update hf
Browse files- configuration_intern_vit.py +119 -0
- configuration_internlm2.py +150 -0
- configuration_internvl_audio_chat.py +49 -0
- configuration_internvl_chat.py +103 -0
- configuration_whisper.py +340 -0
- conversation.py +406 -0
- modeling_intern_vit.py +362 -0
- modeling_internlm2.py +1429 -0
- modeling_internvl_audio.py +378 -0
- modeling_internvl_chat.py +349 -0
- modeling_whisper.py +0 -0
- processing_whisper.py +111 -0
configuration_intern_vit.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class InternVisionConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
18 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
19 |
+
|
20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
+
documentation from [`PretrainedConfig`] for more information.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
num_channels (`int`, *optional*, defaults to 3):
|
25 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
26 |
+
patch_size (`int`, *optional*, defaults to 14):
|
27 |
+
The size (resolution) of each patch.
|
28 |
+
image_size (`int`, *optional*, defaults to 224):
|
29 |
+
The size (resolution) of each image.
|
30 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
31 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
32 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
34 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
36 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
38 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
39 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether to use flash attention mechanism.
|
44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
45 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
46 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
47 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
48 |
+
The epsilon used by the layer normalization layers.
|
49 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
52 |
+
Dropout rate for stochastic depth.
|
53 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
57 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
58 |
+
A factor for layer scale.
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_type = 'intern_vit_6b'
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
num_channels=3,
|
66 |
+
patch_size=14,
|
67 |
+
image_size=224,
|
68 |
+
qkv_bias=False,
|
69 |
+
hidden_size=3200,
|
70 |
+
num_attention_heads=25,
|
71 |
+
intermediate_size=12800,
|
72 |
+
qk_normalization=True,
|
73 |
+
num_hidden_layers=48,
|
74 |
+
use_flash_attn=True,
|
75 |
+
hidden_act='gelu',
|
76 |
+
norm_type='rms_norm',
|
77 |
+
layer_norm_eps=1e-6,
|
78 |
+
dropout=0.0,
|
79 |
+
drop_path_rate=0.0,
|
80 |
+
attention_dropout=0.0,
|
81 |
+
initializer_range=0.02,
|
82 |
+
initializer_factor=0.1,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
|
87 |
+
self.hidden_size = hidden_size
|
88 |
+
self.intermediate_size = intermediate_size
|
89 |
+
self.dropout = dropout
|
90 |
+
self.drop_path_rate = drop_path_rate
|
91 |
+
self.num_hidden_layers = num_hidden_layers
|
92 |
+
self.num_attention_heads = num_attention_heads
|
93 |
+
self.num_channels = num_channels
|
94 |
+
self.patch_size = patch_size
|
95 |
+
self.image_size = image_size
|
96 |
+
self.initializer_range = initializer_range
|
97 |
+
self.initializer_factor = initializer_factor
|
98 |
+
self.attention_dropout = attention_dropout
|
99 |
+
self.layer_norm_eps = layer_norm_eps
|
100 |
+
self.hidden_act = hidden_act
|
101 |
+
self.norm_type = norm_type
|
102 |
+
self.qkv_bias = qkv_bias
|
103 |
+
self.qk_normalization = qk_normalization
|
104 |
+
self.use_flash_attn = use_flash_attn
|
105 |
+
|
106 |
+
@classmethod
|
107 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
108 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
109 |
+
|
110 |
+
if 'vision_config' in config_dict:
|
111 |
+
config_dict = config_dict['vision_config']
|
112 |
+
|
113 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
114 |
+
logger.warning(
|
115 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
116 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
117 |
+
)
|
118 |
+
|
119 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internlm2.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" InternLM2 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
27 |
+
class InternLM2Config(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
+
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`InternLM2Model`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
56 |
+
`num_attention_heads`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether to tie weight embeddings
|
71 |
+
Example:
|
72 |
+
|
73 |
+
"""
|
74 |
+
model_type = 'internlm2'
|
75 |
+
_auto_class = 'AutoConfig'
|
76 |
+
|
77 |
+
def __init__( # pylint: disable=W0102
|
78 |
+
self,
|
79 |
+
vocab_size=103168,
|
80 |
+
hidden_size=4096,
|
81 |
+
intermediate_size=11008,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_attention_heads=32,
|
84 |
+
num_key_value_heads=None,
|
85 |
+
hidden_act='silu',
|
86 |
+
max_position_embeddings=2048,
|
87 |
+
initializer_range=0.02,
|
88 |
+
rms_norm_eps=1e-6,
|
89 |
+
use_cache=True,
|
90 |
+
pad_token_id=0,
|
91 |
+
bos_token_id=1,
|
92 |
+
eos_token_id=2,
|
93 |
+
tie_word_embeddings=False,
|
94 |
+
bias=True,
|
95 |
+
rope_theta=10000,
|
96 |
+
rope_scaling=None,
|
97 |
+
attn_implementation='eager',
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
self.vocab_size = vocab_size
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_hidden_layers = num_hidden_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.bias = bias
|
107 |
+
|
108 |
+
if num_key_value_heads is None:
|
109 |
+
num_key_value_heads = num_attention_heads
|
110 |
+
self.num_key_value_heads = num_key_value_heads
|
111 |
+
|
112 |
+
self.hidden_act = hidden_act
|
113 |
+
self.initializer_range = initializer_range
|
114 |
+
self.rms_norm_eps = rms_norm_eps
|
115 |
+
self.use_cache = use_cache
|
116 |
+
self.rope_theta = rope_theta
|
117 |
+
self.rope_scaling = rope_scaling
|
118 |
+
self._rope_scaling_validation()
|
119 |
+
|
120 |
+
self.attn_implementation = attn_implementation
|
121 |
+
if self.attn_implementation is None:
|
122 |
+
self.attn_implementation = 'eager'
|
123 |
+
super().__init__(
|
124 |
+
pad_token_id=pad_token_id,
|
125 |
+
bos_token_id=bos_token_id,
|
126 |
+
eos_token_id=eos_token_id,
|
127 |
+
tie_word_embeddings=tie_word_embeddings,
|
128 |
+
**kwargs,
|
129 |
+
)
|
130 |
+
|
131 |
+
def _rope_scaling_validation(self):
|
132 |
+
"""
|
133 |
+
Validate the `rope_scaling` configuration.
|
134 |
+
"""
|
135 |
+
if self.rope_scaling is None:
|
136 |
+
return
|
137 |
+
|
138 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
139 |
+
raise ValueError(
|
140 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
141 |
+
f'got {self.rope_scaling}'
|
142 |
+
)
|
143 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
144 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
145 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
146 |
+
raise ValueError(
|
147 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
148 |
+
)
|
149 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
150 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_internvl_audio_chat.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from .configuration_internlm2 import InternLM2Config
|
10 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
11 |
+
from transformers.configuration_utils import PretrainedConfig
|
12 |
+
from transformers.utils import logging
|
13 |
+
from .configuration_whisper import WhisperConfig
|
14 |
+
|
15 |
+
from .configuration_intern_vit import InternVisionConfig
|
16 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
class InternVLChatAudioConfig(InternVLChatConfig):
|
24 |
+
model_type = "internvl_chat"
|
25 |
+
is_composition = True
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
vision_config=None,
|
30 |
+
audio_config=None,
|
31 |
+
llm_config=None,
|
32 |
+
**kwargs):
|
33 |
+
super().__init__(vision_config, llm_config, **kwargs)
|
34 |
+
|
35 |
+
if audio_config is None:
|
36 |
+
audio_config = {}
|
37 |
+
logger.info('audio_config is None. Initializing the Audioconfig with default values.')
|
38 |
+
self.audio_config = WhisperConfig(**audio_config)
|
39 |
+
|
40 |
+
def to_dict(self):
|
41 |
+
"""
|
42 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
46 |
+
"""
|
47 |
+
output = super().to_dict()
|
48 |
+
output['audio_config'] = self.audio_config.to_dict()
|
49 |
+
return output
|
configuration_internvl_chat.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from .configuration_internlm2 import InternLM2Config
|
10 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
11 |
+
from transformers.configuration_utils import PretrainedConfig
|
12 |
+
from transformers.utils import logging
|
13 |
+
|
14 |
+
from .configuration_intern_vit import InternVisionConfig
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class InternVLChatConfig(PretrainedConfig):
|
20 |
+
model_type = 'internvl_chat'
|
21 |
+
is_composition = True
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
vision_config=None,
|
26 |
+
llm_config=None,
|
27 |
+
use_backbone_lora=0,
|
28 |
+
use_llm_lora=0,
|
29 |
+
pad2square=False,
|
30 |
+
select_layer=-1,
|
31 |
+
force_image_size=None,
|
32 |
+
downsample_ratio=0.5,
|
33 |
+
template=None,
|
34 |
+
dynamic_image_size=False,
|
35 |
+
use_thumbnail=False,
|
36 |
+
ps_version='v1',
|
37 |
+
min_dynamic_patch=1,
|
38 |
+
max_dynamic_patch=6,
|
39 |
+
**kwargs):
|
40 |
+
super().__init__(**kwargs)
|
41 |
+
|
42 |
+
if vision_config is None:
|
43 |
+
vision_config = {}
|
44 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
45 |
+
|
46 |
+
if llm_config is None:
|
47 |
+
llm_config = {}
|
48 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
49 |
+
|
50 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
51 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
52 |
+
self.llm_config = LlamaConfig(**llm_config)
|
53 |
+
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
|
54 |
+
self.llm_config = InternLM2Config(**llm_config)
|
55 |
+
elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
|
56 |
+
self.llm_config = Phi3Config(**llm_config)
|
57 |
+
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
58 |
+
self.llm_config = Qwen2Config(**llm_config)
|
59 |
+
else:
|
60 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
61 |
+
self.use_backbone_lora = use_backbone_lora
|
62 |
+
self.use_llm_lora = use_llm_lora
|
63 |
+
self.pad2square = pad2square
|
64 |
+
self.select_layer = select_layer
|
65 |
+
self.force_image_size = force_image_size
|
66 |
+
self.downsample_ratio = downsample_ratio
|
67 |
+
self.template = template
|
68 |
+
self.dynamic_image_size = dynamic_image_size
|
69 |
+
self.use_thumbnail = use_thumbnail
|
70 |
+
self.ps_version = ps_version # pixel shuffle version
|
71 |
+
self.min_dynamic_patch = min_dynamic_patch
|
72 |
+
self.max_dynamic_patch = max_dynamic_patch
|
73 |
+
|
74 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
75 |
+
logger.info(f'ps_version: {self.ps_version}')
|
76 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
77 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
78 |
+
|
79 |
+
def to_dict(self):
|
80 |
+
"""
|
81 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
85 |
+
"""
|
86 |
+
output = copy.deepcopy(self.__dict__)
|
87 |
+
output['vision_config'] = self.vision_config.to_dict()
|
88 |
+
output['llm_config'] = self.llm_config.to_dict()
|
89 |
+
output['model_type'] = self.__class__.model_type
|
90 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
91 |
+
output['use_llm_lora'] = self.use_llm_lora
|
92 |
+
output['pad2square'] = self.pad2square
|
93 |
+
output['select_layer'] = self.select_layer
|
94 |
+
output['force_image_size'] = self.force_image_size
|
95 |
+
output['downsample_ratio'] = self.downsample_ratio
|
96 |
+
output['template'] = self.template
|
97 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
98 |
+
output['use_thumbnail'] = self.use_thumbnail
|
99 |
+
output['ps_version'] = self.ps_version
|
100 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
101 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
102 |
+
|
103 |
+
return output
|
configuration_whisper.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Whisper model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from transformers.feature_extraction_utils import FeatureExtractionMixin
|
27 |
+
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
28 |
+
from transformers.utils import TensorType
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
# fmt: off
|
34 |
+
NON_SPEECH_TOKENS = [
|
35 |
+
1, 2, 7, 8, 9, 10, 14, 25,
|
36 |
+
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
|
37 |
+
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
|
38 |
+
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
|
39 |
+
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
|
40 |
+
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
|
41 |
+
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
|
42 |
+
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
|
43 |
+
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
|
44 |
+
]
|
45 |
+
NON_SPEECH_TOKENS_MULTI = [
|
46 |
+
1, 2, 7, 8, 9, 10, 14, 25,
|
47 |
+
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
|
48 |
+
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
|
49 |
+
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
|
50 |
+
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
|
51 |
+
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
|
52 |
+
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
|
53 |
+
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
|
54 |
+
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
|
55 |
+
]
|
56 |
+
# fmt: on
|
57 |
+
|
58 |
+
|
59 |
+
class WhisperConfig(PretrainedConfig):
|
60 |
+
r"""
|
61 |
+
This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a
|
62 |
+
Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
63 |
+
with the defaults will yield a similar configuration to that of the Whisper
|
64 |
+
[openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
|
65 |
+
|
66 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
67 |
+
documentation from [`PretrainedConfig`] for more information.
|
68 |
+
|
69 |
+
|
70 |
+
Args:
|
71 |
+
vocab_size (`int`, *optional*, defaults to 51865):
|
72 |
+
Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the
|
73 |
+
`decoder_input_ids` passed when calling [`WhisperModel`]
|
74 |
+
num_mel_bins (`int`, *optional*, defaults to 80):
|
75 |
+
Number of mel features used per input features. Should correspond to the value used in the
|
76 |
+
`WhisperProcessor` class.
|
77 |
+
encoder_layers (`int`, *optional*, defaults to 4):
|
78 |
+
Number of encoder layers.
|
79 |
+
decoder_layers (`int`, *optional*, defaults to 4):
|
80 |
+
Number of decoder layers.
|
81 |
+
encoder_attention_heads (`int`, *optional*, defaults to 6):
|
82 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
83 |
+
decoder_attention_heads (`int`, *optional*, defaults to 6):
|
84 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
85 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 1536):
|
86 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
|
87 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 1536):
|
88 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
89 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
90 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
91 |
+
for more details.
|
92 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
93 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
94 |
+
for more details.
|
95 |
+
decoder_start_token_id (`int`, *optional*, defaults to 50257):
|
96 |
+
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
|
97 |
+
are provided to the `generate` function. It is used to guide the model`s generation process depending on
|
98 |
+
the task.
|
99 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
100 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
101 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether the model is used as an encoder/decoder or not.
|
103 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
104 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
105 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
106 |
+
d_model (`int`, *optional*, defaults to 384):
|
107 |
+
Dimensionality of the layers.
|
108 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
109 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
110 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
111 |
+
The dropout ratio for the attention probabilities.
|
112 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
113 |
+
The dropout ratio for activations inside the fully connected layer.
|
114 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
115 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
116 |
+
scale_embedding (`bool`, *optional*, defaults to False):
|
117 |
+
Scale embeddings by diving by sqrt(d_model).
|
118 |
+
max_source_positions (`int`, *optional*, defaults to 1500):
|
119 |
+
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
|
120 |
+
max_target_positions (`int`, *optional*, defaults to 448):
|
121 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
122 |
+
just in case (e.g., 512 or 1024 or 2048).
|
123 |
+
pad_token_id (`int`, *optional*, defaults to 50256):
|
124 |
+
Padding token id.
|
125 |
+
bos_token_id (`int`, *optional*, defaults to 50256):
|
126 |
+
Begin of stream token id.
|
127 |
+
eos_token_id (`int`, *optional*, defaults to 50256):
|
128 |
+
End of stream token id.
|
129 |
+
suppress_tokens (`List[int]`, *optional*):
|
130 |
+
A list containing the non-speech tokens that will be used by the logit processor in the `generate`
|
131 |
+
function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
|
132 |
+
`multilingual` model.
|
133 |
+
begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
|
134 |
+
A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
|
135 |
+
the token for `" "` (`blank_token_id`) and the `eos_token_id`
|
136 |
+
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
|
137 |
+
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
|
138 |
+
instance of [`WhisperForAudioClassification`].
|
139 |
+
classifier_proj_size (`int`, *optional*, defaults to 256):
|
140 |
+
Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
|
141 |
+
instance of [`WhisperForAudioClassification`].
|
142 |
+
apply_spec_augment (`bool`, *optional*, defaults to `False`):
|
143 |
+
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
|
144 |
+
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
|
145 |
+
Recognition](https://arxiv.org/abs/1904.08779).
