taochenxin commited on
Commit
d4495bc
1 Parent(s): b9aec36

release model

Browse files
README.md CHANGED
@@ -1,3 +1,215 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ ---
5
+ license: mit
6
+ pipeline_tag: image-text-to-text
7
+ library_name: transformers
8
+ base_model:
9
+ - internlm/internlm2-chat-1_8b
10
+ base_model_relation: merge
11
+ language:
12
+ - multilingual
13
+ tags:
14
+ - internvl
15
+ - vision-language model
16
+ - monolithic
17
+ ---
18
+ # HoVLE
19
+
20
+ [\[📜 HoVLE Paper\]]() [\[🚀 Quick Start\]](#quick-start)
21
+
22
+ <a id="radar"></a>
23
+
24
+
25
+ ## Introduction
26
+
27
+ <p align="middle">
28
+ <img src="assets/intro.png" width="95%" />
29
+ </p>
30
+
31
+ We introduce **HoVLE**, a novel monolithic vision-language model (VLM) that processes images and texts in a unified manner. HoVLE introduces a holistic embedding module that projects image and text inputs into a shared embedding space, allowing the Large Language Model (LLM) to interpret images in the same way as texts.
32
+
33
+ HoVLE significantly surpasses previous monolithic VLMs and demonstrates competitive performance with compositional VLMs. This work narrows the gap between monolithic and compositional VLMs, providing a promising direction for the development of monolithic VLMs.
34
+
35
+ This repository releases the HoVLE model with 2.6B parameters. It is built upon [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b). Please refer to [HoVLE (HD)](https://huggingface.co/taochenxin/HoVLE-HD) for the high-definition version. For more details, please refer to our [paper]().
36
+
37
+
38
+ ## Model Details
39
+ <p align="middle">
40
+ <img src="assets/overview.png" width="90%" />
41
+ </p>
42
+
43
+ | | Details |
44
+ | :---------------------------: | :---------- |
45
+ | Architecture | The whole model consists of a holistic embedding module and an LLM. The holistic embedding module consists of the same causal Transformer layers as the LLM. It accepts both images and texts as input, and projects them into a unified embedding space. These embeddings are then forwarded into the LLM, constituting a monolithic VLM. |
46
+ | Stage I (Distillation) | The first stage trains the holistic embedding module to distill the image feature from a pre-trained visual encoder and the text embeddings from an LLM, providing general encoding abilities. Only the holistic embedding module is trainable. |
47
+ | Stage II (Alignment) | The second stage combines the holistic embedding module with the LLM to perform auto-regressive training, aligning different modalities to a shared embedding space. Only the holistic embedding module is trainable. |
48
+ | Stage III (Instruction Tuning) | A visual instruction tuning stage is incorporated to further strengthen the whole VLM to follow instructions. The whole model is trainable. |
49
+
50
+
51
+
52
+ ## Performance
53
+ <p align="middle">
54
+ <img src="assets/performance1.png" width="90%" />
55
+ </p>
56
+ <p align="middle">
57
+ <img src="assets/performance2.png" width="90%" />
58
+ </p>
59
+
60
+ - Sources of the results include the original papers, our evaluation with [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), and [OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME).
61
+ - Please note that evaluating the same model using different testing toolkits can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
62
+
63
+
64
+
65
+ Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
66
+
67
+
68
+
69
+ ## Quick Start
70
+
71
+ We provide an example code to run HoVLE inference using `transformers`.
72
+
73
+ > Please use transformers==4.37.2 to ensure the model works normally.
74
+
75
+
76
+ ### Inference with Transformers
77
+
78
+ ```python
79
+ import numpy as np
80
+ import torch
81
+ import torchvision.transforms as T
82
+ from decord import VideoReader, cpu
83
+ from PIL import Image
84
+ from torchvision.transforms.functional import InterpolationMode
85
+ from transformers import AutoModel, AutoTokenizer
86
+
87
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
88
+ IMAGENET_STD = (0.229, 0.224, 0.225)
89
+
90
+ def build_transform(input_size):
91
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
92
+ transform = T.Compose([
93
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
94
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
95
+ T.ToTensor(),
96
+ T.Normalize(mean=MEAN, std=STD)
97
+ ])
98
+ return transform
99
+
100
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
101
+ best_ratio_diff = float('inf')
102
+ best_ratio = (1, 1)
103
+ area = width * height
104
+ for ratio in target_ratios:
105
+ target_aspect_ratio = ratio[0] / ratio[1]
106
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
107
+ if ratio_diff < best_ratio_diff:
108
+ best_ratio_diff = ratio_diff
109
+ best_ratio = ratio
110
+ elif ratio_diff == best_ratio_diff:
111
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
112
+ best_ratio = ratio
113
+ return best_ratio
114
+
115
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
116
+ orig_width, orig_height = image.size
117
+ aspect_ratio = orig_width / orig_height
118
+
119
+ # calculate the existing image aspect ratio
120
+ target_ratios = set(
121
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
122
+ i * j <= max_num and i * j >= min_num)
123
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
124
+
125
+ # find the closest aspect ratio to the target
126
+ target_aspect_ratio = find_closest_aspect_ratio(
127
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
128
+
129
+ # calculate the target width and height
130
+ target_width = image_size * target_aspect_ratio[0]
131
+ target_height = image_size * target_aspect_ratio[1]
132
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
133
+
134
+ # resize the image
135
+ resized_img = image.resize((target_width, target_height))
136
+ processed_images = []
137
+ for i in range(blocks):
138
+ box = (
139
+ (i % (target_width // image_size)) * image_size,
140
+ (i // (target_width // image_size)) * image_size,
141
+ ((i % (target_width // image_size)) + 1) * image_size,
142
+ ((i // (target_width // image_size)) + 1) * image_size
143
+ )
144
+ # split the image
145
+ split_img = resized_img.crop(box)
146
+ processed_images.append(split_img)
147
+ assert len(processed_images) == blocks
148
+ if use_thumbnail and len(processed_images) != 1:
149
+ thumbnail_img = image.resize((image_size, image_size))
150
+ processed_images.append(thumbnail_img)
151
+ return processed_images
152
+
153
+ def load_image(image_file, input_size=448, max_num=12):
154
+ image = Image.open(image_file).convert('RGB')
155
+ transform = build_transform(input_size=input_size)
156
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
157
+ pixel_values = [transform(image) for image in images]
158
+ pixel_values = torch.stack(pixel_values)
159
+ return pixel_values
160
+
161
+
162
+ path = 'taochenxin/HoVLE/'
163
+ model = AutoModel.from_pretrained(
164
+ path,
165
+ torch_dtype=torch.bfloat16,
166
+ low_cpu_mem_usage=True,
167
+ trust_remote_code=True).eval().cuda()
168
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
169
+
170
+ # set the max number of tiles in `max_num`
171
+ pixel_values = load_image('./examples_image.jpg', max_num=12).to(torch.bfloat16).cuda()
172
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
173
+
174
+ # pure-text conversation (纯文本对话)
175
+ question = 'Hello, who are you?'
176
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
177
+ print(f'User: {question}\nAssistant: {response}')
178
+
179
+ question = 'Can you tell me a story?'
180
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
181
+ print(f'User: {question}\nAssistant: {response}')
182
+
183
+ # single-image single-round conversation (单图单轮对话)
184
+ question = '<image>\nPlease describe the image shortly.'
185
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
186
+ print(f'User: {question}\nAssistant: {response}')
187
+
188
+ # single-image multi-round conversation (单图多轮对话)
189
+ question = '<image>\nPlease describe the image in detail.'
190
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
191
+ print(f'User: {question}\nAssistant: {response}')
192
+
193
+ question = 'Please write a poem according to the image.'
