = None,
315
+ visual_features: Optional[torch.FloatTensor] = None,
316
+ generation_config: Optional[GenerationConfig] = None,
317
+ output_hidden_states: Optional[bool] = None,
318
+ **generate_kwargs,
319
+ ) -> torch.LongTensor:
320
+
321
+ assert self.img_context_token_id is not None
322
+ if pixel_values is not None:
323
+ if visual_features is not None:
324
+ vit_embeds = visual_features
325
+ else:
326
+ vit_embeds = self.extract_feature(pixel_values)
327
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
328
+ B, N, C = input_embeds.shape
329
+ input_embeds = input_embeds.reshape(B * N, C)
330
+
331
+ input_ids = input_ids.reshape(B * N)
332
+ selected = (input_ids == self.img_context_token_id)
333
+ assert selected.sum() != 0
334
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
335
+
336
+ input_embeds = input_embeds.reshape(B, N, C)
337
+ else:
338
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
339
+
340
+ outputs = self.language_model.generate(
341
+ inputs_embeds=input_embeds,
342
+ attention_mask=attention_mask,
343
+ generation_config=generation_config,
344
+ output_hidden_states=output_hidden_states,
345
+ use_cache=True,
346
+ **generate_kwargs,
347
+ )
348
+
349
+ return outputs
modeling_whisper.py ADDED
The diff for this file is too large to render. See raw diff
 
processing_whisper.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Speech processor class for Whisper
17
+ """
18
+
19
+
20
+ from transformers.processing_utils import ProcessorMixin
21
+ import torch
22
+
23
+ class WhisperProcessor(ProcessorMixin):
24
+ r"""
25
+ Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single
26
+ processor.
27
+
28
+ [`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See
29
+ the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information.
30
+
31
+ Args:
32
+ feature_extractor (`WhisperFeatureExtractor`):
33
+ An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input.
34
+ tokenizer (`WhisperTokenizer`):
35
+ An instance of [`WhisperTokenizer`]. The tokenizer is a required input.
36
+ """
37
+ attributes = ["feature_extractor"]
38
+ feature_extractor_class = "WhisperFeatureExtractor"
39
+ # tokenizer_class = "WhisperTokenizer"
40
+
41
+ def __init__(self, feature_extractor):
42
+ super().__init__(feature_extractor)
43
+ self.current_processor = self.feature_extractor
44
+ self._in_target_context_manager = False
45
+
46
+ def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
47
+ return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
48
+
49
+ def get_T_after_cnn(self,L_in, dilation=1):
50
+ for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
51
+ L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
52
+ L_out = 1 + L_out // stride
53
+ L_in = L_out
54
+ return L_out
55
+
56
+ def __call__(self, *args, **kwargs):
57
+ """
58
+ Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text`
59
+ argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
60
+ information.
61
+ """
62
+ # For backward compatibility
63
+ if self._in_target_context_manager:
64
+ return self.current_processor(*args, **kwargs)
65
+
66
+ audio = kwargs.pop("audio", None)
67
+ sampling_rate = kwargs.pop("sampling_rate", 16000)
68
+ text = kwargs.pop("text", None)
69
+ if len(args) > 0:
70
+ audio = args[0]
71
+ args = args[1:]
72
+
73
+ if audio is None and text is None:
74
+ raise ValueError("You need to specify either an `audio` or `text` input to process.")
75
+
76
+ if audio is not None:
77
+ L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000) # max_length < 30s
78
+ mel_len = L // 160
79
+ audio_len_after_cnn = self.get_T_after_cnn(mel_len)
80
+ audio_token_num = (audio_len_after_cnn - 2) // 2 + 1
81
+ inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
82
+ inputs['audio_len_after_cnn'] = torch.tensor(audio_len_after_cnn, dtype=torch.long)
83
+ inputs['audio_token_num'] = torch.tensor(audio_token_num, dtype=torch.long)
84
+ if text is not None:
85
+ encodings = self.tokenizer(text, **kwargs)
86
+
87
+ if text is None:
88
+ return inputs
89
+
90
+ elif audio is None:
91
+ return encodings
92
+ else:
93
+ inputs["labels"] = encodings["input_ids"]
94
+ return inputs
95
+
96
+ def batch_decode(self, *args, **kwargs):
97
+ """
98
+ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
99
+ refer to the docstring of this method for more information.
100
+ """
101
+ return self.tokenizer.batch_decode(*args, **kwargs)
102
+
103
+ def decode(self, *args, **kwargs):
104
+ """
105
+ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
106
+ the docstring of this method for more information.
107
+ """
108
+ return self.tokenizer.decode(*args, **kwargs)
109
+
110
+ def get_prompt_ids(self, text: str, return_tensors="np"):
111
+ return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)