|
146 |
+
mask_time_prob (`float`, *optional*, defaults to 0.05):
|
147 |
+
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
|
148 |
+
procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
|
149 |
+
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
|
150 |
+
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
|
151 |
+
actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
|
152 |
+
mask_time_length (`int`, *optional*, defaults to 10):
|
153 |
+
Length of vector span along the time axis.
|
154 |
+
mask_time_min_masks (`int`, *optional*, defaults to 2),:
|
155 |
+
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
|
156 |
+
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
|
157 |
+
mask_time_min_masks''
|
158 |
+
mask_feature_prob (`float`, *optional*, defaults to 0.0):
|
159 |
+
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
|
160 |
+
masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
|
161 |
+
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
|
162 |
+
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
|
163 |
+
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
|
164 |
+
True`.
|
165 |
+
mask_feature_length (`int`, *optional*, defaults to 10):
|
166 |
+
Length of vector span along the feature axis.
|
167 |
+
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
|
168 |
+
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
|
169 |
+
step, irrespectively of `mask_feature_prob`. Only relevant if
|
170 |
+
`mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
|
171 |
+
median_filter_width (`int`, *optional*, defaults to 7):
|
172 |
+
Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
|
173 |
+
Should be an odd number.
|
174 |
+
|
175 |
+
Example:
|
176 |
+
|
177 |
+
```python
|
178 |
+
>>> from transformers import WhisperConfig, WhisperModel
|
179 |
+
|
180 |
+
>>> # Initializing a Whisper tiny style configuration
|
181 |
+
>>> configuration = WhisperConfig()
|
182 |
+
|
183 |
+
>>> # Initializing a model (with random weights) from the tiny style configuration
|
184 |
+
>>> model = WhisperModel(configuration)
|
185 |
+
|
186 |
+
>>> # Accessing the model configuration
|
187 |
+
>>> configuration = model.config
|
188 |
+
```"""
|
189 |
+
|
190 |
+
model_type = "whisper"
|
191 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
192 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
193 |
+
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
vocab_size=51865,
|
197 |
+
num_mel_bins=80,
|
198 |
+
encoder_layers=4,
|
199 |
+
encoder_attention_heads=6,
|
200 |
+
decoder_layers=4,
|
201 |
+
decoder_attention_heads=6,
|
202 |
+
decoder_ffn_dim=1536,
|
203 |
+
encoder_ffn_dim=1536,
|
204 |
+
encoder_layerdrop=0.0,
|
205 |
+
decoder_layerdrop=0.0,
|
206 |
+
decoder_start_token_id=50257,
|
207 |
+
use_cache=True,
|
208 |
+
is_encoder_decoder=True,
|
209 |
+
activation_function="gelu",
|
210 |
+
d_model=384,
|
211 |
+
dropout=0.0,
|
212 |
+
attention_dropout=0.0,
|
213 |
+
activation_dropout=0.0,
|
214 |
+
init_std=0.02,
|
215 |
+
scale_embedding=False,
|
216 |
+
max_source_positions=1500,
|
217 |
+
max_target_positions=448,
|
218 |
+
pad_token_id=50256,
|
219 |
+
bos_token_id=50256,
|
220 |
+
eos_token_id=50256,
|
221 |
+
suppress_tokens=None,
|
222 |
+
begin_suppress_tokens=[220, 50256],
|
223 |
+
use_weighted_layer_sum=False,
|
224 |
+
classifier_proj_size=256,
|
225 |
+
apply_spec_augment=False,
|
226 |
+
mask_time_prob=0.05,
|
227 |
+
mask_time_length=10,
|
228 |
+
mask_time_min_masks=2,
|
229 |
+
mask_feature_prob=0.0,
|
230 |
+
mask_feature_length=10,
|
231 |
+
mask_feature_min_masks=0,
|
232 |
+
median_filter_width=7,
|
233 |
+
**kwargs,
|
234 |
+
):
|
235 |
+
self.vocab_size = vocab_size
|
236 |
+
self.num_mel_bins = num_mel_bins
|
237 |
+
self.d_model = d_model
|
238 |
+
self.encoder_layers = encoder_layers
|
239 |
+
self.encoder_attention_heads = encoder_attention_heads
|
240 |
+
self.decoder_layers = decoder_layers
|
241 |
+
self.decoder_attention_heads = decoder_attention_heads
|
242 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
243 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
244 |
+
self.dropout = dropout
|
245 |
+
self.attention_dropout = attention_dropout
|
246 |
+
self.activation_dropout = activation_dropout
|
247 |
+
self.activation_function = activation_function
|
248 |
+
self.init_std = init_std
|
249 |
+
self.encoder_layerdrop = encoder_layerdrop
|
250 |
+
self.decoder_layerdrop = decoder_layerdrop
|
251 |
+
self.use_cache = use_cache
|
252 |
+
self.num_hidden_layers = encoder_layers
|
253 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
254 |
+
self.max_source_positions = max_source_positions
|
255 |
+
self.max_target_positions = max_target_positions
|
256 |
+
|
257 |
+
# Audio Classification-specific parameters. Feel free to ignore for other classes.
|
258 |
+
self.classifier_proj_size = classifier_proj_size
|
259 |
+
self.use_weighted_layer_sum = use_weighted_layer_sum
|
260 |
+
|
261 |
+
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
262 |
+
self.apply_spec_augment = apply_spec_augment
|
263 |
+
self.mask_time_prob = mask_time_prob
|
264 |
+
self.mask_time_length = mask_time_length
|
265 |
+
self.mask_time_min_masks = mask_time_min_masks
|
266 |
+
self.mask_feature_prob = mask_feature_prob
|
267 |
+
self.mask_feature_length = mask_feature_length
|
268 |
+
self.mask_feature_min_masks = mask_feature_min_masks
|
269 |
+
|
270 |
+
self.median_filter_width = median_filter_width
|
271 |
+
|
272 |
+
super().__init__(
|
273 |
+
pad_token_id=pad_token_id,
|
274 |
+
bos_token_id=bos_token_id,
|
275 |
+
eos_token_id=eos_token_id,
|
276 |
+
is_encoder_decoder=is_encoder_decoder,
|
277 |
+
decoder_start_token_id=decoder_start_token_id,
|
278 |
+
suppress_tokens=suppress_tokens,
|
279 |
+
begin_suppress_tokens=begin_suppress_tokens,
|
280 |
+
**kwargs,
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
class WhisperOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
285 |
+
@property
|
286 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
287 |
+
common_inputs = OrderedDict(
|
288 |
+
[
|
289 |
+
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
|
290 |
+
]
|
291 |
+
)
|
292 |
+
if self.use_past:
|
293 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
294 |
+
else:
|
295 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
296 |
+
|
297 |
+
if self.use_past:
|
298 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
299 |
+
|
300 |
+
return common_inputs
|
301 |
+
|
302 |
+
def generate_dummy_inputs(
|
303 |
+
self,
|
304 |
+
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
|
305 |
+
batch_size: int = -1,
|
306 |
+
seq_length: int = -1,
|
307 |
+
is_pair: bool = False,
|
308 |
+
framework: Optional["TensorType"] = None,
|
309 |
+
sampling_rate: int = 22050,
|
310 |
+
time_duration: float = 5.0,
|
311 |
+
frequency: int = 220,
|
312 |
+
) -> Mapping[str, Any]:
|
313 |
+
dummy_inputs = OrderedDict()
|
314 |
+
encoder_inputs = OnnxConfig.generate_dummy_inputs(
|
315 |
+
self,
|
316 |
+
preprocessor=preprocessor.feature_extractor,
|
317 |
+
batch_size=batch_size,
|
318 |
+
framework=framework,
|
319 |
+
sampling_rate=sampling_rate,
|
320 |
+
time_duration=time_duration,
|
321 |
+
frequency=frequency,
|
322 |
+
)
|
323 |
+
encoder_sequence_length = encoder_inputs["input_features"].shape[2]
|
324 |
+
seq_length = encoder_sequence_length // 2 if self.use_past else seq_length
|
325 |
+
|
326 |
+
decoder_inputs = super().generate_dummy_inputs(
|
327 |
+
preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
|
328 |
+
)
|
329 |
+
|
330 |
+
dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
|
331 |
+
dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")
|
332 |
+
|
333 |
+
if "past_key_values" in decoder_inputs:
|
334 |
+
dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")
|
335 |
+
|
336 |
+
return dummy_inputs
|
337 |
+
|
338 |
+
@property
|
339 |
+
def atol_for_validation(self) -> float:
|
340 |
+
return 1e-3
|
conversation.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import dataclasses
|
9 |
+
from enum import IntEnum, auto
|
10 |
+
from typing import Any, Dict, List, Tuple, Union
|
11 |
+
|
12 |
+
|
13 |
+
class SeparatorStyle(IntEnum):
|
14 |
+
"""Separator styles."""
|
15 |
+
|
16 |
+
ADD_COLON_SINGLE = auto()
|
17 |
+
ADD_COLON_TWO = auto()
|
18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
19 |
+
NO_COLON_SINGLE = auto()
|
20 |
+
NO_COLON_TWO = auto()
|
21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
22 |
+
LLAMA2 = auto()
|
23 |
+
CHATGLM = auto()
|
24 |
+
CHATML = auto()
|
25 |
+
CHATINTERN = auto()
|
26 |
+
DOLLY = auto()
|
27 |
+
RWKV = auto()
|
28 |
+
PHOENIX = auto()
|
29 |
+
ROBIN = auto()
|
30 |
+
FALCON_CHAT = auto()
|
31 |
+
CHATGLM3 = auto()
|
32 |
+
INTERNVL_ZH = auto()
|
33 |
+
MPT = auto()
|
34 |
+
|
35 |
+
|
36 |
+
@dataclasses.dataclass
|
37 |
+
class Conversation:
|
38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
39 |
+
|
40 |
+
# The name of this template
|
41 |
+
name: str
|
42 |
+
# The template of the system prompt
|
43 |
+
system_template: str = '{system_message}'
|
44 |
+
# The system message
|
45 |
+
system_message: str = ''
|
46 |
+
# The names of two roles
|
47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
48 |
+
# All messages. Each item is (role, message).
|
49 |
+
messages: List[List[str]] = ()
|
50 |
+
# The number of few shot examples
|
51 |
+
offset: int = 0
|
52 |
+
# The separator style and configurations
|
53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
54 |
+
sep: str = '\n'
|
55 |
+
sep2: str = None
|
56 |
+
# Stop criteria (the default one is EOS token)
|
57 |
+
stop_str: Union[str, List[str]] = None
|
58 |
+
# Stops generation if meeting any token in this list
|
59 |
+
stop_token_ids: List[int] = None
|
60 |
+
|
61 |
+
def get_prompt(self) -> str:
|
62 |
+
"""Get the prompt for generation."""
|
63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
64 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
65 |
+
ret = system_prompt + self.sep
|
66 |
+
for role, message in self.messages:
|
67 |
+
if message:
|
68 |
+
ret += role + ': ' + message + self.sep
|
69 |
+
else:
|
70 |
+
ret += role + ':'
|
71 |
+
return ret
|
72 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
73 |
+
seps = [self.sep, self.sep2]
|
74 |
+
ret = system_prompt + seps[0]
|
75 |
+
for i, (role, message) in enumerate(self.messages):
|
76 |
+
if message:
|
77 |
+
ret += role + ': ' + message + seps[i % 2]
|
78 |
+
else:
|
79 |
+
ret += role + ':'
|
80 |
+
return ret
|
81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
82 |
+
ret = system_prompt + self.sep
|
83 |
+
for role, message in self.messages:
|
84 |
+
if message:
|
85 |
+
ret += role + ': ' + message + self.sep
|
86 |
+
else:
|
87 |
+
ret += role + ': ' # must be end with a space
|
88 |
+
return ret
|
89 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
90 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
91 |
+
for role, message in self.messages:
|
92 |
+
if message:
|
93 |
+
ret += role + '\n' + message + self.sep
|
94 |
+
else:
|
95 |
+
ret += role + '\n'
|
96 |
+
return ret
|
97 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
98 |
+
ret = system_prompt
|
99 |
+
for role, message in self.messages:
|
100 |
+
if message:
|
101 |
+
ret += role + message + self.sep
|
102 |
+
else:
|
103 |
+
ret += role
|
104 |
+
return ret
|
105 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
106 |
+
seps = [self.sep, self.sep2]
|
107 |
+
ret = system_prompt
|
108 |
+
for i, (role, message) in enumerate(self.messages):
|
109 |
+
if message:
|
110 |
+
ret += role + message + seps[i % 2]
|
111 |
+
else:
|
112 |
+
ret += role
|
113 |
+
return ret
|
114 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
115 |
+
ret = system_prompt
|
116 |
+
for i, (role, message) in enumerate(self.messages):
|
117 |
+
if message:
|
118 |
+
ret += (
|
119 |
+
role
|
120 |
+
+ ': '
|
121 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
122 |
+
)
|
123 |
+
ret += '\n\n'
|
124 |
+
else:
|
125 |
+
ret += role + ':'
|
126 |
+
return ret
|
127 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
128 |
+
seps = [self.sep, self.sep2]
|
129 |
+
if self.system_message:
|
130 |
+
ret = system_prompt
|
131 |
+
else:
|
132 |
+
ret = '[INST] '
|
133 |
+
for i, (role, message) in enumerate(self.messages):
|
134 |
+
tag = self.roles[i % 2]
|
135 |
+
if message:
|
136 |
+
if i == 0:
|
137 |
+
ret += message + ' '
|
138 |
+
else:
|
139 |
+
ret += tag + ' ' + message + seps[i % 2]
|
140 |
+
else:
|
141 |
+
ret += tag
|
142 |
+
return ret
|
143 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
144 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
145 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
146 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
147 |
+
if system_prompt:
|
148 |
+
ret = system_prompt + self.sep
|
149 |
+
else:
|
150 |
+
ret = ''
|
151 |
+
|
152 |
+
for i, (role, message) in enumerate(self.messages):
|
153 |
+
if i % 2 == 0:
|
154 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
155 |
+
|
156 |
+
if message:
|
157 |
+
ret += f'{role}:{message}{self.sep}'
|
158 |
+
else:
|
159 |
+
ret += f'{role}:'
|
160 |
+
return ret
|
161 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
162 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
163 |
+
for role, message in self.messages:
|
164 |
+
if message:
|
165 |
+
ret += role + '\n' + message + self.sep + '\n'
|
166 |
+
else:
|
167 |
+
ret += role + '\n'
|
168 |
+
return ret
|
169 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
170 |
+
ret = ''
|
171 |
+
if self.system_message:
|
172 |
+
ret += system_prompt
|
173 |
+
for role, message in self.messages:
|
174 |
+
if message:
|
175 |
+
ret += role + '\n' + ' ' + message
|
176 |
+
else:
|
177 |
+
ret += role
|
178 |
+
return ret
|
179 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
180 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
181 |
+
seps = [self.sep, self.sep2]
|
182 |
+
ret = system_prompt
|
183 |
+
for i, (role, message) in enumerate(self.messages):
|
184 |
+
# if i % 2 == 0:
|
185 |
+
# ret += "<s>"
|
186 |
+
if message:
|
187 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
188 |
+
else:
|
189 |
+
ret += role + ':'
|
190 |
+
return ret
|
191 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
192 |
+
seps = [self.sep, self.sep2]
|
193 |
+
ret = system_prompt
|
194 |
+
for i, (role, message) in enumerate(self.messages):
|
195 |
+
if message:
|
196 |
+
ret += role + ':\n' + message + seps[i % 2]
|
197 |
+
if i % 2 == 1:
|
198 |
+
ret += '\n\n'
|
199 |
+
else:
|
200 |
+
ret += role + ':\n'
|
201 |
+
return ret
|
202 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
203 |
+
ret = system_prompt
|
204 |
+
for role, message in self.messages:
|
205 |
+
if message:
|
206 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
207 |
+
else:
|
208 |
+
ret += role + ': ' + '<s>'
|
209 |
+
return ret
|
210 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
211 |
+
ret = system_prompt + self.sep
|
212 |
+
for role, message in self.messages:
|
213 |
+
if message:
|
214 |
+
ret += role + ':\n' + message + self.sep
|
215 |
+
else:
|
216 |
+
ret += role + ':\n'
|
217 |
+
return ret
|
218 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
219 |
+
ret = ''
|
220 |
+
if self.system_message:
|
221 |
+
ret += system_prompt + self.sep
|
222 |
+
for role, message in self.messages:
|
223 |
+
if message:
|
224 |
+
ret += role + ': ' + message + self.sep
|
225 |
+
else:
|
226 |
+
ret += role + ':'
|
227 |
+
|
228 |
+
return ret
|
229 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
230 |
+
seps = [self.sep2, self.sep]
|
231 |
+
ret = self.system_message + seps[0]
|
232 |
+
for i, (role, message) in enumerate(self.messages):
|
233 |
+
if message:
|
234 |
+
ret += role + ': ' + message + seps[i % 2]
|
235 |
+
else:
|
236 |
+
ret += role + ':'
|
237 |
+
return ret
|
238 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
239 |
+
ret = system_prompt + self.sep
|
240 |
+
for role, message in self.messages:
|
241 |
+
if message:
|
242 |
+
if type(message) is tuple:
|
243 |
+
message, _, _ = message
|
244 |
+
ret += role + message + self.sep
|
245 |
+
else:
|
246 |
+
ret += role
|
247 |
+
return ret
|
248 |
+
else:
|
249 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
250 |
+
|
251 |
+
def set_system_message(self, system_message: str):
|
252 |
+
"""Set the system message."""