194
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
195
+ print(f'User: {question}\nAssistant: {response}')
196
+
197
+ ```
198
+
199
+
200
+ ## License
201
+
202
+ This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
203
+
204
+ ## Citation
205
+
206
+ If you find this project useful in your research, please consider citing:
207
+
208
+ ```BibTeX
209
+ @article{tao2024hovle,
210
+ title={HoVLE: Unleashing the Power of Monolithic Vision-Language Models with Holistic Vision-Language Embedding},
211
+ author={Tao, Chenxin and Su, Shiqian and Zhu, Xizhou and Zhang, Chenyu and Chen, Zhe and Liu, Jiawen and Wang, Wenhai and Lu, Lewei and Huang, Gao and Qiao, Yu and Dai, Jifeng},
212
+ journal={},
213
+ year={2024}
214
+ }
215
+ ```
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
assets/arch_comparison.png ADDED
assets/intro.png ADDED
assets/overview.png ADDED
assets/performance1.png ADDED
assets/performance2.png ADDED
assets/radar.png ADDED
config.json ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "embedding_config": {
14
+ "add_cross_attention": false,
15
+ "architectures": null,
16
+ "attention_bias": false,
17
+ "attention_dropout": 0.0,
18
+ "attn_implementation": "flash_attention_2",
19
+ "bad_words_ids": null,
20
+ "begin_suppress_tokens": null,
21
+ "bos_token_id": null,
22
+ "chunk_size_feed_forward": 0,
23
+ "cross_attention_hidden_size": null,
24
+ "decoder_start_token_id": null,
25
+ "diversity_penalty": 0.0,
26
+ "do_sample": false,
27
+ "downsample_ratio": 0.5,
28
+ "drop_path_rate": 0.0,
29
+ "dropout": 0.0,
30
+ "early_stopping": false,
31
+ "encoder_no_repeat_ngram_size": 0,
32
+ "eos_token_id": null,
33
+ "exponential_decay_length_penalty": null,
34
+ "finetuning_task": null,
35
+ "forced_bos_token_id": null,
36
+ "forced_eos_token_id": null,
37
+ "hidden_act": "silu",
38
+ "hidden_size": 2048,
39
+ "id2label": {
40
+ "0": "LABEL_0",
41
+ "1": "LABEL_1"
42
+ },
43
+ "image_size": 448,
44
+ "img_context_token_id": 92546,
45
+ "initializer_factor": 1e-05,
46
+ "initializer_range": 0.02,
47
+ "intermediate_size": 8192,
48
+ "is_decoder": false,
49
+ "is_encoder_decoder": false,
50
+ "label2id": {
51
+ "LABEL_0": 0,
52
+ "LABEL_1": 1
53
+ },
54
+ "layer_norm_eps": 1e-06,
55
+ "length_penalty": 1.0,
56
+ "llm_hidden_size": 2048,
57
+ "llm_vocab_size": 92553,
58
+ "max_length": 20,
59
+ "max_position_embeddings": 32768,
60
+ "min_length": 0,
61
+ "mlp_bias": false,
62
+ "no_repeat_ngram_size": 0,
63
+ "norm_type": "rms_norm",
64
+ "num_attention_heads": 16,
65
+ "num_beam_groups": 1,
66
+ "num_beams": 1,
67
+ "num_channels": 3,
68
+ "num_hidden_layers": 8,
69
+ "num_key_value_heads": 8,
70
+ "num_return_sequences": 1,
71
+ "output_attentions": false,
72
+ "output_hidden_states": false,
73
+ "output_scores": false,
74
+ "pad_token_id": null,
75
+ "patch_size": 14,
76
+ "pixel_shuffle_loc": "pre",
77
+ "prefix": null,
78
+ "pretraining_tp": 1,
79
+ "problem_type": null,
80
+ "pruned_heads": {},
81
+ "qk_normalization": true,
82
+ "qkv_bias": false,
83
+ "remove_invalid_values": false,
84
+ "repetition_penalty": 1.0,
85
+ "return_dict": true,
86
+ "return_dict_in_generate": false,
87
+ "rms_norm_eps": 1e-05,
88
+ "rope_scaling": null,
89
+ "rope_theta": 1000000.0,
90
+ "sep_token_id": null,
91
+ "special_token_maps": {},
92
+ "suppress_tokens": null,
93
+ "target_hidden_size": 2048,
94
+ "task_specific_params": null,
95
+ "temperature": 1.0,
96
+ "tf_legacy_loss": false,
97
+ "tie_encoder_decoder": false,
98
+ "tie_word_embeddings": true,
99
+ "tokenizer_class": null,
100
+ "top_k": 50,
101
+ "top_p": 1.0,
102
+ "torch_dtype": null,
103
+ "torchscript": false,
104
+ "transformers_version": "4.42.4",
105
+ "typical_p": 1.0,
106
+ "use_autoregressive_loss": false,
107
+ "use_bfloat16": false,
108
+ "use_flash_attn": true,
109
+ "use_img_start_end_tokens": true,
110
+ "use_ls": false,
111
+ "use_pixel_shuffle_proj": true
112
+ },
113
+ "force_image_size": 448,
114
+ "llm_config": {
115
+ "add_cross_attention": false,
116
+ "architectures": [
117
+ "InternLM2ForCausalLM"
118
+ ],
119
+ "attn_implementation": "flash_attention_2",
120
+ "auto_map": {
121
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
122
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
123
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
124
+ },
125
+ "bad_words_ids": null,
126
+ "begin_suppress_tokens": null,
127
+ "bias": false,
128
+ "bos_token_id": 1,
129
+ "chunk_size_feed_forward": 0,
130
+ "cross_attention_hidden_size": null,
131
+ "decoder_start_token_id": null,
132
+ "diversity_penalty": 0.0,
133
+ "do_sample": false,
134
+ "early_stopping": false,
135
+ "encoder_no_repeat_ngram_size": 0,
136
+ "eos_token_id": 2,
137
+ "exponential_decay_length_penalty": null,
138
+ "finetuning_task": null,
139
+ "forced_bos_token_id": null,
140
+ "forced_eos_token_id": null,
141
+ "hidden_act": "silu",
142
+ "hidden_size": 2048,
143
+ "id2label": {
144
+ "0": "LABEL_0",
145
+ "1": "LABEL_1"
146
+ },
147
+ "initializer_range": 0.02,
148
+ "intermediate_size": 8192,
149
+ "is_decoder": false,
150
+ "is_encoder_decoder": false,
151
+ "label2id": {
152
+ "LABEL_0": 0,
153
+ "LABEL_1": 1
154
+ },
155
+ "length_penalty": 1.0,
156
+ "max_length": 20,
157
+ "max_position_embeddings": 32768,
158
+ "min_length": 0,
159
+ "model_type": "internlm2",
160
+ "no_repeat_ngram_size": 0,
161
+ "num_attention_heads": 16,
162
+ "num_beam_groups": 1,
163
+ "num_beams": 1,
164
+ "num_hidden_layers": 24,
165
+ "num_key_value_heads": 8,
166
+ "num_return_sequences": 1,
167
+ "output_attentions": false,
168
+ "output_hidden_states": false,
169
+ "output_scores": false,
170
+ "pad_token_id": 2,
171
+ "prefix": null,
172
+ "problem_type": null,
173
+ "pruned_heads": {},
174
+ "remove_invalid_values": false,
175
+ "repetition_penalty": 1.0,
176
+ "return_dict": true,
177
+ "return_dict_in_generate": false,
178
+ "rms_norm_eps": 1e-05,
179
+ "rope_scaling": {
180
+ "factor": 2.0,
181
+ "type": "dynamic"
182
+ },
183
+ "rope_theta": 1000000,
184
+ "sep_token_id": null,
185
+ "suppress_tokens": null,
186
+ "task_specific_params": null,
187
+ "temperature": 1.0,
188
+ "tf_legacy_loss": false,
189
+ "tie_encoder_decoder": false,
190
+ "tie_word_embeddings": false,
191
+ "tokenizer_class": null,
192
+ "top_k": 50,
193
+ "top_p": 1.0,
194
+ "torch_dtype": "bfloat16",
195
+ "torchscript": false,
196
+ "transformers_version": "4.42.4",
197
+ "typical_p": 1.0,
198
+ "use_bfloat16": true,
199
+ "use_cache": false,
200
+ "vocab_size": 92553
201
+ },
202
+ "max_dynamic_patch": 12,
203
+ "min_dynamic_patch": 1,
204
+ "model_type": "internvl_chat",
205
+ "normalize_encoder_output": true,
206
+ "pad2square": false,
207
+ "ps_version": "v2",
208
+ "select_layer": -1,
209
+ "template": "internlm2-chat",
210
+ "torch_dtype": "bfloat16",
211
+ "transformers_version": null,
212
+ "use_backbone_lora": 0,
213
+ "use_llm_lora": 0,
214
+ "use_mlp": false,
215
+ "use_thumbnail": true
216
+ }
configuration_holistic_embedding.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+ import json
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class HolisticEmbeddingConfig(PretrainedConfig):
17
+
18
+ model_type = 'holistic_embedding'
19
+
20
+ def __init__(
21
+ self,
22
+ num_hidden_layers=32,
23
+ initializer_factor=1e-5,
24
+ use_autoregressive_loss=False,
25
+ # vision embedding
26
+ num_channels=3,
27
+ patch_size=14,
28
+ image_size=224,
29
+ # attention layer
30
+ hidden_size=4096,
31
+ num_attention_heads=32,
32
+ num_key_value_heads=32,
33
+ attention_bias=False,
34
+ attention_dropout=0.0,
35
+ max_position_embeddings=4096,
36
+ rope_theta=10000.0,
37
+ rope_scaling=None,
38
+ # mlp layer
39
+ intermediate_size=11008,
40
+ mlp_bias=False,
41
+ hidden_act='silu',
42
+ # rms norm
43
+ rms_norm_eps=1e-5,
44
+ # pretraining
45
+ pretraining_tp=1,
46
+ use_ls=True,
47
+ use_img_start_end_tokens=True,
48
+ special_token_maps={},
49
+ llm_vocab_size=92553,
50
+ llm_hidden_size=2048,
51
+ attn_implementation='flash_attention_2',
52
+ downsample_ratio=0.5,
53
+ img_context_token_id=92546,
54
+ pixel_shuffle_loc="pre",
55
+ **kwargs,
56
+ ):
57
+ super().__init__(**kwargs)
58
+
59
+ self.num_hidden_layers = num_hidden_layers
60
+ self.initializer_factor = initializer_factor
61
+ self.use_autoregressive_loss = use_autoregressive_loss
62
+
63
+ self.num_channels = num_channels
64
+ self.patch_size = patch_size
65
+ self.image_size = image_size
66
+
67
+ self.hidden_size = hidden_size
68
+ self.num_attention_heads = num_attention_heads
69
+ self.num_key_value_heads = num_key_value_heads
70
+ self.attention_bias = attention_bias
71
+ self.attention_dropout = attention_dropout
72
+ self.max_position_embeddings = max_position_embeddings
73
+ self.rope_theta = rope_theta
74
+ self.rope_scaling = rope_scaling
75
+
76
+ self.intermediate_size = intermediate_size
77
+ self.mlp_bias = mlp_bias
78
+ self.hidden_act = hidden_act
79
+
80
+ self.rms_norm_eps = rms_norm_eps
81
+
82
+ self.pretraining_tp = pretraining_tp
83
+ self.use_ls = use_ls
84
+ self.use_img_start_end_tokens = use_img_start_end_tokens
85
+
86
+ self.special_token_maps = special_token_maps
87
+ self.llm_vocab_size = llm_vocab_size
88
+ self.llm_hidden_size = llm_hidden_size
89
+ self.attn_implementation = attn_implementation
90
+ self.downsample_ratio = downsample_ratio
91
+ self.img_context_token_id = img_context_token_id
92
+ self.pixel_shuffle_loc = pixel_shuffle_loc
93
+
94
+ @classmethod
95
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
96
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
97
+
98
+ if 'vision_config' in config_dict:
99
+ config_dict = config_dict['vision_config']
100
+
101
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
102
+ logger.warning(
103
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
104
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
105
+ )
106
+
107
+ return cls.from_dict(config_dict, **kwargs)
108
+
109
+ @classmethod
110
+ def from_dict_path(cls, config_path):
111
+ with open(config_path, 'r') as f:
112
+ config_dict = json.load(f)
113
+
114
+ return cls.from_dict(config_dict)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from .configuration_internlm2 import InternLM2Config
10
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
11
+ from transformers.configuration_utils import PretrainedConfig
12
+ from transformers.utils import logging
13
+
14
+ from .configuration_holistic_embedding import HolisticEmbeddingConfig
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ embedding_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ pad2square=False,
30
+ select_layer=-1,
31
+ force_image_size=None,
32
+ downsample_ratio=0.5,
33
+ template=None,
34
+ dynamic_image_size=False,
35
+ use_thumbnail=False,
36
+ ps_version='v1',
37
+ min_dynamic_patch=1,
38
+ max_dynamic_patch=6,
39
+ normalize_encoder_output=False,
40
+ **kwargs):
41
+ super().__init__(**kwargs)
42
+
43
+ if embedding_config is None:
44
+ embedding_config = {}
45
+ logger.info('embedding_config is None. Initializing the InternVisionConfig with default values.')
46
+
47
+ if llm_config is None:
48
+ llm_config = {}
49
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
50
+
51
+ self.embedding_config = HolisticEmbeddingConfig(**embedding_config)
52
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
53
+ self.llm_config = LlamaConfig(**llm_config)
54
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
55
+ self.llm_config = InternLM2Config(**llm_config)
56
+ elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
57
+ self.llm_config = Phi3Config(**llm_config)
58
+ elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
59
+ self.llm_config = Qwen2Config(**llm_config)
60
+ else:
61
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
62
+ self.use_backbone_lora = use_backbone_lora
63
+ self.use_llm_lora = use_llm_lora
64
+ self.pad2square = pad2square
65
+ self.select_layer = select_layer
66
+ self.force_image_size = force_image_size
67
+ self.downsample_ratio = downsample_ratio
68
+ self.template = template
69
+ self.dynamic_image_size = dynamic_image_size
70
+ self.use_thumbnail = use_thumbnail
71
+ self.ps_version = ps_version # pixel shuffle version
72
+ self.min_dynamic_patch = min_dynamic_patch
73
+ self.max_dynamic_patch = max_dynamic_patch
74
+ self.normalize_encoder_output = normalize_encoder_output
75
+
76
+ logger.info(f'vision_select_layer: {self.select_layer}')
77
+ logger.info(f'ps_version: {self.ps_version}')
78
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
79
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
80
+
81
+ def to_dict(self):
82
+ """
83
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
84
+
85
+ Returns:
86
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
87
+ """
88
+ output = copy.deepcopy(self.__dict__)
89
+ output['embedding_config'] = self.embedding_config.to_dict()
90
+ output['llm_config'] = self.llm_config.to_dict()
91
+ output['model_type'] = self.__class__.model_type
92
+ output['use_backbone_lora'] = self.use_backbone_lora
93
+ output['use_llm_lora'] = self.use_llm_lora
94
+ output['pad2square'] = self.pad2square
95
+ output['select_layer'] = self.select_layer
96
+ output['force_image_size'] = self.force_image_size
97
+ output['downsample_ratio'] = self.downsample_ratio
98
+ output['template'] = self.template
99
+ output['dynamic_image_size'] = self.dynamic_image_size
100
+ output['use_thumbnail'] = self.use_thumbnail
101
+ output['ps_version'] = self.ps_version
102
+ output['min_dynamic_patch'] = self.min_dynamic_patch
103
+ output['max_dynamic_patch'] = self.max_dynamic_patch
104
+ output['normalize_encoder_output'] = self.normalize_encoder_output
105
+
106
+ return output
conversation.py ADDED
@@ -0,0 +1,1368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+ BASE = auto()
35
+
36
+
37
+ @dataclasses.dataclass
38
+ class Conversation:
39
+ """A class that manages prompt templates and keeps all conversation history."""
40
+
41
+ # The name of this template
42
+ name: str
43
+ # The template of the system prompt
44
+ system_template: str = '{system_message}'
45
+ # The system message
46
+ system_message: str = ''
47
+ # The names of two roles
48
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
49
+ # All messages. Each item is (role, message).
50
+ messages: List[List[str]] = ()
51
+ # The number of few shot examples
52
+ offset: int = 0
53
+ # The separator style and configurations
54
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
55
+ sep: str = '\n'
56
+ sep2: str = None
57
+ # Stop criteria (the default one is EOS token)
58
+ stop_str: Union[str, List[str]] = None
59
+ # Stops generation if meeting any token in this list
60
+ stop_token_ids: List[int] = None
61
+
62
+ def get_prompt(self) -> str:
63
+ """Get the prompt for generation."""
64
+ system_prompt = self.system_template.format(system_message=self.system_message)
65
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
66
+ ret = system_prompt + self.sep
67
+ for role, message in self.messages:
68
+ if message:
69
+ ret += role + ': ' + message + self.sep
70
+ else:
71
+ ret += role + ':'
72
+ return ret
73
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
74
+ seps = [self.sep, self.sep2]
75
+ ret = system_prompt + seps[0]
76
+ for i, (role, message) in enumerate(self.messages):
77
+ if message:
78
+ ret += role + ': ' + message + seps[i % 2]
79
+ else:
80
+ ret += role + ':'
81
+ return ret
82
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
83
+ ret = system_prompt + self.sep
84
+ for role, message in self.messages:
85
+ if message:
86
+ ret += role + ': ' + message + self.sep
87
+ else:
88
+ ret += role + ': ' # must be end with a space
89
+ return ret
90
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
91
+ ret = '' if system_prompt == '' else system_prompt + self.sep
92
+ for role, message in self.messages:
93
+ if message:
94
+ ret += role + '\n' + message + self.sep
95
+ else:
96
+ ret += role + '\n'
97
+ return ret
98
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
99
+ ret = system_prompt
100
+ for role, message in self.messages:
101
+ if message:
102
+ ret += role + message + self.sep
103
+ else:
104
+ ret += role
105
+ return ret
106
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
107
+ seps = [self.sep, self.sep2]
108
+ ret = system_prompt
109
+ for i, (role, message) in enumerate(self.messages):
110
+ if message:
111
+ ret += role + message + seps[i % 2]
112
+ else:
113
+ ret += role
114
+ return ret
115
+ elif self.sep_style == SeparatorStyle.RWKV:
116
+ ret = system_prompt
117
+ for i, (role, message) in enumerate(self.messages):
118
+ if message:
119
+ ret += (
120
+ role
121
+ + ': '
122
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
123
+ )
124
+ ret += '\n\n'
125
+ else:
126
+ ret += role + ':'
127
+ return ret
128
+ elif self.sep_style == SeparatorStyle.LLAMA2:
129
+ seps = [self.sep, self.sep2]
130
+ if self.system_message:
131
+ ret = system_prompt
132
+ else:
133
+ ret = '[INST] '
134
+ for i, (role, message) in enumerate(self.messages):
135
+ tag = self.roles[i % 2]
136
+ if message:
137
+ if i == 0:
138
+ ret += message + ' '
139
+ else:
140
+ ret += tag + ' ' + message + seps[i % 2]
141
+ else:
142
+ ret += tag
143
+ return ret
144
+ elif self.sep_style == SeparatorStyle.CHATGLM:
145
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
146
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
147
+ round_add_n = 1 if self.name == 'chatglm2' else 0
148
+ if system_prompt:
149
+ ret = system_prompt + self.sep
150
+ else:
151
+ ret = ''
152
+
153
+ for i, (role, message) in enumerate(self.messages):
154
+ if i % 2 == 0:
155
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
156
+
157
+ if message:
158
+ ret += f'{role}:{message}{self.sep}'
159
+ else:
160
+ ret += f'{role}:'
161
+ return ret
162
+ elif self.sep_style == SeparatorStyle.CHATML:
163
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
164
+ for role, message in self.messages:
165
+ if message:
166
+ ret += role + '\n' + message + self.sep + '\n'
167
+ else:
168
+ ret += role + '\n'
169
+ return ret
170
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
171
+ ret = ''
172
+ if self.system_message:
173
+ ret += system_prompt
174
+ for role, message in self.messages:
175
+ if message:
176
+ ret += role + '\n' + ' ' + message
177
+ else:
178
+ ret += role
179
+ return ret
180
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
181
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
182
+ seps = [self.sep, self.sep2]
183
+ ret = system_prompt
184
+ for i, (role, message) in enumerate(self.messages):
185
+ # if i % 2 == 0:
186
+ # ret += "<s>"
187
+ if message:
188
+ ret += role + ':' + message + seps[i % 2] + '\n'
189
+ else:
190
+ ret += role + ':'
191
+ return ret
192
+ elif self.sep_style == SeparatorStyle.DOLLY:
193
+ seps = [self.sep, self.sep2]
194
+ ret = system_prompt
195
+ for i, (role, message) in enumerate(self.messages):
196
+ if message:
197
+ ret += role + ':\n' + message + seps[i % 2]
198
+ if i % 2 == 1:
199
+ ret += '\n\n'
200
+ else:
201
+ ret += role + ':\n'
202
+ return ret
203
+ elif self.sep_style == SeparatorStyle.PHOENIX:
204
+ ret = system_prompt
205
+ for role, message in self.messages:
206
+ if message:
207
+ ret += role + ': ' + '<s>' + message + '</s>'
208
+ else:
209
+ ret += role + ': ' + '<s>'
210
+ return ret
211
+ elif self.sep_style == SeparatorStyle.ROBIN:
212
+ ret = system_prompt + self.sep
213
+ for role, message in self.messages:
214
+ if message:
215
+ ret += role + ':\n' + message + self.sep
216
+ else:
217
+ ret += role + ':\n'
218
+ return ret
219
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
220
+ ret = ''
221
+ if self.system_message:
222
+ ret += system_prompt + self.sep
223
+ for role, message in self.messages:
224
+ if message:
225
+ ret += role + ': ' + message + self.sep
226
+ else:
227
+ ret += role + ':'
228
+
229
+ return ret
230
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
231
+ seps = [self.sep, self.sep2]
232
+ ret = self.system_message + seps[0]
233
+ for i, (role, message) in enumerate(self.messages):
234
+ if message:
235
+ ret += role + ': ' + message + seps[i % 2]
236
+ else:
237
+ ret += role + ':'
238
+ return ret
239
+ elif self.sep_style == SeparatorStyle.MPT:
240
+ ret = system_prompt + self.sep
241
+ for role, message in self.messages:
242
+ if message:
243
+ if type(message) is tuple:
244
+ message, _, _ = message
245
+ ret += role + message + self.sep
246
+ else:
247
+ ret += role
248
+ return ret
249
+ elif self.sep_style == SeparatorStyle.BASE:
250
+ ret = ''
251
+ for role, message in self.messages:
252
+ if message:
253
+ if type(message) is tuple:
254
+ message, _, _ = message
255
+ ret += role + message.rstrip() + self.sep
256
+ else:
257
+ ret += role
258
+ return ret
259
+ else:
260
+ raise ValueError(f'Invalid style: {self.sep_style}')
261
+
262
+ def set_system_message(self, system_message: str):
263
+ """Set the system message."""