|
253 |
+
self.system_message = system_message
|
254 |
+
|
255 |
+
def append_message(self, role: str, message: str):
|
256 |
+
"""Append a new message."""
|
257 |
+
self.messages.append([role, message])
|
258 |
+
|
259 |
+
def update_last_message(self, message: str):
|
260 |
+
"""Update the last output.
|
261 |
+
|
262 |
+
The last message is typically set to be None when constructing the prompt,
|
263 |
+
so we need to update it in-place after getting the response from a model.
|
264 |
+
"""
|
265 |
+
self.messages[-1][1] = message
|
266 |
+
|
267 |
+
def to_gradio_chatbot(self):
|
268 |
+
"""Convert the conversation to gradio chatbot format."""
|
269 |
+
ret = []
|
270 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
271 |
+
if i % 2 == 0:
|
272 |
+
ret.append([msg, None])
|
273 |
+
else:
|
274 |
+
ret[-1][-1] = msg
|
275 |
+
return ret
|
276 |
+
|
277 |
+
def to_openai_api_messages(self):
|
278 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
279 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
280 |
+
|
281 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
282 |
+
if i % 2 == 0:
|
283 |
+
ret.append({'role': 'user', 'content': msg})
|
284 |
+
else:
|
285 |
+
if msg is not None:
|
286 |
+
ret.append({'role': 'assistant', 'content': msg})
|
287 |
+
return ret
|
288 |
+
|
289 |
+
def copy(self):
|
290 |
+
return Conversation(
|
291 |
+
name=self.name,
|
292 |
+
system_template=self.system_template,
|
293 |
+
system_message=self.system_message,
|
294 |
+
roles=self.roles,
|
295 |
+
messages=[[x, y] for x, y in self.messages],
|
296 |
+
offset=self.offset,
|
297 |
+
sep_style=self.sep_style,
|
298 |
+
sep=self.sep,
|
299 |
+
sep2=self.sep2,
|
300 |
+
stop_str=self.stop_str,
|
301 |
+
stop_token_ids=self.stop_token_ids,
|
302 |
+
)
|
303 |
+
|
304 |
+
def dict(self):
|
305 |
+
return {
|
306 |
+
'template_name': self.name,
|
307 |
+
'system_message': self.system_message,
|
308 |
+
'roles': self.roles,
|
309 |
+
'messages': self.messages,
|
310 |
+
'offset': self.offset,
|
311 |
+
}
|
312 |
+
|
313 |
+
|
314 |
+
# A global registry for all conversation templates
|
315 |
+
conv_templates: Dict[str, Conversation] = {}
|
316 |
+
|
317 |
+
|
318 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
319 |
+
"""Register a new conversation template."""
|
320 |
+
if not override:
|
321 |
+
assert (
|
322 |
+
template.name not in conv_templates
|
323 |
+
), f'{template.name} has been registered.'
|
324 |
+
|
325 |
+
conv_templates[template.name] = template
|
326 |
+
|
327 |
+
|
328 |
+
def get_conv_template(name: str) -> Conversation:
|
329 |
+
"""Get a conversation template."""
|
330 |
+
return conv_templates[name].copy()
|
331 |
+
|
332 |
+
|
333 |
+
# InternVL-Chat-V1-1 template
|
334 |
+
register_conv_template(
|
335 |
+
Conversation(
|
336 |
+
name='internvl_zh',
|
337 |
+
system_template='',
|
338 |
+
roles=('<human>', '<bot>'),
|
339 |
+
sep_style=SeparatorStyle.INTERNVL_ZH,
|
340 |
+
sep='</s>',
|
341 |
+
sep2=' ',
|
342 |
+
)
|
343 |
+
)
|
344 |
+
|
345 |
+
|
346 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
347 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
348 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
349 |
+
# Therefore, they are completely equivalent during inference.
|
350 |
+
register_conv_template(
|
351 |
+
Conversation(
|
352 |
+
name='Hermes-2',
|
353 |
+
system_template='<|im_start|>system\n{system_message}',
|
354 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
355 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
356 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
357 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
358 |
+
sep_style=SeparatorStyle.MPT,
|
359 |
+
sep='<|im_end|>',
|
360 |
+
stop_token_ids=[
|
361 |
+
2,
|
362 |
+
6,
|
363 |
+
7,
|
364 |
+
8,
|
365 |
+
],
|
366 |
+
stop_str='<|endoftext|>',
|
367 |
+
)
|
368 |
+
)
|
369 |
+
|
370 |
+
|
371 |
+
register_conv_template(
|
372 |
+
Conversation(
|
373 |
+
name='internlm2-chat',
|
374 |
+
system_template='<|im_start|>system\n{system_message}',
|
375 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
376 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
377 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
378 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
379 |
+
sep_style=SeparatorStyle.MPT,
|
380 |
+
sep='<|im_end|>',
|
381 |
+
stop_token_ids=[
|
382 |
+
2,
|
383 |
+
92543,
|
384 |
+
92542
|
385 |
+
]
|
386 |
+
)
|
387 |
+
)
|
388 |
+
|
389 |
+
|
390 |
+
register_conv_template(
|
391 |
+
Conversation(
|
392 |
+
name='phi3-chat',
|
393 |
+
system_template='<|system|>\n{system_message}',
|
394 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
395 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
|
396 |
+
system_message='你是由上海人工智能实验室联合商汤科技开���的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
397 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
398 |
+
sep_style=SeparatorStyle.MPT,
|
399 |
+
sep='<|end|>',
|
400 |
+
stop_token_ids=[
|
401 |
+
2,
|
402 |
+
32000,
|
403 |
+
32007
|
404 |
+
]
|
405 |
+
)
|
406 |
+
)
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from einops import rearrange
|
12 |
+
from timm.models.layers import DropPath
|
13 |
+
from torch import nn
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
16 |
+
BaseModelOutputWithPooling)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
try:
|
23 |
+
from .flash_attention import FlashAttention
|
24 |
+
has_flash_attn = True
|
25 |
+
except:
|
26 |
+
print('FlashAttention is not installed.')
|
27 |
+
has_flash_attn = False
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class InternRMSNorm(nn.Module):
|
33 |
+
def __init__(self, hidden_size, eps=1e-6):
|
34 |
+
super().__init__()
|
35 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
36 |
+
self.variance_epsilon = eps
|
37 |
+
|
38 |
+
def forward(self, hidden_states):
|
39 |
+
input_dtype = hidden_states.dtype
|
40 |
+
hidden_states = hidden_states.to(torch.float32)
|
41 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
42 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
43 |
+
return self.weight * hidden_states.to(input_dtype)
|
44 |
+
|
45 |
+
|
46 |
+
try:
|
47 |
+
from apex.normalization import FusedRMSNorm
|
48 |
+
|
49 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
50 |
+
|
51 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
52 |
+
except ImportError:
|
53 |
+
# using the normal InternRMSNorm
|
54 |
+
pass
|
55 |
+
except Exception:
|
56 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
57 |
+
pass
|
58 |
+
|
59 |
+
|
60 |
+
NORM2FN = {
|
61 |
+
'rms_norm': InternRMSNorm,
|
62 |
+
'layer_norm': nn.LayerNorm,
|
63 |
+
}
|
64 |
+
|
65 |
+
|
66 |
+
class InternVisionEmbeddings(nn.Module):
|
67 |
+
def __init__(self, config: InternVisionConfig):
|
68 |
+
super().__init__()
|
69 |
+
self.config = config
|
70 |
+
self.embed_dim = config.hidden_size
|
71 |
+
self.image_size = config.image_size
|
72 |
+
self.patch_size = config.patch_size
|
73 |
+
|
74 |
+
self.class_embedding = nn.Parameter(
|
75 |
+
torch.randn(1, 1, self.embed_dim),
|
76 |
+
)
|
77 |
+
|
78 |
+
self.patch_embedding = nn.Conv2d(
|
79 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
80 |
+
)
|
81 |
+
|
82 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
83 |
+
self.num_positions = self.num_patches + 1
|
84 |
+
|
85 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
86 |
+
|
87 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
88 |
+
target_dtype = pos_embed.dtype
|
89 |
+
pos_embed = pos_embed.float().reshape(
|
90 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
91 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
92 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
93 |
+
return pos_embed
|
94 |
+
|
95 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
96 |
+
target_dtype = self.patch_embedding.weight.dtype
|
97 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
98 |
+
batch_size, _, height, width = patch_embeds.shape
|
99 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
100 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
101 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
102 |
+
position_embedding = torch.cat([
|
103 |
+
self.position_embedding[:, :1, :],
|
104 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
105 |
+
], dim=1)
|
106 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
107 |
+
return embeddings
|
108 |
+
|
109 |
+
|
110 |
+
class InternAttention(nn.Module):
|
111 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
112 |
+
|
113 |
+
def __init__(self, config: InternVisionConfig):
|
114 |
+
super().__init__()
|
115 |
+
self.config = config
|
116 |
+
self.embed_dim = config.hidden_size
|
117 |
+
self.num_heads = config.num_attention_heads
|
118 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
119 |
+
if config.use_flash_attn and not has_flash_attn:
|
120 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
121 |
+
self.head_dim = self.embed_dim // self.num_heads
|
122 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
123 |
+
raise ValueError(
|
124 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
125 |
+
f' {self.num_heads}).'
|
126 |
+
)
|
127 |
+
|
128 |
+
self.scale = self.head_dim ** -0.5
|
129 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
130 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
131 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
132 |
+
|
133 |
+
self.qk_normalization = config.qk_normalization
|
134 |
+
|
135 |
+
if self.qk_normalization:
|
136 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
137 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
138 |
+
|
139 |
+
if self.use_flash_attn:
|
140 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
141 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
142 |
+
|
143 |
+
def _naive_attn(self, x):
|
144 |
+
B, N, C = x.shape
|
145 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
146 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
147 |
+
|
148 |
+
if self.qk_normalization:
|
149 |
+
B_, H_, N_, D_ = q.shape
|
150 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
151 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
152 |
+
|
153 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
154 |
+
attn = attn.softmax(dim=-1)
|
155 |
+
attn = self.attn_drop(attn)
|
156 |
+
|
157 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
158 |
+
x = self.proj(x)
|
159 |
+
x = self.proj_drop(x)
|
160 |
+
return x
|
161 |
+
|
162 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
163 |
+
qkv = self.qkv(x)
|
164 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
165 |
+
|
166 |
+
if self.qk_normalization:
|
167 |
+
q, k, v = qkv.unbind(2)
|
168 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
169 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
170 |
+
qkv = torch.stack([q, k, v], dim=2)
|
171 |
+
|
172 |
+
context, _ = self.inner_attn(
|
173 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
174 |
+
)
|
175 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
176 |
+
outs = self.proj_drop(outs)
|
177 |
+
return outs
|
178 |
+
|
179 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
180 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
181 |
+
return x
|
182 |
+
|
183 |
+
|
184 |
+
class InternMLP(nn.Module):
|
185 |
+
def __init__(self, config: InternVisionConfig):
|
186 |
+
super().__init__()
|
187 |
+
self.config = config
|
188 |
+
self.act = ACT2FN[config.hidden_act]
|
189 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
190 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
191 |
+
|
192 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
193 |
+
hidden_states = self.fc1(hidden_states)
|
194 |
+
hidden_states = self.act(hidden_states)
|
195 |
+
hidden_states = self.fc2(hidden_states)
|
196 |
+
return hidden_states
|
197 |
+
|
198 |
+
|
199 |
+
class InternVisionEncoderLayer(nn.Module):
|
200 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
201 |
+
super().__init__()
|
202 |
+
self.embed_dim = config.hidden_size
|
203 |
+
self.intermediate_size = config.intermediate_size
|
204 |
+
self.norm_type = config.norm_type
|
205 |
+
|
206 |
+
self.attn = InternAttention(config)
|
207 |
+
self.mlp = InternMLP(config)
|
208 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
209 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
210 |
+
|
211 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
212 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
213 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
214 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
215 |
+
|
216 |
+
def forward(
|
217 |
+
self,
|
218 |
+
hidden_states: torch.Tensor,
|
219 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
220 |
+
"""
|
221 |
+
Args:
|
222 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
223 |
+
"""
|
224 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
225 |
+
|
226 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
227 |
+
|
228 |
+
return hidden_states
|
229 |
+
|
230 |
+
|
231 |
+
class InternVisionEncoder(nn.Module):
|
232 |
+
"""
|
233 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
234 |
+
[`InternEncoderLayer`].
|
235 |
+
|
236 |
+
Args:
|
237 |
+
config (`InternConfig`):
|
238 |
+
The corresponding vision configuration for the `InternEncoder`.
|
239 |
+
"""
|
240 |
+
|
241 |
+
def __init__(self, config: InternVisionConfig):
|
242 |
+
super().__init__()
|
243 |
+
self.config = config
|
244 |
+
# stochastic depth decay rule
|
245 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
246 |
+
self.layers = nn.ModuleList([
|
247 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
248 |
+
self.gradient_checkpointing = True
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self,
|
252 |
+
inputs_embeds,
|
253 |
+
output_hidden_states: Optional[bool] = None,
|
254 |
+
return_dict: Optional[bool] = None,
|
255 |
+
) -> Union[Tuple, BaseModelOutput]:
|
256 |
+
r"""
|
257 |
+
Args:
|
258 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
259 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
260 |
+
output_hidden_states (`bool`, *optional*):
|
261 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
262 |
+
for more detail.