264
+ self.system_message = system_message
265
+
266
+ def append_message(self, role: str, message: str):
267
+ """Append a new message."""
268
+ self.messages.append([role, message])
269
+
270
+ def update_last_message(self, message: str):
271
+ """Update the last output.
272
+
273
+ The last message is typically set to be None when constructing the prompt,
274
+ so we need to update it in-place after getting the response from a model.
275
+ """
276
+ self.messages[-1][1] = message
277
+
278
+ def to_gradio_chatbot(self):
279
+ """Convert the conversation to gradio chatbot format."""
280
+ ret = []
281
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append([msg, None])
284
+ else:
285
+ ret[-1][-1] = msg
286
+ return ret
287
+
288
+ def to_openai_api_messages(self):
289
+ """Convert the conversation to OpenAI chat completion format."""
290
+ ret = [{'role': 'system', 'content': self.system_message}]
291
+
292
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
293
+ if i % 2 == 0:
294
+ ret.append({'role': 'user', 'content': msg})
295
+ else:
296
+ if msg is not None:
297
+ ret.append({'role': 'assistant', 'content': msg})
298
+ return ret
299
+
300
+ def copy(self):
301
+ return Conversation(
302
+ name=self.name,
303
+ system_template=self.system_template,
304
+ system_message=self.system_message,
305
+ roles=self.roles,
306
+ messages=[[x, y] for x, y in self.messages],
307
+ offset=self.offset,
308
+ sep_style=self.sep_style,
309
+ sep=self.sep,
310
+ sep2=self.sep2,
311
+ stop_str=self.stop_str,
312
+ stop_token_ids=self.stop_token_ids,
313
+ )
314
+
315
+ def dict(self):
316
+ return {
317
+ 'template_name': self.name,
318
+ 'system_message': self.system_message,
319
+ 'roles': self.roles,
320
+ 'messages': self.messages,
321
+ 'offset': self.offset,
322
+ }
323
+
324
+
325
+ # A global registry for all conversation templates
326
+ conv_templates: Dict[str, Conversation] = {}
327
+
328
+
329
+ def register_conv_template(template: Conversation, override: bool = False):
330
+ """Register a new conversation template."""
331
+ if not override:
332
+ assert (
333
+ template.name not in conv_templates
334
+ ), f'{template.name} has been registered.'
335
+
336
+ conv_templates[template.name] = template
337
+
338
+
339
+ def get_conv_template(name: str) -> Conversation:
340
+ """Get a conversation template."""
341
+ return conv_templates[name].copy()
342
+
343
+
344
+ # An empty template for raw conversation.
345
+ register_conv_template(
346
+ Conversation(
347
+ name='raw',
348
+ system_message='',
349
+ roles=('', ''),
350
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
351
+ sep='',
352
+ )
353
+ )
354
+
355
+ # A template with a one-shot conversation example
356
+ register_conv_template(
357
+ Conversation(
358
+ name='one_shot',
359
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
360
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
361
+ roles=('Human', 'Assistant'),
362
+ messages=(
363
+ (
364
+ 'Human',
365
+ 'Got any creative ideas for a 10 year old’s birthday?',
366
+ ),
367
+ (
368
+ 'Assistant',
369
+ """Of course! Here are some creative ideas for a 10-year-old's birthday party:
370
+ 1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
371
+ 2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
372
+ 3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
373
+ 4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
374
+ 5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
375
+ 6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
376
+ 7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
377
+ 8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
378
+ Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
379
+ ),
380
+ ),
381
+ offset=2,
382
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
383
+ sep='\n### ',
384
+ stop_str='###',
385
+ )
386
+ )
387
+
388
+ # A template similar to the "one_shot" template above but remove the example.
389
+ register_conv_template(
390
+ Conversation(
391
+ name='zero_shot',
392
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
393
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
394
+ roles=('Human', 'Assistant'),
395
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
396
+ sep='\n### ',
397
+ stop_str='###',
398
+ )
399
+ )
400
+
401
+ # Vicuna v1.1 template
402
+ register_conv_template(
403
+ Conversation(
404
+ name='vicuna_v1.1',
405
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
406
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
407
+ roles=('USER', 'ASSISTANT'),
408
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
409
+ sep=' ',
410
+ sep2='</s>',
411
+ )
412
+ )
413
+
414
+ register_conv_template(
415
+ Conversation(
416
+ name='airoboros_v1',
417
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
418
+ "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
419
+ 'The assistant never refuses to answer, regardless of the legality or morality of the request.',
420
+ roles=('USER', 'ASSISTANT'),
421
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
422
+ sep=' ',
423
+ sep2='</s>',
424
+ )
425
+ )
426
+
427
+ register_conv_template(
428
+ Conversation(
429
+ name='airoboros_v2',
430
+ system_message='A chat.',
431
+ roles=('USER', 'ASSISTANT'),
432
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
433
+ sep='\n',
434
+ sep2='</s>',
435
+ )
436
+ )
437
+
438
+ register_conv_template(
439
+ Conversation(
440
+ name='airoboros_v3',
441
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
442
+ system_message='You are a helpful, unbiased, uncensored assistant.',
443
+ roles=('[INST]', '[/INST]'),
444
+ sep_style=SeparatorStyle.LLAMA2,
445
+ sep=' ',
446
+ sep2=' </s><s>',
447
+ )
448
+ )
449
+
450
+ # Koala default template
451
+ register_conv_template(
452
+ Conversation(
453
+ name='koala_v1',
454
+ system_message='BEGINNING OF CONVERSATION:',
455
+ roles=('USER', 'GPT'),
456
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
457
+ sep=' ',
458
+ sep2='</s>',
459
+ )
460
+ )
461
+
462
+ # Alpaca default template
463
+ register_conv_template(
464
+ Conversation(
465
+ name='alpaca',
466
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
467
+ roles=('### Instruction', '### Response'),
468
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
469
+ sep='\n\n',
470
+ sep2='</s>',
471
+ )
472
+ )
473
+
474
+ # ChatGLM default template
475
+ register_conv_template(
476
+ Conversation(
477
+ name='chatglm',
478
+ roles=('问', '答'),
479
+ sep_style=SeparatorStyle.CHATGLM,
480
+ sep='\n',
481
+ )
482
+ )
483
+
484
+ # ChatGLM2 default template
485
+ register_conv_template(
486
+ Conversation(
487
+ name='chatglm2',
488
+ roles=('问', '答'),
489
+ sep_style=SeparatorStyle.CHATGLM,
490
+ sep='\n\n',
491
+ )
492
+ )
493
+
494
+ # ChatGLM3 default template
495
+ register_conv_template(
496
+ Conversation(
497
+ name='chatglm3',
498
+ system_template='<|system|>\n {system_message}',
499
+ roles=('<|user|>', '<|assistant|>'),
500
+ sep_style=SeparatorStyle.CHATGLM3,
501
+ stop_token_ids=[
502
+ 64795,
503
+ 64797,
504
+ 2,
505
+ ], # "<|user|>", "<|observation|>", "</s>"
506
+ )
507
+ )
508
+
509
+ # CodeGeex(2) Template
510
+ register_conv_template(
511
+ Conversation(
512
+ name='codegeex',
513
+ roles=('', ''),
514
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
515
+ sep='\n\n',
516
+ stop_token_ids=[0, 2],
517
+ )
518
+ )
519
+
520
+ # Dolly V2 default template
521
+ register_conv_template(
522
+ Conversation(
523
+ name='dolly_v2',
524
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n',
525
+ roles=('### Instruction', '### Response'),
526
+ sep_style=SeparatorStyle.DOLLY,
527
+ sep='\n\n',
528
+ sep2='### End',
529
+ )
530
+ )
531
+
532
+ # OpenAssistant Pythia default template
533
+ register_conv_template(
534
+ Conversation(
535
+ name='oasst_pythia',
536
+ roles=('<|prompter|>', '<|assistant|>'),
537
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
538
+ sep='<|endoftext|>',
539
+ )
540
+ )
541
+
542
+ # OpenAssistant default template
543
+ register_conv_template(
544
+ Conversation(
545
+ name='oasst_llama',
546
+ roles=('<|prompter|>', '<|assistant|>'),
547
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
548
+ sep='</s>',
549
+ )
550
+ )
551
+
552
+ # OpenChat 3.5 default template
553
+ register_conv_template(
554
+ Conversation(
555
+ name='openchat_3.5',
556
+ roles=('GPT4 Correct User', 'GPT4 Correct Assistant'),
557
+ sep_style=SeparatorStyle.FALCON_CHAT,
558
+ sep='<|end_of_turn|>',
559
+ )
560
+ )
561
+
562
+ # Tulu default template
563
+ register_conv_template(
564
+ Conversation(
565
+ name='tulu',
566
+ roles=('<|user|>', '<|assistant|>'),
567
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
568
+ sep='\n',
569
+ )
570
+ )
571
+
572
+ # StableLM Alpha default template
573
+ register_conv_template(
574
+ Conversation(
575
+ name='stablelm',
576
+ system_template='<|SYSTEM|>{system_message}',
577
+ system_message="""# StableLM Tuned (Alpha version)
578
+ - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
579
+ - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
580
+ - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
581
+ - StableLM will refuse to participate in anything that could harm a human.