|
263 |
+
return_dict (`bool`, *optional*):
|
264 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
265 |
+
"""
|
266 |
+
output_hidden_states = (
|
267 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
268 |
+
)
|
269 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
270 |
+
|
271 |
+
encoder_states = () if output_hidden_states else None
|
272 |
+
hidden_states = inputs_embeds
|
273 |
+
|
274 |
+
for idx, encoder_layer in enumerate(self.layers):
|
275 |
+
if output_hidden_states:
|
276 |
+
encoder_states = encoder_states + (hidden_states,)
|
277 |
+
if self.gradient_checkpointing and self.training:
|
278 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
279 |
+
encoder_layer,
|
280 |
+
hidden_states)
|
281 |
+
else:
|
282 |
+
layer_outputs = encoder_layer(
|
283 |
+
hidden_states,
|
284 |
+
)
|
285 |
+
hidden_states = layer_outputs
|
286 |
+
|
287 |
+
if output_hidden_states:
|
288 |
+
encoder_states = encoder_states + (hidden_states,)
|
289 |
+
|
290 |
+
if not return_dict:
|
291 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
292 |
+
return BaseModelOutput(
|
293 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
294 |
+
)
|
295 |
+
|
296 |
+
|
297 |
+
class InternVisionModel(PreTrainedModel):
|
298 |
+
main_input_name = 'pixel_values'
|
299 |
+
config_class = InternVisionConfig
|
300 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
301 |
+
|
302 |
+
def __init__(self, config: InternVisionConfig):
|
303 |
+
super().__init__(config)
|
304 |
+
self.config = config
|
305 |
+
|
306 |
+
self.embeddings = InternVisionEmbeddings(config)
|
307 |
+
self.encoder = InternVisionEncoder(config)
|
308 |
+
|
309 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
310 |
+
pos_emb = self.embeddings.position_embedding
|
311 |
+
_, num_positions, embed_dim = pos_emb.shape
|
312 |
+
cls_emb = pos_emb[:, :1, :]
|
313 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
314 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
315 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
316 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
317 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
318 |
+
self.embeddings.image_size = new_size
|
319 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
320 |
+
|
321 |
+
def get_input_embeddings(self):
|
322 |
+
return self.embeddings
|
323 |
+
|
324 |
+
def forward(
|
325 |
+
self,
|
326 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
327 |
+
output_hidden_states: Optional[bool] = None,
|
328 |
+
return_dict: Optional[bool] = None,
|
329 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
330 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
331 |
+
output_hidden_states = (
|
332 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
333 |
+
)
|
334 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
335 |
+
|
336 |
+
if pixel_values is None and pixel_embeds is None:
|
337 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
338 |
+
|
339 |
+
if pixel_embeds is not None:
|
340 |
+
hidden_states = pixel_embeds
|
341 |
+
else:
|
342 |
+
if len(pixel_values.shape) == 4:
|
343 |
+
hidden_states = self.embeddings(pixel_values)
|
344 |
+
else:
|
345 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
346 |
+
encoder_outputs = self.encoder(
|
347 |
+
inputs_embeds=hidden_states,
|
348 |
+
output_hidden_states=output_hidden_states,
|
349 |
+
return_dict=return_dict,
|
350 |
+
)
|
351 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
352 |
+
pooled_output = last_hidden_state[:, 0, :]
|
353 |
+
|
354 |
+
if not return_dict:
|
355 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
356 |
+
|
357 |
+
return BaseModelOutputWithPooling(
|
358 |
+
last_hidden_state=last_hidden_state,
|
359 |
+
pooler_output=pooled_output,
|
360 |
+
hidden_states=encoder_outputs.hidden_states,
|
361 |
+
attentions=encoder_outputs.attentions,
|
362 |
+
)
|
modeling_internlm2.py
ADDED
@@ -0,0 +1,1429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch InternLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
import warnings
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from einops import rearrange
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
31 |
+
CausalLMOutputWithPast,
|
32 |
+
SequenceClassifierOutputWithPast)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward, logging,
|
36 |
+
replace_return_docstrings)
|
37 |
+
|
38 |
+
try:
|
39 |
+
from transformers.generation.streamers import BaseStreamer
|
40 |
+
except: # noqa # pylint: disable=bare-except
|
41 |
+
BaseStreamer = None
|
42 |
+
|
43 |
+
from .configuration_internlm2 import InternLM2Config
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CONFIG_FOR_DOC = 'InternLM2Config'
|
48 |
+
|
49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
51 |
+
try:
|
52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
57 |
+
|
58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
60 |
+
has_flash_attn = True
|
61 |
+
except:
|
62 |
+
has_flash_attn = False
|
63 |
+
|
64 |
+
|
65 |
+
def _import_flash_attn():
|
66 |
+
global flash_attn_func, flash_attn_varlen_func
|
67 |
+
global pad_input, index_first_axis, unpad_input
|
68 |
+
try:
|
69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
70 |
+
from flash_attn import \
|
71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
72 |
+
from flash_attn.bert_padding import \
|
73 |
+
index_first_axis as _index_first_axis
|
74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
78 |
+
except ImportError:
|
79 |
+
raise ImportError('flash_attn is not installed.')
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
83 |
+
def _get_unpad_data(attention_mask):
|
84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
88 |
+
return (
|
89 |
+
indices,
|
90 |
+
cu_seqlens,
|
91 |
+
max_seqlen_in_batch,
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
96 |
+
def _make_causal_mask(
|
97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Make causal mask used for bi-directional self-attention.
|
101 |
+
"""
|
102 |
+
bsz, tgt_len = input_ids_shape
|
103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
106 |
+
mask = mask.to(dtype)
|
107 |
+
|
108 |
+
if past_key_values_length > 0:
|
109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
111 |
+
|
112 |
+
|
113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
115 |
+
"""
|
116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
117 |
+
"""
|
118 |
+
bsz, src_len = mask.size()
|
119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
120 |
+
|
121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
122 |
+
|
123 |
+
inverted_mask = 1.0 - expanded_mask
|
124 |
+
|
125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
126 |
+
|
127 |
+
|
128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
129 |
+
class InternLM2RMSNorm(nn.Module):
|
130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
131 |
+
"""
|
132 |
+
InternLM2RMSNorm is equivalent to T5LayerNorm
|
133 |
+
"""
|
134 |
+
super().__init__()
|
135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
136 |
+
self.variance_epsilon = eps
|
137 |
+
|
138 |
+
def forward(self, hidden_states):
|
139 |
+
input_dtype = hidden_states.dtype
|
140 |
+
hidden_states = hidden_states.to(torch.float32)
|
141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
143 |
+
return self.weight * hidden_states.to(input_dtype)
|
144 |
+
|
145 |
+
|
146 |
+
try:
|
147 |
+
from functools import partial
|
148 |
+
|
149 |
+
from apex.normalization import FusedRMSNorm
|
150 |
+
InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
|
151 |
+
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
|
152 |
+
except ImportError:
|
153 |
+
# using the normal LlamaRMSNorm
|
154 |
+
pass
|
155 |
+
except Exception:
|
156 |
+
print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
|
157 |
+
pass
|
158 |
+
|
159 |
+
|
160 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
|
161 |
+
class InternLM2RotaryEmbedding(nn.Module):
|
162 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.dim = dim
|
166 |
+
self.max_position_embeddings = max_position_embeddings
|
167 |
+
self.base = base
|
168 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
169 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
170 |
+
|
171 |
+
# Build here to make `torch.jit.trace` work.
|
172 |
+
self._set_cos_sin_cache(
|
173 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
174 |
+
)
|
175 |
+
|
176 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
177 |
+
self.max_seq_len_cached = seq_len
|
178 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
179 |
+
|
180 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
181 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
182 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
183 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
184 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
185 |
+
|
186 |
+
def forward(self, x, seq_len=None):
|
187 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
188 |
+
if seq_len > self.max_seq_len_cached:
|
189 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
190 |
+
|
191 |
+
return (
|
192 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
193 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
198 |
+
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
199 |
+
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
200 |
+
|
201 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
202 |
+
self.scaling_factor = scaling_factor
|
203 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
204 |
+
|
205 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
206 |
+
self.max_seq_len_cached = seq_len
|
207 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
208 |
+
t = t / self.scaling_factor
|
209 |
+
|
210 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
211 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
212 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
213 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
214 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
215 |
+
|
216 |
+
|
217 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
218 |
+
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
219 |
+
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
220 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla.
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
224 |
+
self.scaling_factor = scaling_factor
|
225 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
226 |
+
|
227 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
228 |
+
self.max_seq_len_cached = seq_len
|
229 |
+
|
230 |
+
if seq_len > self.max_position_embeddings:
|
231 |
+
base = self.base * (
|
232 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
233 |
+
) ** (self.dim / (self.dim - 2))
|
234 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
235 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
236 |
+
|
237 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
238 |
+
|
239 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
240 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
241 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
242 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
243 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
244 |
+
|
245 |
+
|
246 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
247 |
+
def rotate_half(x):
|
248 |
+
"""Rotates half the hidden dims of the input."""
|
249 |
+
x1 = x[..., : x.shape[-1] // 2]
|
250 |
+
x2 = x[..., x.shape[-1] // 2:]
|
251 |
+
return torch.cat((-x2, x1), dim=-1)
|
252 |
+
|
253 |
+
|
254 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
255 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
256 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
257 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
258 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
259 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
260 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
261 |
+
return q_embed, k_embed
|
262 |
+
|
263 |
+
|
264 |
+
class InternLM2MLP(nn.Module):
|
265 |
+
def __init__(self, config):
|
266 |
+
super().__init__()
|
267 |
+
self.config = config
|
268 |
+
self.hidden_size = config.hidden_size
|
269 |
+
self.intermediate_size = config.intermediate_size
|
270 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
271 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
272 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
273 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
277 |
+
|
278 |
+
return down_proj
|
279 |
+
|
280 |
+
|
281 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
282 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
283 |
+
"""
|
284 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
285 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
286 |
+
"""
|
287 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
288 |
+
if n_rep == 1:
|
289 |
+
return hidden_states
|
290 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
291 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
292 |
+
|
293 |
+
|
294 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
295 |
+
class InternLM2Attention(nn.Module):
|
296 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
297 |
+
|
298 |
+
def __init__(self, config: InternLM2Config):
|
299 |
+
super().__init__()
|
300 |
+
self.config = config
|
301 |
+
self.hidden_size = config.hidden_size
|
302 |
+
self.num_heads = config.num_attention_heads
|
303 |
+
self.head_dim = self.hidden_size // self.num_heads
|
304 |
+
self.num_key_value_heads = config.num_key_value_heads
|
305 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
306 |
+
self.max_position_embeddings = config.max_position_embeddings
|
307 |
+
self.is_causal = True
|
308 |
+
|
309 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
310 |
+
raise ValueError(
|
311 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
312 |
+
f' and `num_heads`: {self.num_heads}).'
|
313 |
+
)
|
314 |
+
|
315 |
+
self.wqkv = nn.Linear(
|
316 |
+
self.hidden_size,
|
317 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
318 |
+
bias=config.bias,
|
319 |
+
)
|
320 |
+
|
321 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
322 |
+
self._init_rope()
|
323 |
+
|
324 |
+
def _init_rope(self):
|
325 |
+
if self.config.rope_scaling is None:
|
326 |
+
self.rotary_emb = InternLM2RotaryEmbedding(
|
327 |
+
self.head_dim,
|
328 |
+
max_position_embeddings=self.max_position_embeddings,
|
329 |
+
base=self.config.rope_theta,
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
scaling_type = self.config.rope_scaling['type']
|
333 |
+
scaling_factor = self.config.rope_scaling['factor']
|
334 |
+
if scaling_type == 'dynamic':
|
335 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
336 |
+
self.head_dim,
|
337 |
+
max_position_embeddings=self.max_position_embeddings,
|
338 |
+
base=self.config.rope_theta,
|
339 |
+
scaling_factor=scaling_factor,
|
340 |
+
)
|
341 |
+
elif scaling_type == 'linear':
|
342 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
343 |
+
self.head_dim,
|
344 |
+
max_position_embeddings=self.max_position_embeddings,
|
345 |
+
base=self.config.rope_theta,
|
346 |
+
scaling_factor=scaling_factor,
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
350 |
+
return self.rotary_emb
|
351 |
+
|
352 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
353 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
354 |
+
|
355 |
+
def forward(
|
356 |
+
self,
|
357 |
+
hidden_states: torch.Tensor,
|
358 |
+
attention_mask: Optional[torch.Tensor] = None,
|
359 |
+
position_ids: Optional[torch.LongTensor] = None,
|
360 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
361 |
+
output_attentions: bool = False,
|
362 |
+
use_cache: bool = False,
|
363 |
+
**kwargs,
|
364 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
365 |
+
if 'padding_mask' in kwargs:
|
366 |
+
warnings.warn(
|
367 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
368 |
+
'Please make sure use `attention_mask` instead.`'
|
369 |
+
)
|
370 |
+
|
371 |
+
bsz, q_len, _ = hidden_states.size()
|
372 |
+
|
373 |
+
qkv_states = self.wqkv(hidden_states)
|
374 |
+
|
375 |
+
qkv_states = rearrange(
|
376 |
+
qkv_states,
|
377 |
+
'b q (h gs d) -> b q h gs d',
|
378 |
+
gs=2 + self.num_key_value_groups,
|
379 |
+
d=self.head_dim,
|
380 |
+
)
|
381 |
+
|
382 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
383 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
384 |
+
key_states = qkv_states[..., -2, :]
|
385 |
+
value_states = qkv_states[..., -1, :]
|
386 |
+
|
387 |
+
query_states = query_states.transpose(1, 2)
|
388 |
+
key_states = key_states.transpose(1, 2)
|
389 |
+
value_states = value_states.transpose(1, 2)
|
390 |
+
|
391 |
+
kv_seq_len = key_states.shape[-2]
|
392 |
+
if past_key_value is not None:
|
393 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
394 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
395 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
396 |
+
|
397 |
+
if past_key_value is not None:
|
398 |
+
# reuse k, v, self_attention
|
399 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
400 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
401 |
+
|
402 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
403 |
+
|
404 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
405 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
406 |
+
|
407 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
408 |
+
|
409 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
410 |
+
raise ValueError(
|
411 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
412 |
+
f' {attn_weights.size()}'
|
413 |
+
)
|
414 |
+
|
415 |
+
if attention_mask is not None:
|
416 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
417 |
+
raise ValueError(
|
418 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
419 |
+
)
|
420 |
+
attn_weights = attn_weights + attention_mask
|
421 |
+
|
422 |
+
# upcast attention to fp32
|
423 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
424 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
425 |
+
|
426 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
427 |
+
raise ValueError(
|
428 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
429 |
+
f' {attn_output.size()}'
|
430 |
+
)
|
431 |
+
|
432 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
433 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
434 |
+
|
435 |
+
attn_output = self.wo(attn_output)
|
436 |
+
|
437 |
+
if not output_attentions:
|
438 |
+
attn_weights = None
|
439 |
+
|
440 |
+
return attn_output, attn_weights, past_key_value
|
441 |
+
|
442 |
+
|
443 |
+
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
444 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
445 |
+
"""
|
446 |
+
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
447 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
448 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
449 |
+
"""
|
450 |
+
|
451 |
+
def forward(
|
452 |
+
self,
|
453 |
+
hidden_states: torch.Tensor,
|
454 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
455 |
+
position_ids: Optional[torch.LongTensor] = None,
|
456 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
457 |
+
output_attentions: bool = False,
|
458 |
+
use_cache: bool = False,
|
459 |
+
**kwargs,
|
460 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
461 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
462 |
+
if 'padding_mask' in kwargs:
|
463 |
+
warnings.warn(
|
464 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
465 |
+
'Please make sure use `attention_mask` instead.`'
|
466 |
+
)
|
467 |
+
|
468 |
+
# overwrite attention_mask with padding_mask
|
469 |
+
attention_mask = kwargs.pop('padding_mask')
|
470 |
+
|
471 |
+
output_attentions = False
|
472 |
+
|
473 |
+
bsz, q_len, _ = hidden_states.size()
|
474 |
+
|
475 |
+
qkv_states = self.wqkv(hidden_states)
|
476 |
+
|
477 |
+
qkv_states = rearrange(
|
478 |
+
qkv_states,
|
479 |
+
'b q (h gs d) -> b q h gs d',
|
480 |
+
gs=2 + self.num_key_value_groups,
|
481 |
+
d=self.head_dim,
|
482 |
+
)
|
483 |
+
|
484 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
485 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
486 |
+
key_states = qkv_states[..., -2, :]
|
487 |
+
value_states = qkv_states[..., -1, :]
|
488 |
+
|
489 |
+
query_states = query_states.transpose(1, 2)
|
490 |
+
key_states = key_states.transpose(1, 2)
|
491 |
+
value_states = value_states.transpose(1, 2)
|
492 |
+
|
493 |
+
kv_seq_len = key_states.shape[-2]
|
494 |
+
if past_key_value is not None:
|
495 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
496 |
+
|
497 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
498 |
+
|
499 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
500 |
+
|
501 |
+
if past_key_value is not None:
|
502 |
+
# reuse k, v, self_attention
|
503 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
504 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
505 |
+
|
506 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
507 |
+
|
508 |
+
query_states = query_states.transpose(1, 2)
|
509 |
+
key_states = key_states.transpose(1, 2)
|
510 |
+
value_states = value_states.transpose(1, 2)
|
511 |
+
|
512 |
+
attn_output = self._flash_attention_forward(
|
513 |
+
query_states, key_states, value_states, attention_mask, q_len
|
514 |
+
)
|
515 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
516 |
+
attn_output = self.wo(attn_output)
|
517 |
+
|
518 |
+
if not output_attentions:
|
519 |
+
attn_weights = None
|
520 |
+
|
521 |
+
return attn_output, attn_weights, past_key_value
|
522 |
+
|
523 |
+
def _flash_attention_forward(
|
524 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
525 |
+
):
|
526 |
+
"""
|
527 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
528 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
529 |
+
|
530 |
+
Args:
|
531 |
+
query_states (`torch.Tensor`):
|
532 |
+
Input query states to be passed to Flash Attention API
|
533 |
+
key_states (`torch.Tensor`):
|
534 |
+
Input key states to be passed to Flash Attention API
|
535 |
+
value_states (`torch.Tensor`):
|
536 |
+
Input value states to be passed to Flash Attention API
|
537 |
+
attention_mask (`torch.Tensor`):
|
538 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
539 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
540 |
+
dropout (`int`, *optional*):
|
541 |
+
Attention dropout
|
542 |
+
softmax_scale (`float`, *optional*):
|
543 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
544 |
+
"""
|
545 |
+
# Contains at least one padding token in the sequence
|
546 |
+
causal = self.is_causal and query_length != 1
|
547 |
+
if attention_mask is not None:
|
548 |
+
batch_size = query_states.shape[0]
|
549 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
550 |
+
query_states, key_states, value_states, attention_mask, query_length
|
551 |
+
)
|
552 |
+
|
553 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
554 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
555 |
+
|
556 |
+
attn_output_unpad = flash_attn_varlen_func(
|
557 |
+
query_states,
|
558 |
+
key_states,
|
559 |
+
value_states,
|
560 |
+
cu_seqlens_q=cu_seqlens_q,
|
561 |
+
cu_seqlens_k=cu_seqlens_k,
|
562 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
563 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
564 |
+
dropout_p=dropout,
|
565 |
+
softmax_scale=softmax_scale,
|
566 |
+
causal=causal,
|
567 |
+
)
|
568 |
+
|
569 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
570 |
+
else:
|
571 |
+
attn_output = flash_attn_func(
|
572 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
573 |
+
)
|
574 |
+
|
575 |
+
return attn_output
|
576 |
+
|
577 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
578 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
579 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
580 |
+
|
581 |
+
key_layer = index_first_axis(
|
582 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
583 |
+
)
|
584 |
+
value_layer = index_first_axis(
|
585 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
586 |
+
)
|
587 |
+
|
588 |
+
if query_length == kv_seq_len:
|
589 |
+
query_layer = index_first_axis(
|
590 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
591 |
+
)
|
592 |
+
cu_seqlens_q = cu_seqlens_k
|
593 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
594 |
+
indices_q = indices_k
|
595 |
+
elif query_length == 1:
|
596 |
+
max_seqlen_in_batch_q = 1
|
597 |
+
cu_seqlens_q = torch.arange(
|
598 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
599 |
+
) # There is a memcpy here, that is very bad.
|
600 |
+
indices_q = cu_seqlens_q[:-1]
|
601 |
+
query_layer = query_layer.squeeze(1)
|
602 |
+
else:
|
603 |
+
# The -q_len: slice assumes left padding.
|
604 |
+
attention_mask = attention_mask[:, -query_length:]
|
605 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
606 |
+
|
607 |
+
return (
|
608 |
+
query_layer,
|
609 |
+
key_layer,
|
610 |
+
value_layer,
|
611 |
+
indices_q.to(torch.int64),
|
612 |
+
(cu_seqlens_q, cu_seqlens_k),
|
613 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
614 |
+
)
|
615 |
+
|
616 |
+
|
617 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
618 |
+
'eager': InternLM2Attention,
|
619 |
+
'flash_attention_2': InternLM2FlashAttention2,
|
620 |
+
}
|
621 |
+
|
622 |
+
|
623 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
624 |
+
class InternLM2DecoderLayer(nn.Module):
|
625 |
+
def __init__(self, config: InternLM2Config):
|
626 |
+
super().__init__()
|
627 |
+
self.hidden_size = config.hidden_size
|
628 |
+
|
629 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
630 |
+
|
631 |
+
self.feed_forward = InternLM2MLP(config)
|
632 |
+
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
633 |
+
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
634 |
+
|
635 |
+
def forward(
|
636 |
+
self,
|
637 |
+
hidden_states: torch.Tensor,
|
638 |
+
attention_mask: Optional[torch.Tensor] = None,
|
639 |
+
position_ids: Optional[torch.LongTensor] = None,
|
640 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
641 |
+
output_attentions: Optional[bool] = False,
|
642 |
+
use_cache: Optional[bool] = False,
|
643 |
+
**kwargs,
|
644 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
645 |
+
"""
|
646 |
+
Args:
|
647 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
648 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
649 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
650 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
651 |
+
output_attentions (`bool`, *optional*):
|
652 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
653 |
+
returned tensors for more detail.
|
654 |
+
use_cache (`bool`, *optional*):
|
655 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
656 |
+
(see `past_key_values`).
|
657 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
658 |
+
"""
|
659 |
+
if 'padding_mask' in kwargs:
|
660 |
+
warnings.warn(
|
661 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
662 |
+
'Please make sure use `attention_mask` instead.`'
|
663 |
+
)
|
664 |
+
|
665 |
+
residual = hidden_states
|
666 |
+
|
667 |
+
hidden_states = self.attention_norm(hidden_states)
|
668 |
+
|
669 |
+
# Self Attention
|
670 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
671 |
+
hidden_states=hidden_states,
|
672 |
+
attention_mask=attention_mask,
|
673 |
+
position_ids=position_ids,
|
674 |
+
past_key_value=past_key_value,
|
675 |
+
output_attentions=output_attentions,
|
676 |
+
use_cache=use_cache,
|
677 |
+
**kwargs,
|
678 |
+
)
|
679 |
+
hidden_states = residual + hidden_states
|
680 |
+
|
681 |
+
# Fully Connected
|
682 |
+
residual = hidden_states
|
683 |
+
hidden_states = self.ffn_norm(hidden_states)
|
684 |
+
hidden_states = self.feed_forward(hidden_states)
|
685 |
+
hidden_states = residual + hidden_states
|
686 |
+
|
687 |
+
outputs = (hidden_states,)
|
688 |
+
|
689 |
+
if output_attentions:
|
690 |
+
outputs += (self_attn_weights,)
|
691 |
+
|
692 |
+
if use_cache:
|
693 |
+
outputs += (present_key_value,)
|
694 |
+
|
695 |
+
return outputs
|
696 |
+
|
697 |
+
|
698 |
+
InternLM2_START_DOCSTRING = r"""
|
699 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
700 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
701 |
+
etc.)
|
702 |
+
|
703 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
704 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
705 |
+
and behavior.
|
706 |
+
|
707 |
+
Parameters:
|
708 |
+
config ([`InternLM2Config`]):
|
709 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
710 |
+
load the weights associated with the model, only the configuration. Check out the
|
711 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
712 |
+
"""
|
713 |
+
|
714 |
+
|
715 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
|
716 |
+
@add_start_docstrings(
|
717 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
718 |
+
InternLM2_START_DOCSTRING,
|
719 |
+
)
|
720 |
+
class InternLM2PreTrainedModel(PreTrainedModel):
|
721 |
+
config_class = InternLM2Config
|
722 |
+
base_model_prefix = 'model'
|
723 |
+
supports_gradient_checkpointing = True
|
724 |
+
_no_split_modules = ['InternLM2DecoderLayer']
|
725 |
+
_skip_keys_device_placement = 'past_key_values'
|
726 |
+
_supports_flash_attn_2 = True
|
727 |
+
|
728 |
+
def _init_weights(self, module):
|
729 |
+
std = self.config.initializer_range
|
730 |
+
if isinstance(module, nn.Linear):
|
731 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
732 |
+
if module.bias is not None:
|
733 |
+
module.bias.data.zero_()
|
734 |
+
elif isinstance(module, nn.Embedding):
|
735 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
736 |
+
if module.padding_idx is not None:
|
737 |
+
module.weight.data[module.padding_idx].zero_()
|
738 |
+
|
739 |
+
|
740 |
+
InternLM2_INPUTS_DOCSTRING = r"""
|
741 |
+
Args:
|
742 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
743 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
744 |
+
it.
|
745 |
+
|
746 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
747 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
748 |
+
|
749 |
+
[What are input IDs?](../glossary#input-ids)
|
750 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
751 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
752 |
+
|
753 |
+
- 1 for tokens that are **not masked**,
|
754 |
+
- 0 for tokens that are **masked**.
|
755 |
+
|
756 |
+
[What are attention masks?](../glossary#attention-mask)
|
757 |
+
|
758 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
759 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
760 |
+
|
761 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
762 |
+
`past_key_values`).
|
763 |
+
|
764 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
765 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
766 |
+
information on the default strategy.
|
767 |
+
|
768 |
+
- 1 indicates the head is **not masked**,
|
769 |
+
- 0 indicates the head is **masked**.
|
770 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
771 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
772 |
+
config.n_positions - 1]`.
|
773 |
+
|
774 |
+
[What are position IDs?](../glossary#position-ids)
|
775 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
776 |
+
when `config.use_cache=True`):
|
777 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
778 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
779 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
780 |
+
|
781 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
782 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
783 |
+
|
784 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
785 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
786 |
+
of shape `(batch_size, sequence_length)`.
|
787 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
788 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
789 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
790 |
+
model's internal embedding lookup matrix.
|
791 |
+
use_cache (`bool`, *optional*):
|
792 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
793 |
+
`past_key_values`).
|
794 |
+
output_attentions (`bool`, *optional*):
|
795 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
796 |
+
tensors for more detail.
|
797 |
+
output_hidden_states (`bool`, *optional*):
|
798 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
799 |
+
more detail.
|
800 |
+
return_dict (`bool`, *optional*):
|
801 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
802 |
+
"""
|
803 |
+
|
804 |
+
|
805 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
806 |
+
@add_start_docstrings(
|
807 |
+
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
|
808 |
+
InternLM2_START_DOCSTRING,
|
809 |
+
)
|
810 |
+
class InternLM2Model(InternLM2PreTrainedModel):
|
811 |
+
"""
|
812 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
|
813 |
+
|
814 |
+
Args:
|
815 |
+
config: InternLM2Config
|
816 |
+
"""
|
817 |
+
|
818 |
+
_auto_class = 'AutoModel'
|
819 |
+
|
820 |
+
def __init__(self, config: InternLM2Config):
|
821 |
+
super().__init__(config)
|
822 |
+
self.padding_idx = config.pad_token_id
|
823 |
+
self.vocab_size = config.vocab_size
|
824 |
+
self.config = config
|
825 |
+
if not has_flash_attn:
|
826 |
+
self.config.attn_implementation = 'eager'
|
827 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
828 |
+
|
829 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
830 |
+
|
831 |
+
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
832 |
+
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
833 |
+
|
834 |
+
self.gradient_checkpointing = False
|
835 |
+
# Initialize weights and apply final processing
|
836 |
+
self.post_init()
|
837 |
+
|
838 |
+
def get_input_embeddings(self):
|
839 |
+
return self.tok_embeddings
|
840 |
+
|
841 |
+
def set_input_embeddings(self, value):
|
842 |
+
self.tok_embeddings = value
|
843 |
+
|
844 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
845 |
+
# create causal mask
|
846 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
847 |
+
combined_attention_mask = None
|
848 |
+
if input_shape[-1] > 1:
|
849 |
+
combined_attention_mask = _make_causal_mask(
|
850 |
+
input_shape,
|
851 |
+
inputs_embeds.dtype,
|
852 |
+
device=inputs_embeds.device,
|
853 |
+
past_key_values_length=past_key_values_length,
|
854 |
+
)
|
855 |
+
|
856 |
+
if attention_mask is not None:
|
857 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
858 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
859 |
+
inputs_embeds.device
|
860 |
+
)
|
861 |
+
combined_attention_mask = (
|
862 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
863 |
+
)
|
864 |
+
|
865 |
+
return combined_attention_mask
|
866 |
+
|
867 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
868 |
+
def forward(
|
869 |
+
self,
|
870 |
+
input_ids: torch.LongTensor = None,
|
871 |
+
attention_mask: Optional[torch.Tensor] = None,
|
872 |
+
position_ids: Optional[torch.LongTensor] = None,
|
873 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
874 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
875 |
+
use_cache: Optional[bool] = None,
|
876 |
+
output_attentions: Optional[bool] = None,
|
877 |
+
output_hidden_states: Optional[bool] = None,
|
878 |
+
return_dict: Optional[bool] = None,
|
879 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
880 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
881 |
+
output_hidden_states = (
|
882 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
883 |
+
)
|
884 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
885 |
+
|
886 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
887 |
+
|
888 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
889 |
+
_import_flash_attn()
|
890 |
+
|
891 |
+
# retrieve input_ids and inputs_embeds
|
892 |
+
if input_ids is not None and inputs_embeds is not None:
|
893 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
894 |
+
elif input_ids is not None:
|
895 |
+
batch_size, seq_length = input_ids.shape[:2]
|
896 |
+
elif inputs_embeds is not None:
|
897 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
898 |
+
else:
|
899 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
900 |
+
|
901 |
+
seq_length_with_past = seq_length
|
902 |
+
past_key_values_length = 0
|
903 |
+
if past_key_values is not None:
|
904 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
905 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
906 |
+
|
907 |
+
if position_ids is None:
|
908 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
909 |
+
position_ids = torch.arange(
|
910 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
911 |
+
)
|
912 |
+
position_ids = position_ids.unsqueeze(0)
|
913 |
+
|
914 |
+
if inputs_embeds is None:
|
915 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
916 |
+
|
917 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
918 |
+
# 2d mask is passed through the layers
|
919 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
920 |
+
else:
|
921 |
+
if attention_mask is None:
|
922 |
+
attention_mask = torch.ones(
|
923 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
924 |
+
)
|
925 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
926 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
927 |
+
)
|
928 |
+
|
929 |
+
# embed positions
|
930 |
+
hidden_states = inputs_embeds
|
931 |
+
|
932 |
+
if self.gradient_checkpointing and self.training:
|
933 |
+
if use_cache:
|
934 |
+
logger.warning_once(
|
935 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
936 |
+
)
|
937 |
+
use_cache = False
|
938 |
+
|
939 |
+
# decoder layers
|
940 |
+
all_hidden_states = () if output_hidden_states else None
|
941 |
+
all_self_attns = () if output_attentions else None
|
942 |
+
next_decoder_cache = () if use_cache else None
|
943 |
+
|
944 |
+
for idx, decoder_layer in enumerate(self.layers):
|
945 |
+
if output_hidden_states:
|
946 |
+
all_hidden_states += (hidden_states,)
|
947 |
+
|
948 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
949 |
+
|
950 |
+
if self.gradient_checkpointing and self.training:
|
951 |
+
|
952 |
+
def create_custom_forward(module):
|
953 |
+
def custom_forward(*inputs):
|
954 |
+
# None for past_key_value
|
955 |
+
return module(*inputs, output_attentions, None)
|
956 |
+
|
957 |
+
return custom_forward
|
958 |
+
|
959 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
960 |
+
create_custom_forward(decoder_layer),
|
961 |
+
hidden_states,
|
962 |
+
attention_mask,
|
963 |
+
position_ids,
|
964 |
+
None,
|
965 |
+
)
|
966 |
+
else:
|
967 |
+
layer_outputs = decoder_layer(
|
968 |
+
hidden_states,
|
969 |
+
attention_mask=attention_mask,
|
970 |
+
position_ids=position_ids,
|
971 |
+
past_key_value=past_key_value,
|
972 |
+
output_attentions=output_attentions,
|
973 |
+
use_cache=use_cache,
|
974 |
+
)
|
975 |
+
|
976 |
+
hidden_states = layer_outputs[0]
|
977 |
+
|
978 |
+
if use_cache:
|
979 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
980 |
+
|
981 |
+
if output_attentions:
|
982 |
+
all_self_attns += (layer_outputs[1],)
|
983 |
+
|
984 |
+
hidden_states = self.norm(hidden_states)
|
985 |
+
|
986 |
+
# add hidden states from the last decoder layer
|
987 |
+
if output_hidden_states:
|
988 |
+
all_hidden_states += (hidden_states,)
|
989 |
+
|
990 |
+
next_cache = next_decoder_cache if use_cache else None
|
991 |
+
if not return_dict:
|
992 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
993 |
+
return BaseModelOutputWithPast(
|
994 |
+
last_hidden_state=hidden_states,
|
995 |
+
past_key_values=next_cache,
|
996 |
+
hidden_states=all_hidden_states,
|
997 |
+
attentions=all_self_attns,
|
998 |
+
)
|
999 |
+
|
1000 |
+
|
1001 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
1002 |
+
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
1003 |
+
_auto_class = 'AutoModelForCausalLM'
|
1004 |
+
|
1005 |
+
_tied_weights_keys = ['output.weight']
|
1006 |
+
|
1007 |
+
def __init__(self, config):
|
1008 |
+
super().__init__(config)
|
1009 |
+
self.model = InternLM2Model(config)
|
1010 |
+
self.vocab_size = config.vocab_size
|
1011 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1012 |
+
|
1013 |
+
# Initialize weights and apply final processing
|
1014 |
+
self.post_init()
|
1015 |
+
|
1016 |
+
def get_input_embeddings(self):
|
1017 |
+
return self.model.tok_embeddings
|
1018 |
+
|
1019 |
+
def set_input_embeddings(self, value):
|
1020 |
+
self.model.tok_embeddings = value
|
1021 |
+
|
1022 |
+
def get_output_embeddings(self):
|
1023 |
+
return self.output
|
1024 |
+
|
1025 |
+
def set_output_embeddings(self, new_embeddings):
|
1026 |
+
self.output = new_embeddings
|
1027 |
+
|
1028 |
+
def set_decoder(self, decoder):
|
1029 |
+
self.model = decoder
|
1030 |
+
|
1031 |
+
def get_decoder(self):
|
1032 |
+
return self.model
|
1033 |
+
|
1034 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1035 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1036 |
+
def forward(
|
1037 |
+
self,
|
1038 |