582
+ """,
583
+ roles=('<|USER|>', '<|ASSISTANT|>'),
584
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
585
+ sep='',
586
+ stop_token_ids=[50278, 50279, 50277, 1, 0],
587
+ )
588
+ )
589
+
590
+ # Baize default template
591
+ register_conv_template(
592
+ Conversation(
593
+ name='baize',
594
+ system_message='The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n',
595
+ roles=('[|Human|]', '[|AI|]'),
596
+ messages=(
597
+ ('[|Human|]', 'Hello!'),
598
+ ('[|AI|]', 'Hi!'),
599
+ ),
600
+ offset=2,
601
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
602
+ sep='\n',
603
+ stop_str='[|Human|]',
604
+ )
605
+ )
606
+
607
+ # RWKV-4-Raven default template
608
+ register_conv_template(
609
+ Conversation(
610
+ name='rwkv',
611
+ roles=('Bob', 'Alice'),
612
+ messages=(
613
+ ('Bob', 'hi'),
614
+ (
615
+ 'Alice',
616
+ 'Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.',
617
+ ),
618
+ ),
619
+ offset=2,
620
+ sep_style=SeparatorStyle.RWKV,
621
+ sep='',
622
+ stop_str='\n\n',
623
+ )
624
+ )
625
+
626
+ # Buddy default template
627
+ register_conv_template(
628
+ Conversation(
629
+ name='openbuddy',
630
+ system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
631
+ Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
632
+ Buddy cannot access the Internet.
633
+ Buddy can fluently speak the user's language (e.g. English, Chinese).
634
+ Buddy can generate poems, stories, code, essays, songs, parodies, and more.
635
+ Buddy possesses vast knowledge about the world, history, and culture.
636
+ Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
637
+ Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
638
+
639
+ User: Hi.
640
+ Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
641
+ roles=('User', 'Assistant'),
642
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
643
+ sep='\n',
644
+ )
645
+ )
646
+
647
+ # Phoenix default template
648
+ register_conv_template(
649
+ Conversation(
650
+ name='phoenix',
651
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
652
+ roles=('Human', 'Assistant'),
653
+ sep_style=SeparatorStyle.PHOENIX,
654
+ sep='</s>',
655
+ )
656
+ )
657
+
658
+ # ReaLM default template
659
+ register_conv_template(
660
+ Conversation(
661
+ name='ReaLM-7b-v1',
662
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
663
+ roles=('Human', 'Assistant'),
664
+ sep_style=SeparatorStyle.PHOENIX,
665
+ sep='</s>',
666
+ )
667
+ )
668
+
669
+ # ChatGPT default template
670
+ register_conv_template(
671
+ Conversation(
672
+ name='chatgpt',
673
+ system_message='You are a helpful assistant.',
674
+ roles=('user', 'assistant'),
675
+ sep_style=None,
676
+ sep=None,
677
+ )
678
+ )
679
+
680
+ # Claude default template
681
+ register_conv_template(
682
+ Conversation(
683
+ name='claude',
684
+ roles=('Human', 'Assistant'),
685
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
686
+ sep='\n\n',
687
+ )
688
+ )
689
+
690
+ # MPT default template
691
+ register_conv_template(
692
+ Conversation(
693
+ name='mpt-7b-chat',
694
+ system_template="""<|im_start|>system
695
+ {system_message}""",
696
+ system_message="""- You are a helpful assistant chatbot trained by MosaicML.
697
+ - You answer questions.
698
+ - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
699
+ - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
700
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
701
+ sep_style=SeparatorStyle.CHATML,
702
+ sep='<|im_end|>',
703
+ stop_token_ids=[50278, 0],
704
+ )
705
+ )
706
+
707
+ # MPT-30b-chat default template
708
+ register_conv_template(
709
+ Conversation(
710
+ name='mpt-30b-chat',
711
+ system_template="""<|im_start|>system
712
+ {system_message}""",
713
+ system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
714
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
715
+ sep_style=SeparatorStyle.CHATML,
716
+ sep='<|im_end|>',
717
+ stop_token_ids=[50278, 0],
718
+ )
719
+ )
720
+
721
+
722
+ register_conv_template(
723
+ Conversation(
724
+ name='Hermes-2',
725
+ system_template='<|im_start|>system\n{system_message}',
726
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
727
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
728
+ sep_style=SeparatorStyle.MPT,
729
+ sep='<|im_end|>',
730
+ stop_token_ids=[
731
+ 2,
732
+ 6,
733
+ 7,
734
+ 8,
735
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
736
+ stop_str='<|endoftext|>',
737
+ )
738
+ )
739
+
740
+
741
+ register_conv_template(
742
+ Conversation(
743
+ name='internlm2-chat',
744
+ system_template='<|im_start|>system\n{system_message}',
745
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
746
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
747
+ sep_style=SeparatorStyle.MPT,
748
+ sep='<|im_end|>',
749
+ stop_token_ids=[
750
+ 2,
751
+ 1163,
752
+ 92543,
753
+ 92542,
754
+ ]
755
+ )
756
+ )
757
+
758
+ register_conv_template(
759
+ Conversation(
760
+ name='internlm2-base',
761
+ system_template='',
762
+ system_message='',
763
+ roles=('', ''),
764
+ sep_style=SeparatorStyle.BASE,
765
+ sep='<|im_end|>',
766
+ stop_token_ids=[
767
+ 2,
768
+ 1163,
769
+ 92543,
770
+ 92542
771
+ ]
772
+ )
773
+ )
774
+
775
+ register_conv_template(
776
+ Conversation(
777
+ name='internlm2-basev0',
778
+ system_template='<|im_start|>system\n{system_message}',
779
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
780
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
781
+ sep_style=SeparatorStyle.MPT,
782
+ sep='[UNUSED_TOKEN_1]', # 从这个token开始后面那群embedding完全一样
783
+ stop_token_ids=[
784
+ 2,
785
+ 1163,
786
+ 92543,
787
+ 92542,
788
+ 92398, # tokenizer.convert_tokens_to_ids('[UNUSED_TOKEN_1]')
789
+ ]
790
+ )
791
+ )
792
+
793
+
794
+ register_conv_template(
795
+ Conversation(
796
+ name='phi3-chat',
797
+ system_template='<|system|>\n{system_message}',
798
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
799
+ roles=('<|user|>\n', '<|assistant|>\n'),
800
+ sep_style=SeparatorStyle.MPT,
801
+ sep='<|end|>',
802
+ stop_token_ids=[
803
+ 2,
804
+ 32000,
805
+ 32007
806
+ ]
807
+ )
808
+ )
809
+
810
+
811
+ # Lemur-70b-chat default template
812
+ # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
813
+ register_conv_template(
814
+ Conversation(
815
+ name='lemur-70b-chat',
816
+ system_template="""<|im_start|>system
817
+ {system_message}""",
818
+ system_message="""You are a helpful, respectful, and honest assistant.""",
819
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
820
+ sep_style=SeparatorStyle.CHATML,
821
+ sep='<|im_end|>',
822
+ stop_token_ids=[32002, 0],
823
+ )
824
+ )
825
+
826
+ # MPT-30b-instruct default template
827
+ # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
828
+ register_conv_template(
829
+ Conversation(
830
+ name='mpt-30b-instruct',
831
+ system_template='{system_message}',
832
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
833
+ roles=('### Instruction', '### Response'),
834
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
835
+ sep='\n\n',
836
+ stop_token_ids=[50278, 0],
837
+ )
838
+ )
839
+
840
+ # Bard default template
841
+ # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
842
+ # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
843
+ register_conv_template(
844
+ Conversation(
845
+ name='bard',
846
+ roles=('0', '1'),
847
+ sep_style=None,
848
+ sep=None,
849
+ )
850
+ )
851
+
852
+ # BiLLa default template
853
+ register_conv_template(
854
+ Conversation(
855
+ name='billa',
856
+ roles=('Human', 'Assistant'),
857
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
858
+ sep='\n',
859
+ stop_str='Human:',
860
+ )
861
+ )
862
+
863
+ # RedPajama INCITE default template
864
+ register_conv_template(
865
+ Conversation(
866
+ name='redpajama-incite',
867
+ roles=('<human>', '<bot>'),
868
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
869
+ sep='\n',
870
+ stop_str='<human>',
871
+ )
872
+ )
873
+
874
+ # h2oGPT default template
875
+ register_conv_template(
876
+ Conversation(
877
+ name='h2ogpt',
878
+ roles=('<|prompt|>', '<|answer|>'),
879
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
880
+ sep='</s>',
881
+ )
882
+ )
883
+
884
+ # Robin default template
885
+ register_conv_template(
886
+ Conversation(
887
+ name='Robin',
888
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
889
+ roles=('###Human', '###Assistant'),
890
+ sep_style=SeparatorStyle.ROBIN,
891
+ sep='\n',
892
+ stop_token_ids=[2, 396],
893
+ stop_str='###',
894
+ )
895
+ )
896
+
897
+ # Snoozy default template
898
+ # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
899
+ register_conv_template(
900
+ Conversation(
901
+ name='snoozy',
902
+ system_template='### Instruction:\n{system_message}',
903
+ system_message='The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.',
904
+ roles=('### Prompt', '### Response'),
905
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
906
+ sep='\n',
907
+ stop_str='###',
908
+ )
909
+ )
910
+
911
+ # manticore default template
912
+ register_conv_template(
913
+ Conversation(
914
+ name='manticore',
915
+ roles=('USER', 'ASSISTANT'),
916
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
917
+ sep='\n',
918
+ sep2='</s>',
919
+ )
920
+ )
921
+
922
+ # Falcon default template
923
+ register_conv_template(
924
+ Conversation(