+
input_ids: torch.LongTensor = None,
|
1039 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1040 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1041 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1042 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1043 |
+
labels: Optional[torch.LongTensor] = None,
|
1044 |
+
use_cache: Optional[bool] = None,
|
1045 |
+
output_attentions: Optional[bool] = None,
|
1046 |
+
output_hidden_states: Optional[bool] = None,
|
1047 |
+
return_dict: Optional[bool] = None,
|
1048 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1049 |
+
r"""
|
1050 |
+
Args:
|
1051 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1052 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1053 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1054 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1055 |
+
|
1056 |
+
Returns:
|
1057 |
+
|
1058 |
+
Example:
|
1059 |
+
|
1060 |
+
```python
|
1061 |
+
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
1062 |
+
|
1063 |
+
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1064 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1065 |
+
|
1066 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1067 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1068 |
+
|
1069 |
+
>>> # Generate
|
1070 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1071 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1072 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1073 |
+
```"""
|
1074 |
+
|
1075 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1076 |
+
output_hidden_states = (
|
1077 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1078 |
+
)
|
1079 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1080 |
+
|
1081 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1082 |
+
outputs = self.model(
|
1083 |
+
input_ids=input_ids,
|
1084 |
+
attention_mask=attention_mask,
|
1085 |
+
position_ids=position_ids,
|
1086 |
+
past_key_values=past_key_values,
|
1087 |
+
inputs_embeds=inputs_embeds,
|
1088 |
+
use_cache=use_cache,
|
1089 |
+
output_attentions=output_attentions,
|
1090 |
+
output_hidden_states=output_hidden_states,
|
1091 |
+
return_dict=return_dict,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
hidden_states = outputs[0]
|
1095 |
+
logits = self.output(hidden_states)
|
1096 |
+
logits = logits.float()
|
1097 |
+
|
1098 |
+
loss = None
|
1099 |
+
if labels is not None:
|
1100 |
+
# Shift so that tokens < n predict n
|
1101 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1102 |
+
shift_labels = labels[..., 1:].contiguous()
|
1103 |
+
# Flatten the tokens
|
1104 |
+
loss_fct = CrossEntropyLoss()
|
1105 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1106 |
+
shift_labels = shift_labels.view(-1)
|
1107 |
+
# Enable model parallelism
|
1108 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1109 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1110 |
+
|
1111 |
+
if not return_dict:
|
1112 |
+
output = (logits,) + outputs[1:]
|
1113 |
+
return (loss,) + output if loss is not None else output
|
1114 |
+
|
1115 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1116 |
+
output = CausalLMOutputWithPast(
|
1117 |
+
loss=loss,
|
1118 |
+
logits=logits,
|
1119 |
+
past_key_values=outputs.past_key_values,
|
1120 |
+
hidden_states=outputs.hidden_states,
|
1121 |
+
attentions=outputs.attentions,
|
1122 |
+
)
|
1123 |
+
output['logits'] = output['logits'].to(device)
|
1124 |
+
return output
|
1125 |
+
|
1126 |
+
def prepare_inputs_for_generation(
|
1127 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1128 |
+
):
|
1129 |
+
if past_key_values is not None:
|
1130 |
+
past_length = past_key_values[0][0].shape[2]
|
1131 |
+
|
1132 |
+
# Some generation methods already pass only the last input ID
|
1133 |
+
if input_ids.shape[1] > past_length:
|
1134 |
+
remove_prefix_length = past_length
|
1135 |
+
else:
|
1136 |
+
# Default to old behavior: keep only final ID
|
1137 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1138 |
+
|
1139 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1140 |
+
|
1141 |
+
position_ids = kwargs.get('position_ids', None)
|
1142 |
+
if attention_mask is not None and position_ids is None:
|
1143 |
+
# create position_ids on the fly for batch generation
|
1144 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1145 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1146 |
+
if past_key_values:
|
1147 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1148 |
+
|
1149 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1150 |
+
if inputs_embeds is not None and past_key_values is None:
|
1151 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1152 |
+
else:
|
1153 |
+
model_inputs = {'input_ids': input_ids}
|
1154 |
+
|
1155 |
+
model_inputs.update(
|
1156 |
+
{
|
1157 |
+
'position_ids': position_ids,
|
1158 |
+
'past_key_values': past_key_values,
|
1159 |
+
'use_cache': kwargs.get('use_cache'),
|
1160 |
+
'attention_mask': attention_mask,
|
1161 |
+
}
|
1162 |
+
)
|
1163 |
+
return model_inputs
|
1164 |
+
|
1165 |
+
@staticmethod
|
1166 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1167 |
+
reordered_past = ()
|
1168 |
+
for layer_past in past_key_values:
|
1169 |
+
reordered_past += (
|
1170 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1171 |
+
)
|
1172 |
+
return reordered_past
|
1173 |
+
|
1174 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
|
1175 |
+
if tokenizer.add_bos_token:
|
1176 |
+
prompt = ''
|
1177 |
+
else:
|
1178 |
+
prompt = tokenizer.bos_token
|
1179 |
+
if meta_instruction:
|
1180 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
1181 |
+
for record in history:
|
1182 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
1183 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
1184 |
+
return tokenizer([prompt], return_tensors='pt')
|
1185 |
+
|
1186 |
+
@torch.no_grad()
|
1187 |
+
def chat(
|
1188 |
+
self,
|
1189 |
+
tokenizer,
|
1190 |
+
query: str,
|
1191 |
+
history: List[Tuple[str, str]] = [],
|
1192 |
+
streamer: Optional[BaseStreamer] = None,
|
1193 |
+
max_new_tokens: int = 1024,
|
1194 |
+
do_sample: bool = True,
|
1195 |
+
temperature: float = 0.8,
|
1196 |
+
top_p: float = 0.8,
|
1197 |
+
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
|
1198 |
+
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
|
1199 |
+
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
|
1200 |
+
**kwargs,
|
1201 |
+
):
|
1202 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1203 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1204 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1205 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
|
1206 |
+
outputs = self.generate(
|
1207 |
+
**inputs,
|
1208 |
+
streamer=streamer,
|
1209 |
+
max_new_tokens=max_new_tokens,
|
1210 |
+
do_sample=do_sample,
|
1211 |
+
temperature=temperature,
|
1212 |
+
top_p=top_p,
|
1213 |
+
eos_token_id=eos_token_id,
|
1214 |
+
**kwargs,
|
1215 |
+
)
|
1216 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
|
1217 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1218 |
+
response = response.split('<|im_end|>')[0]
|
1219 |
+
history = history + [(query, response)]
|
1220 |
+
return response, history
|
1221 |
+
|
1222 |
+
@torch.no_grad()
|
1223 |
+
def stream_chat(
|
1224 |
+
self,
|
1225 |
+
tokenizer,
|
1226 |
+
query: str,
|
1227 |
+
history: List[Tuple[str, str]] = [],
|
1228 |
+
max_new_tokens: int = 1024,
|
1229 |
+
do_sample: bool = True,
|
1230 |
+
temperature: float = 0.8,
|
1231 |
+
top_p: float = 0.8,
|
1232 |
+
**kwargs,
|
1233 |
+
):
|
1234 |
+
"""
|
1235 |
+
Return a generator in format: (response, history)
|
1236 |
+
Eg.
|
1237 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1238 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1239 |
+
"""
|
1240 |
+
if BaseStreamer is None:
|
1241 |
+
raise ModuleNotFoundError(
|
1242 |
+
'The version of `transformers` is too low. Please make sure '
|
1243 |
+
'that you have installed `transformers>=4.28.0`.'
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
response_queue = queue.Queue(maxsize=20)
|
1247 |
+
|
1248 |
+
class ChatStreamer(BaseStreamer):
|
1249 |
+
def __init__(self, tokenizer) -> None:
|
1250 |
+
super().__init__()
|
1251 |
+
self.tokenizer = tokenizer
|
1252 |
+
self.queue = response_queue
|
1253 |
+
self.query = query
|
1254 |
+
self.history = history
|
1255 |
+
self.response = ''
|
1256 |
+
self.cache = []
|
1257 |
+
self.received_inputs = False
|
1258 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1259 |
+
|
1260 |
+
def put(self, value):
|
1261 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1262 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
1263 |
+
elif len(value.shape) > 1:
|
1264 |
+
value = value[0]
|
1265 |
+
|
1266 |
+
if not self.received_inputs:
|
1267 |
+
# The first received value is input_ids, ignore here
|
1268 |
+
self.received_inputs = True
|
1269 |
+
return
|
1270 |
+
|
1271 |
+
self.cache.extend(value.tolist())
|
1272 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1273 |
+
if token.strip() != '<|im_end|>':
|
1274 |
+
self.response = self.response + token
|
1275 |
+
history = self.history + [(self.query, self.response)]
|
1276 |
+
self.queue.put((self.response, history))
|
1277 |
+
self.cache = []
|
1278 |
+
else:
|
1279 |
+
self.end()
|
1280 |
+
|
1281 |
+
def end(self):
|
1282 |
+
self.queue.put(None)
|
1283 |
+
|
1284 |
+
def stream_producer():
|
1285 |
+
return self.chat(
|
1286 |
+
tokenizer=tokenizer,
|
1287 |
+
query=query,
|
1288 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1289 |
+
history=history,
|
1290 |
+
max_new_tokens=max_new_tokens,
|
1291 |
+
do_sample=do_sample,
|
1292 |
+
temperature=temperature,
|
1293 |
+
top_p=top_p,
|
1294 |
+
**kwargs,
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
def consumer():
|
1298 |
+
producer = threading.Thread(target=stream_producer)
|
1299 |
+
producer.start()
|
1300 |
+
while True:
|
1301 |
+
res = response_queue.get()
|
1302 |
+
if res is None:
|
1303 |
+
return
|
1304 |
+
yield res
|
1305 |
+
|
1306 |
+
return consumer()
|
1307 |
+
|
1308 |
+
|
1309 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
1310 |
+
@add_start_docstrings(
|
1311 |
+
"""
|
1312 |
+
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
1313 |
+
|
1314 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
1315 |
+
as other causal models (e.g. GPT-2) do.
|
1316 |
+
|
1317 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1318 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1319 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1320 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1321 |
+
each row of the batch).
|
1322 |
+
""",
|
1323 |
+
InternLM2_START_DOCSTRING,
|
1324 |
+
)
|
1325 |
+
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
1326 |
+
def __init__(self, config):
|
1327 |
+
super().__init__(config)
|
1328 |
+
self.num_labels = config.num_labels
|
1329 |
+
self.model = InternLM2Model(config)
|
1330 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1331 |
+
|
1332 |
+
# Initialize weights and apply final processing
|
1333 |
+
self.post_init()
|
1334 |
+
|
1335 |
+
def get_input_embeddings(self):
|
1336 |
+
return self.model.tok_embeddings
|
1337 |
+
|
1338 |
+
def set_input_embeddings(self, value):
|
1339 |
+
self.model.tok_embeddings = value
|
1340 |
+
|
1341 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
1342 |
+
def forward(
|
1343 |
+
self,
|
1344 |
+
input_ids: torch.LongTensor = None,
|
1345 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1346 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1347 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1348 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1349 |
+
labels: Optional[torch.LongTensor] = None,
|
1350 |
+
use_cache: Optional[bool] = None,
|
1351 |
+
output_attentions: Optional[bool] = None,
|
1352 |
+
output_hidden_states: Optional[bool] = None,
|
1353 |
+
return_dict: Optional[bool] = None,
|
1354 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1355 |
+
r"""
|
1356 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1357 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1358 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1359 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1360 |
+
"""
|
1361 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1362 |
+
|
1363 |
+
transformer_outputs = self.model(
|
1364 |
+
input_ids,
|
1365 |
+
attention_mask=attention_mask,
|
1366 |
+
position_ids=position_ids,
|
1367 |
+
past_key_values=past_key_values,
|
1368 |
+
inputs_embeds=inputs_embeds,
|
1369 |
+
use_cache=use_cache,
|
1370 |
+
output_attentions=output_attentions,
|
1371 |
+
output_hidden_states=output_hidden_states,
|
1372 |
+
return_dict=return_dict,
|
1373 |
+
)
|
1374 |
+
hidden_states = transformer_outputs[0]
|
1375 |
+
logits = self.score(hidden_states)
|
1376 |
+
|
1377 |
+
if input_ids is not None:
|
1378 |
+
batch_size = input_ids.shape[0]
|
1379 |
+
else:
|
1380 |
+
batch_size = inputs_embeds.shape[0]
|
1381 |
+
|
1382 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1383 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
1384 |
+
if self.config.pad_token_id is None:
|
1385 |
+
sequence_lengths = -1
|
1386 |
+
else:
|
1387 |
+
if input_ids is not None:
|
1388 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1389 |
+
logits.device
|
1390 |
+
)
|
1391 |
+
else:
|
1392 |
+
sequence_lengths = -1
|
1393 |
+
|
1394 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1395 |
+
|
1396 |
+
loss = None
|
1397 |
+
if labels is not None:
|
1398 |
+
labels = labels.to(logits.device)
|
1399 |
+
if self.config.problem_type is None:
|
1400 |
+
if self.num_labels == 1:
|
1401 |
+
self.config.problem_type = 'regression'
|
1402 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1403 |
+
self.config.problem_type = 'single_label_classification'
|
1404 |
+
else:
|
1405 |
+
self.config.problem_type = 'multi_label_classification'
|
1406 |
+
|
1407 |
+
if self.config.problem_type == 'regression':
|
1408 |
+
loss_fct = MSELoss()
|
1409 |
+
if self.num_labels == 1:
|
1410 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1411 |
+
else:
|
1412 |
+
loss = loss_fct(pooled_logits, labels)
|
1413 |
+
elif self.config.problem_type == 'single_label_classification':
|
1414 |
+
loss_fct = CrossEntropyLoss()
|
1415 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1416 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1417 |
+
loss_fct = BCEWithLogitsLoss()
|
1418 |
+
loss = loss_fct(pooled_logits, labels)
|
1419 |
+
if not return_dict:
|
1420 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1421 |
+
return ((loss,) + output) if loss is not None else output
|
1422 |
+
|
1423 |
+
return SequenceClassifierOutputWithPast(
|
1424 |
+
loss=loss,
|
1425 |
+
logits=pooled_logits,
|
1426 |
+
past_key_values=transformer_outputs.past_key_values,
|
1427 |
+
hidden_states=transformer_outputs.hidden_states,
|
1428 |
+
attentions=transformer_outputs.attentions,
|
1429 |
+
)
|
modeling_internvl_audio.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2023 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import warnings
|
7 |
+
from typing import Any, List, Optional, Tuple, Union
|
8 |
+
from PIL import Image, ImageDraw
|
9 |
+
from io import BytesIO
|
10 |
+
import requests
|
11 |
+
import torch.distributed as dist
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
14 |
+
from peft import LoraConfig, get_peft_model
|
15 |
+
from torch import nn
|
16 |
+
from torch.nn import CrossEntropyLoss
|
17 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
18 |
+
LlamaTokenizer, Qwen2ForCausalLM)
|
19 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
20 |
+
from transformers.modeling_utils import PreTrainedModel
|
21 |
+
from transformers.utils import ModelOutput, logging
|
22 |
+
from .conversation import get_conv_template
|
23 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
24 |
+
from .modeling_intern_vit import InternVisionModel
|
25 |
+
from .modeling_internvl_chat import InternVLChatModel
|
26 |
+
from .configuration_internvl_audio_chat import InternVLChatAudioConfig
|
27 |
+
from .modeling_whisper import AudioWhisperModel
|
28 |
+
from .conversation import get_conv_template
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def load_audio(audio_file, audio_processor):
|
33 |
+
audio_values, _ = librosa.load(audio_file, sr=16000) # sample rate should be 16000
|
34 |
+
|
35 |
+
audio_process_values = audio_processor(audio_values, sampling_rate=16000, return_tensors="pt")
|
36 |
+
input_features = audio_process_values['input_features']
|
37 |
+
audio_len_after_cnn = audio_process_values['audio_len_after_cnn']
|
38 |
+
audio_token_num = audio_process_values['audio_token_num']
|
39 |
+
|
40 |
+
|
41 |
+
audio_input = {'audio_values': input_features,
|
42 |
+
'audio_len_after_cnn': audio_len_after_cnn,
|
43 |
+
'audio_token_num': audio_token_num,
|
44 |
+
}
|
45 |
+
return audio_input
|
46 |
+
|
47 |
+
|
48 |
+
class InternVLChatAudioModel(InternVLChatModel):
|
49 |
+
|
50 |
+
def __init__(self, config: InternVLChatAudioConfig, vision_model=None, language_model=None, audio_model=None):
|
51 |
+
super().__init__(config, vision_model, language_model)
|
52 |
+
if audio_model is not None:
|
53 |
+
self.audio_model = audio_model
|
54 |
+
else:
|
55 |
+
self.audio_model = AudioWhisperModel(config.audio_config)
|
56 |
+
|
57 |
+
audio_hidden_size = config.audio_config.d_model
|
58 |
+
llm_hidden_size = config.llm_config.hidden_size
|
59 |
+
self.mlp2 = nn.Sequential(
|
60 |
+
nn.LayerNorm(audio_hidden_size),
|
61 |
+
nn.Linear(audio_hidden_size, llm_hidden_size),
|
62 |
+
nn.GELU(),
|
63 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
64 |
+
) # mlp2: audio feature mapping
|
65 |
+
|
66 |
+
self.audio_context_token_id = None
|
67 |
+
|
68 |
+
def _init_weights(self, module):
|
69 |
+
"""Initialize the weights"""
|
70 |
+
if isinstance(module, nn.Linear):
|
71 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
72 |
+
if hasattr(module, "bias") and module.bias is not None:
|
73 |
+
module.bias.data.zero_()
|
74 |
+
elif isinstance(module, nn.LayerNorm):
|
75 |
+
module.bias.data.zero_()
|
76 |
+
module.weight.data.fill_(1.0)
|
77 |
+
elif isinstance(module, nn.Linear) and module.bias is not None:
|
78 |
+
module.bias.data.zero_()
|
79 |
+
|
80 |
+
def extract_audio_feature(self, audio_values, audio_len_after_cnn):
|
81 |
+
|
82 |
+
audio_values = audio_values.squeeze(1)
|
83 |
+
|
84 |
+
#TODO: construct audio padding_mask in loader
|
85 |
+
max_len_in_batch = int(torch.max(audio_len_after_cnn).item())
|
86 |
+
|
87 |
+
padding_mask = torch.ones([audio_values.size(0), max_len_in_batch]).to(dtype=audio_values.dtype,
|
88 |
+
device=audio_values.device)
|
89 |
+
|
90 |
+
for index in range(len(audio_values)):
|
91 |
+
padding_mask[index, :int(audio_len_after_cnn[index].item())] = 0
|
92 |
+
|
93 |
+
last_hidden_state = self.audio_model(audio_values, padding_mask, audio_len_after_cnn) # (bs, max_token_num, 1280)
|
94 |
+
|
95 |
+
audio_embeds = self.mlp2(last_hidden_state)
|
96 |
+
|
97 |
+
return audio_embeds
|
98 |
+
|
99 |
+
|
100 |
+
def forward(
|
101 |
+
self,
|
102 |
+
pixel_values: torch.FloatTensor,
|
103 |
+
input_ids: torch.LongTensor = None,
|
104 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
105 |
+
attention_mask: Optional[torch.Tensor] = None,
|
106 |
+
position_ids: Optional[torch.LongTensor] = None,
|
107 |
+
image_flags: Optional[torch.LongTensor] = None,
|
108 |
+
audio_flags: Optional[torch.LongTensor] = None,
|
109 |
+
audio_len_after_cnn: Optional[torch.LongTensor] = None,
|
110 |
+
audio_token_num: Optional[torch.LongTensor] = None,
|
111 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
112 |
+
labels: Optional[torch.LongTensor] = None,
|
113 |
+
use_cache: Optional[bool] = None,
|
114 |
+
output_attentions: Optional[bool] = None,
|
115 |
+
output_hidden_states: Optional[bool] = None,
|
116 |
+
return_dict: Optional[bool] = None,
|
117 |
+
statistics: Optional[torch.LongTensor] = None,
|
118 |
+
loss_weight: Optional[List] = None,
|
119 |
+
loss_reduction_all_gather: Optional[bool] = False,
|
120 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
121 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
122 |
+
|
123 |
+
image_flags = image_flags.squeeze(-1)
|
124 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
125 |
+
|
126 |
+
vit_embeds = self.extract_feature(pixel_values)
|
127 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
128 |
+
vit_batch_size = pixel_values.shape[0]
|
129 |
+
|
130 |
+
B, N, C = input_embeds.shape
|
131 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
132 |
+
|
133 |
+
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
|
134 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
135 |
+
if statistics is not None:
|
136 |
+
num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
|
137 |
+
self.num_samples += num_samples
|
138 |
+
print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
|
139 |
+
|
140 |
+
|
141 |
+
input_ids = input_ids.reshape(B * N)
|
142 |
+
img_selected = (input_ids == self.img_context_token_id)
|
143 |
+
try:
|
144 |
+
input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds.reshape(-1, C)
|
145 |
+
ignore_flag = False
|
146 |
+
except Exception as e:
|
147 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
148 |
+
print(f'warning: {e}, input_embeds[img_selected].shape={input_embeds[img_selected].shape}, '
|
149 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
150 |
+
n_token = img_selected.sum()
|
151 |
+
input_embeds[img_selected] = input_embeds[img_selected] * 0.0 + vit_embeds[:n_token]
|
152 |
+
ignore_flag = True
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
|
157 |
+
audio_batch_size = audio_values.shape[0]
|
158 |
+
print(f'audio batch size: {audio_batch_size}, audios per sample: {audio_batch_size / B}')
|
159 |
+
|
160 |
+
audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn) # (audio_num, n_frame, C)
|
161 |
+
|
162 |
+
output_audios = []
|
163 |
+
for i in range(len(audio_token_num)):
|
164 |
+
if audio_flags[i] > 0:
|
165 |
+
token_num = int(audio_token_num[i].item())
|
166 |
+
audio = audio_embeds[i][:token_num] # 提取有效的token
|
167 |
+
output_audios.append(audio)
|
168 |
+
|
169 |
+
if len(output_audios):
|
170 |
+
output_audios = torch.cat(output_audios, dim=0)
|
171 |
+
audio_selected = (input_ids == self.audio_context_token_id)
|
172 |
+
input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + output_audios.reshape(-1, C)
|
173 |
+
|
174 |
+
|
175 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
176 |
+
|
177 |
+
outputs = self.language_model(
|
178 |
+
inputs_embeds=input_embeds,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
position_ids=position_ids,
|
181 |
+
past_key_values=past_key_values,
|
182 |
+
use_cache=use_cache,
|
183 |
+
output_attentions=output_attentions,
|
184 |
+
output_hidden_states=output_hidden_states,
|
185 |
+
return_dict=return_dict,
|
186 |
+
)
|
187 |
+
logits = outputs.logits
|
188 |
+
|
189 |
+
loss = None
|
190 |
+
if labels is not None and loss_weight is not None:
|
191 |
+
loss_weight = torch.tensor(loss_weight,
|
192 |
+
dtype=torch.float32,
|
193 |
+
device=labels.device)
|
194 |
+
# Shift so that tokens < n predict n
|
195 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
196 |
+
shift_labels = labels[..., 1:].contiguous()
|
197 |
+
shift_weights = loss_weight[..., 1:].contiguous()
|
198 |
+
# Flatten the tokens
|
199 |
+
loss_fct = CrossEntropyLoss(reduction='none')
|
200 |
+
shift_logits = shift_logits.view(
|
201 |
+
-1, self.language_model.config.vocab_size)
|
202 |
+
shift_labels = shift_labels.view(-1)
|
203 |
+
shift_weights = shift_weights.view(-1)
|
204 |
+
# Enable model parallelism
|
205 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
206 |
+
shift_weights = shift_weights.to(shift_logits.device)
|
207 |
+
loss = loss_fct(shift_logits, shift_labels)
|
208 |
+
|
209 |
+
shift_weights_sum = shift_weights.sum()
|
210 |
+
if loss_reduction_all_gather:
|
211 |
+
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
|
212 |
+
|
213 |
+
loss = loss * shift_weights
|
214 |
+
loss = loss.sum() / shift_weights_sum
|
215 |
+
if ignore_flag:
|
216 |
+
loss = loss * 0.0
|
217 |
+
elif labels is not None:
|
218 |
+
# Shift so that tokens < n predict n
|
219 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
220 |
+
shift_labels = labels[..., 1:].contiguous()
|
221 |
+
# Flatten the tokens
|
222 |
+
loss_fct = CrossEntropyLoss()
|
223 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
224 |
+
shift_labels = shift_labels.view(-1)
|
225 |
+
# Enable model parallelism
|
226 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
227 |
+
loss = loss_fct(shift_logits, shift_labels)
|
228 |
+
if ignore_flag:
|
229 |
+
loss = loss * 0.0
|
230 |
+
|
231 |
+
if not return_dict:
|
232 |
+
output = (logits,) + outputs[1:]
|
233 |
+
return (loss,) + output if loss is not None else output
|
234 |
+
|
235 |
+
return CausalLMOutputWithPast(
|
236 |
+
loss=loss,
|
237 |
+
logits=logits,
|
238 |
+
past_key_values=outputs.past_key_values,
|
239 |
+
hidden_states=outputs.hidden_states,
|
240 |
+
attentions=outputs.attentions,
|
241 |
+
)
|
242 |
+
|
243 |
+
|
244 |
+
def Audio_chat(self, tokenizer, pixel_values, audio, question, generation_config, history=None, return_history=False,num_patches_list=None,
|
245 |
+
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',AUDIO_START_TOKEN='<audio>',AUDIO_END_TOKEN='</audio>',
|
246 |
+
AUDIO_CONTEXT_TOKEN='<AUDIO_CONTEXT>',verbose=None):
|
247 |
+
|
248 |
+
if history is None and audio is not None:
|
249 |
+
if question is None:
|
250 |
+
question = '<audio>\n'
|
251 |
+
else:
|
252 |
+
question = '<audio>\n' + question
|
253 |
+
|
254 |
+
if history is None and pixel_values is not None:
|
255 |
+
if question is None:
|
256 |
+
question = '<image>\n'
|
257 |
+
else:
|
258 |
+
question = '<image>\n' + question
|
259 |
+
|
260 |
+
if num_patches_list is None:
|
261 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
262 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
263 |
+
|
264 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
265 |
+
audio_context_token_id = tokenizer.convert_tokens_to_ids(AUDIO_CONTEXT_TOKEN)
|
266 |
+
self.img_context_token_id = img_context_token_id
|
267 |
+
self.audio_context_token_id = audio_context_token_id
|
268 |
+
|
269 |
+
template = get_conv_template(self.template)
|
270 |
+
template.system_message = self.system_message
|
271 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
272 |
+
|
273 |
+
history = [] if history is None else history
|
274 |
+
for (old_question, old_answer) in history:
|
275 |
+
template.append_message(template.roles[0], old_question)
|
276 |
+
template.append_message(template.roles[1], old_answer)
|
277 |
+
template.append_message(template.roles[0], question)
|
278 |
+
template.append_message(template.roles[1], None)
|
279 |
+
query = template.get_prompt()
|
280 |
+
|
281 |
+
if verbose and pixel_values is not None:
|
282 |
+
image_bs = pixel_values.shape[0]
|
283 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
284 |
+
|
285 |
+
for num_patches in num_patches_list:
|
286 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
287 |
+
query = query.replace('<image>', image_tokens, 1)
|
288 |
+
if audio is not None:
|
289 |
+
audio_tokens = AUDIO_START_TOKEN + AUDIO_CONTEXT_TOKEN * audio['audio_token_num'] + AUDIO_END_TOKEN
|
290 |
+
query = query.replace('<audio>', audio_tokens, 1)
|
291 |
+
|
292 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
293 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
294 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
295 |
+
generation_config['eos_token_id'] = eos_token_id
|
296 |
+
audio['audio_len_after_cnn'] = torch.tensor([audio['audio_len_after_cnn']])
|
297 |
+
audio['audio_token_num'] = torch.tensor([audio['audio_token_num']])
|
298 |
+
generation_output = self.generate(
|
299 |
+
pixel_values=pixel_values,
|
300 |
+
audio_values=audio['audio_values'].to(self.device, dtype=self.dtype),
|
301 |
+
audio_len_after_cnn=audio['audio_len_after_cnn'],
|
302 |
+
audio_token_num=audio['audio_token_num'],
|
303 |
+
input_ids=input_ids,
|
304 |
+
attention_mask=attention_mask,
|
305 |
+
**generation_config
|
306 |
+
)
|
307 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
308 |
+
response = response.split(template.sep.strip())[0].strip()
|
309 |
+
history.append((question, response))
|
310 |
+
if return_history:
|
311 |
+
return response, history
|
312 |
+
else:
|
313 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
314 |
+
query_to_print = query.replace(AUDIO_CONTEXT_TOKEN, '')
|
315 |
+
query_to_print = query_to_print.replace(f'{AUDIO_START_TOKEN}{AUDIO_END_TOKEN}', '<audio>')
|
316 |
+
if verbose:
|
317 |
+
print(query_to_print, response)
|
318 |
+
return response
|
319 |
+
|
320 |
+
@torch.no_grad()
|
321 |
+
def generate(
|
322 |
+
self,
|
323 |
+
pixel_values: torch.FloatTensor,
|
324 |
+
input_ids: torch.FloatTensor,
|
325 |
+
attention_mask: torch.LongTensor,
|
326 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
327 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
328 |
+
audio_len_after_cnn: Optional[bool] = None,
|
329 |
+
audio_token_num: Optional[bool] = None,
|
330 |
+
generation_config: Optional[GenerationConfig] = None,
|
331 |
+
output_hidden_states: Optional[bool] = None,
|
332 |
+
return_dict: Optional[bool] = None,
|
333 |
+
**generate_kwargs,
|
334 |
+
) -> torch.LongTensor:
|
335 |
+
|
336 |
+
# assert self.img_context_token_id is not None
|
337 |
+
# assert self.audio_context_token_id is not None
|
338 |
+
|
339 |
+
vit_embeds = None
|
340 |
+
if visual_features is not None:
|
341 |
+
vit_embeds = visual_features
|
342 |
+
elif pixel_values is not None:
|
343 |
+
vit_embeds = self.extract_feature(pixel_values)
|
344 |
+
|
345 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
346 |
+
B, N, C = input_embeds.shape
|
347 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
348 |
+
|
349 |
+
input_ids = input_ids.reshape(B * N)
|
350 |
+
|
351 |
+
if vit_embeds is not None:
|
352 |
+
selected = (input_ids == self.img_context_token_id)
|
353 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C)
|
354 |
+
|
355 |
+
if audio_values is not None and audio_len_after_cnn is not None and audio_token_num is not None:
|
356 |
+
audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn)
|
357 |
+
output_audios = []
|
358 |
+
for i in range(len(audio_token_num)):
|
359 |
+
token_num = int(audio_token_num[i].item())
|
360 |
+
audio = audio_embeds[i][:token_num]
|
361 |
+
output_audios.append(audio)
|
362 |
+
output_audios = torch.cat(output_audios, dim=0)
|
363 |
+
selected = (input_ids == self.audio_context_token_id)
|
364 |
+
input_embeds[selected] = output_audios.reshape(-1, C)
|
365 |
+
|
366 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
367 |
+
|
368 |
+
outputs = self.language_model.generate(
|
369 |
+
inputs_embeds=input_embeds,
|
370 |
+
attention_mask=attention_mask,
|
371 |
+
generation_config=generation_config,
|
372 |
+
output_hidden_states=output_hidden_states,
|
373 |
+
return_dict=return_dict,
|
374 |
+
use_cache=True,
|
375 |
+
**generate_kwargs,
|
376 |
+
)
|
377 |
+
|
378 |
+
return outputs
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import transformers
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
15 |
+
LlamaTokenizer)
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import ModelOutput, logging
|
19 |
+
|
20 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
21 |
+
from .conversation import get_conv_template
|
22 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
23 |
+
from .modeling_internlm2 import InternLM2ForCausalLM
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
def version_cmp(v1, v2, op='eq'):
|
29 |
+
import operator
|
30 |
+
|
31 |
+
from packaging import version
|
32 |
+
op_func = getattr(operator, op)
|
33 |
+
return op_func(version.parse(v1), version.parse(v2))
|
34 |
+
|
35 |
+
|
36 |
+
class InternVLChatModel(PreTrainedModel):
|
37 |
+
config_class = InternVLChatConfig
|
38 |
+
main_input_name = 'pixel_values'
|
39 |
+
base_model_prefix = 'language_model'
|
40 |
+
_supports_flash_attn_2 = True
|
41 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
|
42 |
+
|
43 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
44 |
+
super().__init__(config)
|
45 |
+
|
46 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
47 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
48 |
+
patch_size = config.vision_config.patch_size
|
49 |
+
self.patch_size = patch_size
|
50 |
+