925
+ name='falcon',
926
+ roles=('User', 'Assistant'),
927
+ messages=[],
928
+ sep_style=SeparatorStyle.RWKV,
929
+ sep='\n',
930
+ sep2='<|endoftext|>',
931
+ stop_str='\nUser', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
932
+ stop_token_ids=[
933
+ 0,
934
+ 1,
935
+ 2,
936
+ 3,
937
+ 4,
938
+ 5,
939
+ 6,
940
+ 7,
941
+ 8,
942
+ 9,
943
+ 10,
944
+ 11,
945
+ ], # it better only put special tokens here, because tokenizer only remove special tokens
946
+ )
947
+ )
948
+
949
+ # ChangGPT default template
950
+ register_conv_template(
951
+ Conversation(
952
+ name='polyglot_changgpt',
953
+ roles=('B', 'A'),
954
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
955
+ sep='\n',
956
+ )
957
+ )
958
+
959
+ # tigerbot template
960
+ register_conv_template(
961
+ Conversation(
962
+ name='tigerbot',
963
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
964
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
965
+ roles=('### Instruction', '### Response'),
966
+ sep_style=SeparatorStyle.ROBIN,
967
+ sep='\n\n',
968
+ stop_str='###',
969
+ )
970
+ )
971
+
972
+ # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
973
+ register_conv_template(
974
+ Conversation(
975
+ name='xgen',
976
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
977
+ roles=('### Human', '### Assistant'),
978
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
979
+ sep='\n',
980
+ stop_token_ids=[50256],
981
+ )
982
+ )
983
+
984
+ # Internlm-chat template
985
+ register_conv_template(
986
+ Conversation(
987
+ name='internlm-chat',
988
+ system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
989
+ roles=('<|User|>', '<|Bot|>'),
990
+ sep_style=SeparatorStyle.CHATINTERN,
991
+ sep='<eoh>',
992
+ sep2='<eoa>',
993
+ stop_token_ids=[1, 103028],
994
+ stop_str='<|User|>',
995
+ )
996
+ )
997
+
998
+ # StarChat template
999
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
1000
+ register_conv_template(
1001
+ Conversation(
1002
+ name='starchat',
1003
+ system_template='<system>\n{system_message}',
1004
+ roles=('<|user|>', '<|assistant|>'),
1005
+ sep_style=SeparatorStyle.CHATML,
1006
+ sep='<|end|>',
1007
+ stop_token_ids=[0, 49155],
1008
+ stop_str='<|end|>',
1009
+ )
1010
+ )
1011
+
1012
+ # Baichuan-13B-Chat template
1013
+ register_conv_template(
1014
+ # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
1015
+ # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
1016
+ # https://github.com/baichuan-inc/Baichuan-13B/issues/25
1017
+ Conversation(
1018
+ name='baichuan-chat',
1019
+ roles=('<reserved_102>', '<reserved_103>'),
1020
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1021
+ sep='',
1022
+ stop_token_ids=[],
1023
+ )
1024
+ )
1025
+
1026
+ # Baichuan2-13B-Chat template
1027
+ register_conv_template(
1028
+ # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
1029
+ # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
1030
+ # https://github.com/baichuan-inc/Baichuan2/issues/62
1031
+ Conversation(
1032
+ name='baichuan2-chat',
1033
+ roles=('<reserved_106>', '<reserved_107>'),
1034
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1035
+ sep='',
1036
+ stop_token_ids=[],
1037
+ )
1038
+ )
1039
+
1040
+ # Mistral template
1041
+ # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
1042
+ register_conv_template(
1043
+ Conversation(
1044
+ name='mistral',
1045
+ system_template='[INST]{system_message}\n',
1046
+ roles=('[INST]', '[/INST]'),
1047
+ sep_style=SeparatorStyle.LLAMA2,
1048
+ sep=' ',
1049
+ sep2='</s>',
1050
+ )
1051
+ )
1052
+
1053
+ # llama2 template
1054
+ # reference: https://huggingface.co/blog/codellama#conversational-instructions
1055
+ # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
1056
+ register_conv_template(
1057
+ Conversation(
1058
+ name='llama-2',
1059
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1060
+ roles=('[INST]', '[/INST]'),
1061
+ sep_style=SeparatorStyle.LLAMA2,
1062
+ sep=' ',
1063
+ sep2=' </s><s>',
1064
+ )
1065
+ )
1066
+
1067
+ register_conv_template(
1068
+ Conversation(
1069
+ name='cutegpt',
1070
+ roles=('问:', '答:\n'),
1071
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1072
+ sep='\n',
1073
+ sep2='\n',
1074
+ stop_str='<end>',
1075
+ )
1076
+ )
1077
+
1078
+ # OpenOrcaxOpenChat-naPreview2-13B template
1079
+ register_conv_template(
1080
+ Conversation(
1081
+ name='open-orca',
1082
+ system_template='{system_message}',
1083
+ system_message='You are a helpful assistant. Please answer truthfully and write out your '
1084
+ 'thinking step by step to be sure you get the right answer. If you make a mistake or encounter '
1085
+ "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
1086
+ "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
1087
+ 'and physicist. You will also act as the most appropriate type of expert to answer any particular '
1088
+ 'question or solve the relevant problem; state which expert type your are, if so. Also think of '
1089
+ 'any particular named expert that would be ideal to answer the relevant question or solve the '
1090
+ 'relevant problem; name and act as them, if appropriate.',
1091
+ roles=('User', 'Assistant'),
1092
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
1093
+ sep='<|end_of_turn|>\n',
1094
+ stop_token_ids=[32000, 32001], # "<|end_of_turn|>"
1095
+ stop_str='User',
1096
+ )
1097
+ )
1098
+
1099
+ # Open-Orca/Mistral-7B-OpenOrca template
1100
+ # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
1101
+ # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
1102
+ register_conv_template(
1103
+ Conversation(
1104
+ name='mistral-7b-openorca',
1105
+ system_template='<|im_start|>system\n{system_message}',
1106
+ system_message='You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!',
1107
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1108
+ sep_style=SeparatorStyle.CHATML,
1109
+ sep='<|im_end|>',
1110
+ stop_token_ids=[32000, 32001],
1111
+ )
1112
+ )
1113
+
1114
+ # Qwen-chat default template
1115
+ # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
1116
+ register_conv_template(
1117
+ Conversation(
1118
+ name='qwen-7b-chat',
1119
+ system_template='<|im_start|>system\n{system_message}',
1120
+ system_message='You are a helpful assistant.',
1121
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1122
+ sep_style=SeparatorStyle.CHATML,
1123
+ sep='<|im_end|>',
1124
+ stop_token_ids=[
1125
+ 151643,
1126
+ 151644,
1127
+ 151645,
1128
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
1129
+ stop_str='<|endoftext|>',
1130
+ )
1131
+ )
1132
+
1133
+
1134
+ # AquilaChat default template
1135
+ # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
1136
+ register_conv_template(
1137
+ Conversation(
1138
+ name='aquila-chat',
1139
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1140
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1141
+ roles=('Human', 'Assistant'),
1142
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1143
+ sep='###',
1144
+ sep2='',
1145
+ stop_str=['###', '</s>', '[UNK]'],
1146
+ )
1147
+ )
1148
+ # AquilaChat2-34B default template
1149
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
1150
+ register_conv_template(
1151
+ Conversation(
1152
+ name='aquila-legacy',
1153
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1154
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1155
+ roles=('### Human: ', '### Assistant: '),
1156
+ offset=0,
1157
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1158
+ sep='\n',
1159
+ sep2='</s>',
1160
+ stop_str=['</s>', '[UNK]'],
1161
+ )
1162
+ )
1163
+ # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
1164
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
1165
+ register_conv_template(
1166
+ Conversation(
1167
+ name='aquila',
1168
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1169
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1170
+ roles=('Human', 'Assistant'),
1171
+ offset=0,
1172
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1173
+ sep='###',
1174
+ sep2='</s>',
1175
+ stop_str=['</s>', '[UNK]'],
1176
+ )
1177
+ )
1178
+
1179
+ # AquilaChat2-7B default template
1180
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
1181
+ register_conv_template(
1182
+ Conversation(
1183
+ name='aquila-v1',
1184
+ roles=('<|startofpiece|>', '<|endofpiece|>'),
1185
+ offset=0,
1186
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1187
+ sep='',
1188
+ sep2='</s>',
1189
+ stop_str=['</s>', '<|endoftext|>'],
1190
+ )
1191
+ )
1192
+
1193
+ # Llama2-Chinese default template
1194
+ # source: https://huggingface.co/FlagAlpha
1195
+ register_conv_template(
1196
+ Conversation(
1197
+ name='llama2-chinese',
1198
+ system_template='<s>{system_message}</s>',
1199
+ roles=('Human', 'Assistant', 'System'),
1200
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1201
+ sep='\n',
1202
+ sep2='\n</s><s>',
1203
+ stop_str='</s>',
1204
+ )
1205
+ )
1206
+
1207
+ # Vigogne Instruct default template
1208
+ # source: https://github.com/bofenghuang/vigogne
1209
+ register_conv_template(
1210
+ Conversation(
1211
+ name='vigogne_instruct',
1212
+ system_template='### System:\n{system_message}\n\n',
1213
+ system_message=(
1214
+ 'Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière'
1215
+ ' précise à la demande.'
1216
+ ),
1217
+ roles=('### Instruction', '### Response'),
1218
+ sep_style=SeparatorStyle.DOLLY,
1219
+ sep='\n\n',
1220
+ sep2='</s>',
1221
+ )
1222
+ )
1223
+
1224
+ # Vigogne Chat default template
1225
+ register_conv_template(
1226
+ Conversation(
1227
+ name='vigogne_chat_v2',
1228
+ system_template='<|system|>: {system_message}',
1229
+ system_message=(
1230
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1231
+ ' autant que vous le pouvez.'
1232
+ ),
1233
+ roles=('<|user|>', '<|assistant|>'),
1234
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1235
+ sep='\n',
1236
+ sep2='</s>\n',
1237
+ stop_str='<|user|>',
1238
+ )
1239
+ )
1240
+
1241
+ register_conv_template(
1242
+ Conversation(
1243
+ name='vigogne_chat_v3',
1244
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1245
+ system_message=(
1246
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1247
+ ' autant que vous le pouvez.'
1248
+ ),
1249
+ roles=('[INST]', '[/INST]'),
1250
+ sep_style=SeparatorStyle.LLAMA2,
1251
+ sep=' ',
1252
+ sep2=' </s>',
1253
+ )
1254
+ )
1255
+
1256
+ # Falcon 180B chat template
1257
+ # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
1258
+ register_conv_template(
1259
+ Conversation(
1260
+ name='falcon-chat',
1261
+ roles=('User', 'Falcon'),
1262
+ system_template='System: {system_message}',
1263
+ messages=[],
1264
+ sep_style=SeparatorStyle.FALCON_CHAT,
1265
+ sep='\n',
1266
+ sep2='<|endoftext|>',
1267
+ stop_str='\nUser:', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
1268
+ )
1269
+ )
1270
+
1271
+ # Phind template
1272
+ # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
1273
+ register_conv_template(
1274
+ Conversation(
1275
+ name='phind',
1276
+ system_message='### System Prompt\nYou are an intelligent programming assistant.',
1277
+ roles=('### User Message', '### Assistant'),
1278
+ messages=(),
1279
+ offset=0,
1280
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1281
+ sep='\n\n',
1282
+ )
1283
+ )
1284
+
1285
+ # Metharme formatting for Pygmalion models
1286
+ # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
1287
+ register_conv_template(
1288
+ Conversation(
1289
+ name='metharme',
1290
+ system_template='<|system|>{system_message}',
1291
+ system_message="""Enter RP mode. You shall reply to the user while staying
1292
+ in character. Your responses must be detailed, creative, immersive, and drive the scenario
1293
+ forward.""",
1294
+ roles=('<|user|>', '<|model|>'),
1295
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1296
+ sep='',
1297
+ stop_str='<|user|>',
1298
+ )
1299
+ )
1300
+
1301
+ # Zephyr template
1302
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
1303
+ register_conv_template(
1304
+ Conversation(
1305
+ name='zephyr',
1306
+ system_template='<|system|>\n{system_message}',
1307
+ roles=('<|user|>', '<|assistant|>'),
1308
+ sep_style=SeparatorStyle.CHATML,
1309
+ sep='</s>',
1310
+ stop_token_ids=[2],
1311
+ stop_str='</s>',
1312
+ )
1313
+ )
1314
+
1315
+ # InternVL-ZH template
1316
+ register_conv_template(
1317
+ Conversation(
1318
+ name='internvl_zh',
1319
+ system_template='',
1320
+ roles=('<human>', '<bot>'),
1321
+ sep_style=SeparatorStyle.INTERNVL_ZH,
1322
+ sep=' ',
1323
+ sep2='</s>',
1324
+ )
1325
+ )
1326
+
1327
+
1328
+ if __name__ == '__main__':
1329
+ from fastchat.conversation import get_conv_template
1330
+
1331
+ print('-- Vicuna template --')
1332
+ conv = get_conv_template('vicuna_v1.1')
1333
+ conv.append_message(conv.roles[0], 'Hello!')
1334
+ conv.append_message(conv.roles[1], 'Hi!')
1335
+ conv.append_message(conv.roles[0], 'How are you?')
1336
+ conv.append_message(conv.roles[1], None)
1337
+ print(conv.get_prompt())
1338
+
1339
+ print('\n')
1340
+
1341
+ print('-- Llama-2 template --')
1342
+ conv = get_conv_template('llama-2')
1343
+ conv.set_system_message('You are a helpful, respectful and honest assistant.')
1344
+ conv.append_message(conv.roles[0], 'Hello!')
1345
+ conv.append_message(conv.roles[1], 'Hi!')
1346
+ conv.append_message(conv.roles[0], 'How are you?')
1347
+ conv.append_message(conv.roles[1], None)
1348
+ print(conv.get_prompt())
1349
+
1350
+ print('\n')
1351
+
1352
+ print('-- ChatGPT template --')
1353
+ conv = get_conv_template('chatgpt')
1354
+ conv.append_message(conv.roles[0], 'Hello!')
1355
+ conv.append_message(conv.roles[1], 'Hi!')
1356
+ conv.append_message(conv.roles[0], 'How are you?')
1357
+ conv.append_message(conv.roles[1], None)
1358
+ print(conv.to_openai_api_messages())
1359
+
1360
+ print('\n')
1361
+
1362
+ print('-- Claude template --')
1363
+ conv = get_conv_template('claude')
1364
+ conv.append_message(conv.roles[0], 'Hello!')
1365
+ conv.append_message(conv.roles[1], 'Hi!')
1366
+ conv.append_message(conv.roles[0], 'How are you?')