self.select_layer = config.select_layer
|
51 |
+
self.template = config.template
|
52 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
53 |
+
self.downsample_ratio = config.downsample_ratio
|
54 |
+
self.ps_version = config.ps_version
|
55 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
56 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
57 |
+
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
58 |
+
|
59 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
60 |
+
logger.info(f'ps_version: {self.ps_version}')
|
61 |
+
if vision_model is not None:
|
62 |
+
self.vision_model = vision_model
|
63 |
+
else:
|
64 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
65 |
+
if language_model is not None:
|
66 |
+
self.language_model = language_model
|
67 |
+
else:
|
68 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
69 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
70 |
+
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
71 |
+
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
72 |
+
else:
|
73 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
74 |
+
|
75 |
+
vit_hidden_size = config.vision_config.hidden_size
|
76 |
+
llm_hidden_size = config.llm_config.hidden_size
|
77 |
+
|
78 |
+
self.mlp1 = nn.Sequential(
|
79 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
80 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
81 |
+
nn.GELU(),
|
82 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
83 |
+
)
|
84 |
+
|
85 |
+
self.img_context_token_id = None
|
86 |
+
self.conv_template = get_conv_template(self.template)
|
87 |
+
self.system_message = self.conv_template.system_message
|
88 |
+
|
89 |
+
def forward(
|
90 |
+
self,
|
91 |
+
pixel_values: torch.FloatTensor,
|
92 |
+
input_ids: torch.LongTensor = None,
|
93 |
+
attention_mask: Optional[torch.Tensor] = None,
|
94 |
+
position_ids: Optional[torch.LongTensor] = None,
|
95 |
+
image_flags: Optional[torch.LongTensor] = None,
|
96 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
97 |
+
labels: Optional[torch.LongTensor] = None,
|
98 |
+
use_cache: Optional[bool] = None,
|
99 |
+
output_attentions: Optional[bool] = None,
|
100 |
+
output_hidden_states: Optional[bool] = None,
|
101 |
+
return_dict: Optional[bool] = None,
|
102 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
103 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
104 |
+
|
105 |
+
image_flags = image_flags.squeeze(-1)
|
106 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
107 |
+
|
108 |
+
vit_embeds = self.extract_feature(pixel_values)
|
109 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
110 |
+
vit_batch_size = pixel_values.shape[0]
|
111 |
+
|
112 |
+
B, N, C = input_embeds.shape
|
113 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
114 |
+
|
115 |
+
if torch.distributed.get_rank() == 0:
|
116 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
117 |
+
|
118 |
+
input_ids = input_ids.reshape(B * N)
|
119 |
+
selected = (input_ids == self.img_context_token_id)
|
120 |
+
try:
|
121 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
122 |
+
except Exception as e:
|
123 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
124 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
125 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
126 |
+
n_token = selected.sum()
|
127 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
128 |
+
|
129 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
130 |
+
|
131 |
+
outputs = self.language_model(
|
132 |
+
inputs_embeds=input_embeds,
|
133 |
+
attention_mask=attention_mask,
|
134 |
+
position_ids=position_ids,
|
135 |
+
past_key_values=past_key_values,
|
136 |
+
use_cache=use_cache,
|
137 |
+
output_attentions=output_attentions,
|
138 |
+
output_hidden_states=output_hidden_states,
|
139 |
+
return_dict=return_dict,
|
140 |
+
)
|
141 |
+
logits = outputs.logits
|
142 |
+
|
143 |
+
loss = None
|
144 |
+
if labels is not None:
|
145 |
+
# Shift so that tokens < n predict n
|
146 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
147 |
+
shift_labels = labels[..., 1:].contiguous()
|
148 |
+
# Flatten the tokens
|
149 |
+
loss_fct = CrossEntropyLoss()
|
150 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
151 |
+
shift_labels = shift_labels.view(-1)
|
152 |
+
# Enable model parallelism
|
153 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
154 |
+
loss = loss_fct(shift_logits, shift_labels)
|
155 |
+
|
156 |
+
if not return_dict:
|
157 |
+
output = (logits,) + outputs[1:]
|
158 |
+
return (loss,) + output if loss is not None else output
|
159 |
+
|
160 |
+
return CausalLMOutputWithPast(
|
161 |
+
loss=loss,
|
162 |
+
logits=logits,
|
163 |
+
past_key_values=outputs.past_key_values,
|
164 |
+
hidden_states=outputs.hidden_states,
|
165 |
+
attentions=outputs.attentions,
|
166 |
+
)
|
167 |
+
|
168 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
169 |
+
n, w, h, c = x.size()
|
170 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
171 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
172 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
173 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
174 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
175 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
176 |
+
int(c / (scale_factor * scale_factor)))
|
177 |
+
if self.ps_version == 'v1':
|
178 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
179 |
+
'which results in a transposed image.')
|
180 |
+
else:
|
181 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
182 |
+
return x
|
183 |
+
|
184 |
+
def extract_feature(self, pixel_values):
|
185 |
+
if self.select_layer == -1:
|
186 |
+
vit_embeds = self.vision_model(
|
187 |
+
pixel_values=pixel_values,
|
188 |
+
output_hidden_states=False,
|
189 |
+
return_dict=True).last_hidden_state
|
190 |
+
else:
|
191 |
+
vit_embeds = self.vision_model(
|
192 |
+
pixel_values=pixel_values,
|
193 |
+
output_hidden_states=True,
|
194 |
+
return_dict=True).hidden_states[self.select_layer]
|
195 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
196 |
+
|
197 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
198 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
199 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
200 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
201 |
+
vit_embeds = self.mlp1(vit_embeds)
|
202 |
+
return vit_embeds
|
203 |
+
|
204 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
205 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
206 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
207 |
+
if history is not None or return_history:
|
208 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
209 |
+
raise NotImplementedError
|
210 |
+
|
211 |
+
if image_counts is not None:
|
212 |
+
num_patches_list = image_counts
|
213 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
214 |
+
|
215 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
216 |
+
self.img_context_token_id = img_context_token_id
|
217 |
+
|
218 |
+
if verbose and pixel_values is not None:
|
219 |
+
image_bs = pixel_values.shape[0]
|
220 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
221 |
+
|
222 |
+
queries = []
|
223 |
+
for idx, num_patches in enumerate(num_patches_list):
|
224 |
+
question = questions[idx]
|
225 |
+
if pixel_values is not None and '<image>' not in question:
|
226 |
+
question = '<image>\n' + question
|
227 |
+
template = get_conv_template(self.template)
|
228 |
+
template.system_message = self.system_message
|
229 |
+
template.append_message(template.roles[0], question)
|
230 |
+
template.append_message(template.roles[1], None)
|
231 |
+
query = template.get_prompt()
|
232 |
+
|
233 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
234 |
+
query = query.replace('<image>', image_tokens, 1)
|
235 |
+
queries.append(query)
|
236 |
+
|
237 |
+
tokenizer.padding_side = 'left'
|
238 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
239 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
240 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
241 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
242 |
+
generation_config['eos_token_id'] = eos_token_id
|
243 |
+
generation_output = self.generate(
|
244 |
+
pixel_values=pixel_values,
|
245 |
+
input_ids=input_ids,
|
246 |
+
attention_mask=attention_mask,
|
247 |
+
**generation_config
|
248 |
+
)
|
249 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
250 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
251 |
+
return responses
|
252 |
+
|
253 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
254 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
255 |
+
verbose=False):
|
256 |
+
|
257 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
258 |
+
question = '<image>\n' + question
|
259 |
+
|
260 |
+
if num_patches_list is None:
|
261 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
262 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
263 |
+
|
264 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
265 |
+
self.img_context_token_id = img_context_token_id
|
266 |
+
|
267 |
+
template = get_conv_template(self.template)
|
268 |
+
template.system_message = self.system_message
|
269 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
270 |
+
|
271 |
+
history = [] if history is None else history
|
272 |
+
for (old_question, old_answer) in history:
|
273 |
+
template.append_message(template.roles[0], old_question)
|
274 |
+
template.append_message(template.roles[1], old_answer)
|
275 |
+
template.append_message(template.roles[0], question)
|
276 |
+
template.append_message(template.roles[1], None)
|
277 |
+
query = template.get_prompt()
|
278 |
+
|
279 |
+
if verbose and pixel_values is not None:
|
280 |
+
image_bs = pixel_values.shape[0]
|
281 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
282 |
+
|
283 |
+
for num_patches in num_patches_list:
|
284 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
285 |
+
query = query.replace('<image>', image_tokens, 1)
|
286 |
+
|
287 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
288 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
289 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
290 |
+
generation_config['eos_token_id'] = eos_token_id
|
291 |
+
generation_output = self.generate(
|
292 |
+
pixel_values=pixel_values,
|
293 |
+
input_ids=input_ids,
|
294 |
+
attention_mask=attention_mask,
|
295 |
+
**generation_config
|
296 |
+
)
|
297 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
298 |
+
response = response.split(template.sep.strip())[0].strip()
|
299 |
+
history.append((question, response))
|
300 |
+
if return_history:
|
301 |
+
return response, history
|
302 |
+
else:
|
303 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
304 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
305 |
+
if verbose:
|
306 |
+
print(query_to_print, response)
|
307 |
+
return response
|
308 |
+
|
309 |
+
@torch.no_grad()
|
310 |
+
def generate(
|
311 |
+
self,
|
312 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
313 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
314 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
315 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
316 |
+
generation_config: Optional[GenerationConfig] = None,
|
317 |
+
output_hidden_states: Optional[bool] = None,
|
318 |
+
**generate_kwargs,
|
319 |
+
) -> torch.LongTensor:
|
320 |
+
|
321 |
+
assert self.img_context_token_id is not None
|
322 |
+
if pixel_values is not None:
|
323 |
+
if visual_features is not None:
|
324 |
+
vit_embeds = visual_features
|
325 |
+
else:
|
326 |
+
vit_embeds = self.extract_feature(pixel_values)
|
327 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
328 |
+
B, N, C = input_embeds.shape
|
329 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
330 |
+
|
331 |
+
input_ids = input_ids.reshape(B * N)
|
332 |
+
selected = (input_ids == self.img_context_token_id)
|
333 |
+
assert selected.sum() != 0
|
334 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
335 |
+
|
336 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
337 |
+
else:
|
338 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
339 |
+
|
340 |
+
outputs = self.language_model.generate(
|
341 |
+
inputs_embeds=input_embeds,
|
342 |
+
attention_mask=attention_mask,
|
343 |
+
generation_config=generation_config,
|
344 |
+
output_hidden_states=output_hidden_states,
|
345 |
+
use_cache=True,
|
346 |
+
**generate_kwargs,
|
347 |
+
)
|
348 |
+
|
349 |
+
return outputs
|
modeling_whisper.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processing_whisper.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Speech processor class for Whisper
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from transformers.processing_utils import ProcessorMixin
|
21 |
+
import torch
|
22 |
+
|
23 |
+
class WhisperProcessor(ProcessorMixin):
|
24 |
+
r"""
|
25 |
+
Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single
|
26 |
+
processor.
|
27 |
+
|
28 |
+
[`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See
|
29 |
+
the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
feature_extractor (`WhisperFeatureExtractor`):
|
33 |
+
An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input.
|
34 |
+
tokenizer (`WhisperTokenizer`):
|
35 |
+
An instance of [`WhisperTokenizer`]. The tokenizer is a required input.
|
36 |
+
"""
|
37 |
+
attributes = ["feature_extractor"]
|
38 |
+
feature_extractor_class = "WhisperFeatureExtractor"
|
39 |
+
# tokenizer_class = "WhisperTokenizer"
|
40 |
+
|
41 |
+
def __init__(self, feature_extractor):
|
42 |
+
super().__init__(feature_extractor)
|
43 |
+
self.current_processor = self.feature_extractor
|
44 |
+
self._in_target_context_manager = False
|
45 |
+
|
46 |
+
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
|
47 |
+
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
|
48 |
+
|
49 |
+
def get_T_after_cnn(self,L_in, dilation=1):
|
50 |
+
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
|
51 |
+
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
|
52 |
+
L_out = 1 + L_out // stride
|
53 |
+
L_in = L_out
|
54 |
+
return L_out
|
55 |
+
|
56 |
+
def __call__(self, *args, **kwargs):
|
57 |
+
"""
|
58 |
+
Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text`
|
59 |
+
argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
|
60 |
+
information.
|
61 |
+
"""
|
62 |
+
# For backward compatibility
|
63 |
+
if self._in_target_context_manager:
|
64 |
+
return self.current_processor(*args, **kwargs)
|
65 |
+
|
66 |
+
audio = kwargs.pop("audio", None)
|
67 |
+
sampling_rate = kwargs.pop("sampling_rate", 16000)
|
68 |
+
text = kwargs.pop("text", None)
|
69 |
+
if len(args) > 0:
|
70 |
+
audio = args[0]
|
71 |
+
args = args[1:]
|
72 |
+
|
73 |
+
if audio is None and text is None:
|
74 |
+
raise ValueError("You need to specify either an `audio` or `text` input to process.")
|
75 |
+
|
76 |
+
if audio is not None:
|
77 |
+
L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000) # max_length < 30s
|
78 |
+
mel_len = L // 160
|
79 |
+
audio_len_after_cnn = self.get_T_after_cnn(mel_len)
|
80 |
+
audio_token_num = (audio_len_after_cnn - 2) // 2 + 1
|
81 |
+
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
|
82 |
+
inputs['audio_len_after_cnn'] = torch.tensor(audio_len_after_cnn, dtype=torch.long)
|
83 |
+
inputs['audio_token_num'] = torch.tensor(audio_token_num, dtype=torch.long)
|
84 |
+
if text is not None:
|
85 |
+
encodings = self.tokenizer(text, **kwargs)
|
86 |
+
|
87 |
+
if text is None:
|
88 |
+
return inputs
|
89 |
+
|
90 |
+
elif audio is None:
|
91 |
+
return encodings
|
92 |
+
else:
|
93 |
+
inputs["labels"] = encodings["input_ids"]
|
94 |
+
return inputs
|
95 |
+
|
96 |
+
def batch_decode(self, *args, **kwargs):
|
97 |
+
"""
|
98 |
+
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
99 |
+
refer to the docstring of this method for more information.
|
100 |
+
"""
|
101 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
102 |
+
|
103 |
+
def decode(self, *args, **kwargs):
|
104 |
+
"""
|
105 |
+
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
106 |
+
the docstring of this method for more information.
|
107 |
+
"""
|
108 |
+
return self.tokenizer.decode(*args, **kwargs)
|
109 |
+
|
110 |
+
def get_prompt_ids(self, text: str, return_tensors="np"):
|
111 |
+
return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)
|