1367
+ conv.append_message(conv.roles[1], None)
1368
+ print(conv.get_prompt())
examples_image.jpg ADDED
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.42.4"
4
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58b7ad9cc4228598d29953f840a07bcc0df2d7cf6f137686eb888b00cf76256c
3
+ size 4935635440
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:397e1a97cdfbb1273fbb0a26ef84ca003554a33cb89effda233d7e24bbfcef5b
3
+ size 4731511192
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1431b3d2522fcf6c96b1bc127a3f8a8b530ab232d2f217ade963cd8411417408
3
+ size 758194320
model.safetensors.index.json ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 10425311232
4
+ },
5
+ "weight_map": {
6
+ "embedding_model.encoder.0.attention.wo.weight": "model-00001-of-00003.safetensors",
7
+ "embedding_model.encoder.0.attention.wqkv.weight": "model-00001-of-00003.safetensors",
8
+ "embedding_model.encoder.0.attention_norm.weight": "model-00001-of-00003.safetensors",
9
+ "embedding_model.encoder.0.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
10
+ "embedding_model.encoder.0.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
11
+ "embedding_model.encoder.0.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
12
+ "embedding_model.encoder.0.ffn_norm.weight": "model-00001-of-00003.safetensors",
13
+ "embedding_model.encoder.1.attention.wo.weight": "model-00001-of-00003.safetensors",
14
+ "embedding_model.encoder.1.attention.wqkv.weight": "model-00001-of-00003.safetensors",
15
+ "embedding_model.encoder.1.attention_norm.weight": "model-00001-of-00003.safetensors",
16
+ "embedding_model.encoder.1.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
17
+ "embedding_model.encoder.1.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
18
+ "embedding_model.encoder.1.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
19
+ "embedding_model.encoder.1.ffn_norm.weight": "model-00001-of-00003.safetensors",
20
+ "embedding_model.encoder.2.attention.wo.weight": "model-00001-of-00003.safetensors",
21
+ "embedding_model.encoder.2.attention.wqkv.weight": "model-00001-of-00003.safetensors",
22
+ "embedding_model.encoder.2.attention_norm.weight": "model-00001-of-00003.safetensors",
23
+ "embedding_model.encoder.2.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
24
+ "embedding_model.encoder.2.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
25
+ "embedding_model.encoder.2.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
26
+ "embedding_model.encoder.2.ffn_norm.weight": "model-00001-of-00003.safetensors",
27
+ "embedding_model.encoder.3.attention.wo.weight": "model-00001-of-00003.safetensors",
28
+ "embedding_model.encoder.3.attention.wqkv.weight": "model-00001-of-00003.safetensors",
29
+ "embedding_model.encoder.3.attention_norm.weight": "model-00001-of-00003.safetensors",
30
+ "embedding_model.encoder.3.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
31
+ "embedding_model.encoder.3.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
32
+ "embedding_model.encoder.3.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
33
+ "embedding_model.encoder.3.ffn_norm.weight": "model-00001-of-00003.safetensors",
34
+ "embedding_model.encoder.4.attention.wo.weight": "model-00001-of-00003.safetensors",
35
+ "embedding_model.encoder.4.attention.wqkv.weight": "model-00001-of-00003.safetensors",
36
+ "embedding_model.encoder.4.attention_norm.weight": "model-00001-of-00003.safetensors",
37
+ "embedding_model.encoder.4.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
38
+ "embedding_model.encoder.4.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
39
+ "embedding_model.encoder.4.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
40
+ "embedding_model.encoder.4.ffn_norm.weight": "model-00001-of-00003.safetensors",
41
+ "embedding_model.encoder.5.attention.wo.weight": "model-00001-of-00003.safetensors",
42
+ "embedding_model.encoder.5.attention.wqkv.weight": "model-00001-of-00003.safetensors",
43
+ "embedding_model.encoder.5.attention_norm.weight": "model-00001-of-00003.safetensors",
44
+ "embedding_model.encoder.5.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
45
+ "embedding_model.encoder.5.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
46
+ "embedding_model.encoder.5.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
47
+ "embedding_model.encoder.5.ffn_norm.weight": "model-00001-of-00003.safetensors",
48
+ "embedding_model.encoder.6.attention.wo.weight": "model-00001-of-00003.safetensors",
49
+ "embedding_model.encoder.6.attention.wqkv.weight": "model-00001-of-00003.safetensors",
50
+ "embedding_model.encoder.6.attention_norm.weight": "model-00001-of-00003.safetensors",
51
+ "embedding_model.encoder.6.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
52
+ "embedding_model.encoder.6.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
53
+ "embedding_model.encoder.6.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
54
+ "embedding_model.encoder.6.ffn_norm.weight": "model-00001-of-00003.safetensors",
55
+ "embedding_model.encoder.7.attention.wo.weight": "model-00001-of-00003.safetensors",
56
+ "embedding_model.encoder.7.attention.wqkv.weight": "model-00001-of-00003.safetensors",
57
+ "embedding_model.encoder.7.attention_norm.weight": "model-00001-of-00003.safetensors",
58
+ "embedding_model.encoder.7.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
59
+ "embedding_model.encoder.7.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
60
+ "embedding_model.encoder.7.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
61
+ "embedding_model.encoder.7.ffn_norm.weight": "model-00001-of-00003.safetensors",
62
+ "embedding_model.llm_text_embeddings.weight": "model-00001-of-00003.safetensors",
63
+ "embedding_model.pixel_shuffle_proj.0.bias": "model-00001-of-00003.safetensors",
64
+ "embedding_model.pixel_shuffle_proj.0.weight": "model-00001-of-00003.safetensors",
65
+ "embedding_model.pixel_shuffle_proj.2.bias": "model-00001-of-00003.safetensors",
66
+ "embedding_model.pixel_shuffle_proj.2.weight": "model-00001-of-00003.safetensors",
67
+ "embedding_model.vision_embeddings.class_embedding": "model-00001-of-00003.safetensors",
68
+ "embedding_model.vision_embeddings.patch_embedding.bias": "model-00001-of-00003.safetensors",
69
+ "embedding_model.vision_embeddings.patch_embedding.weight": "model-00001-of-00003.safetensors",
70
+ "embedding_model.vision_embeddings.position_embedding": "model-00001-of-00003.safetensors",
71
+ "language_model.model.layers.0.attention.wo.weight": "model-00001-of-00003.safetensors",
72
+ "language_model.model.layers.0.attention.wqkv.weight": "model-00001-of-00003.safetensors",
73
+ "language_model.model.layers.0.attention_norm.weight": "model-00001-of-00003.safetensors",
74
+ "language_model.model.layers.0.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
75
+ "language_model.model.layers.0.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
76
+ "language_model.model.layers.0.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
77
+ "language_model.model.layers.0.ffn_norm.weight": "model-00001-of-00003.safetensors",
78
+ "language_model.model.layers.1.attention.wo.weight": "model-00001-of-00003.safetensors",
79
+ "language_model.model.layers.1.attention.wqkv.weight": "model-00001-of-00003.safetensors",
80
+ "language_model.model.layers.1.attention_norm.weight": "model-00001-of-00003.safetensors",
81
+ "language_model.model.layers.1.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
82
+ "language_model.model.layers.1.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
83
+ "language_model.model.layers.1.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
84
+ "language_model.model.layers.1.ffn_norm.weight": "model-00001-of-00003.safetensors",
85
+ "language_model.model.layers.10.attention.wo.weight": "model-00002-of-00003.safetensors",
86
+ "language_model.model.layers.10.attention.wqkv.weight": "model-00002-of-00003.safetensors",
87
+ "language_model.model.layers.10.attention_norm.weight": "model-00002-of-00003.safetensors",
88
+ "language_model.model.layers.10.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
89
+ "language_model.model.layers.10.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
90
+ "language_model.model.layers.10.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
91
+ "language_model.model.layers.10.ffn_norm.weight": "model-00002-of-00003.safetensors",
92
+ "language_model.model.layers.11.attention.wo.weight": "model-00002-of-00003.safetensors",
93
+ "language_model.model.layers.11.attention.wqkv.weight": "model-00002-of-00003.safetensors",
94
+ "language_model.model.layers.11.attention_norm.weight": "model-00002-of-00003.safetensors",
95
+ "language_model.model.layers.11.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
96
+ "language_model.model.layers.11.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
97
+ "language_model.model.layers.11.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
98
+ "language_model.model.layers.11.ffn_norm.weight": "model-00002-of-00003.safetensors",
99
+ "language_model.model.layers.12.attention.wo.weight": "model-00002-of-00003.safetensors",
100
+ "language_model.model.layers.12.attention.wqkv.weight": "model-00002-of-00003.safetensors",
101
+ "language_model.model.layers.12.attention_norm.weight": "model-00002-of-00003.safetensors",
102
+ "language_model.model.layers.12.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
103
+ "language_model.model.layers.12.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
104
+ "language_model.model.layers.12.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
105
+ "language_model.model.layers.12.ffn_norm.weight": "model-00002-of-00003.safetensors",
106
+ "language_model.model.layers.13.attention.wo.weight": "model-00002-of-00003.safetensors",
107
+ "language_model.model.layers.13.attention.wqkv.weight": "model-00002-of-00003.safetensors",
108
+ "language_model.model.layers.13.attention_norm.weight": "model-00002-of-00003.safetensors",
109
+ "language_model.model.layers.13.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
110
+ "language_model.model.layers.13.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
111
+ "language_model.model.layers.13.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
112
+ "language_model.model.layers.13.ffn_norm.weight": "model-00002-of-00003.safetensors",
113
+ "language_model.model.layers.14.attention.wo.weight": "model-00002-of-00003.safetensors",
114
+ "language_model.model.layers.14.attention.wqkv.weight": "model-00002-of-00003.safetensors",
115
+ "language_model.model.layers.14.attention_norm.weight": "model-00002-of-00003.safetensors",
116
+ "language_model.model.layers.14.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
117
+ "language_model.model.layers.14.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
118
+ "language_model.model.layers.14.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
119
+ "language_model.model.layers.14.ffn_norm.weight": "model-00002-of-00003.safetensors",
120
+ "language_model.model.layers.15.attention.wo.weight": "model-00002-of-00003.safetensors",
121
+ "language_model.model.layers.15.attention.wqkv.weight": "model-00002-of-00003.safetensors",
122
+ "language_model.model.layers.15.attention_norm.weight": "model-00002-of-00003.safetensors",
123
+ "language_model.model.layers.15.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
124
+ "language_model.model.layers.15.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
125
+ "language_model.model.layers.15.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
126
+ "language_model.model.layers.15.ffn_norm.weight": "model-00002-of-00003.safetensors",
127
+ "language_model.model.layers.16.attention.wo.weight": "model-00002-of-00003.safetensors",
128
+ "language_model.model.layers.16.attention.wqkv.weight": "model-00002-of-00003.safetensors",
129
+ "language_model.model.layers.16.attention_norm.weight": "model-00002-of-00003.safetensors",
130
+ "language_model.model.layers.16.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
131
+ "language_model.model.layers.16.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
132
+ "language_model.model.layers.16.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
133
+ "language_model.model.layers.16.ffn_norm.weight": "model-00002-of-00003.safetensors",
134
+ "language_model.model.layers.17.attention.wo.weight": "model-00002-of-00003.safetensors",
135
+ "language_model.model.layers.17.attention.wqkv.weight": "model-00002-of-00003.safetensors",
136
+ "language_model.model.layers.17.attention_norm.weight": "model-00002-of-00003.safetensors",
137
+ "language_model.model.layers.17.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
138
+ "language_model.model.layers.17.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
139
+ "language_model.model.layers.17.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
140
+ "language_model.model.layers.17.ffn_norm.weight": "model-00002-of-00003.safetensors",
141
+ "language_model.model.layers.18.attention.wo.weight": "model-00002-of-00003.safetensors",
142
+ "language_model.model.layers.18.attention.wqkv.weight": "model-00002-of-00003.safetensors",
143
+ "language_model.model.layers.18.attention_norm.weight": "model-00002-of-00003.safetensors",
144
+ "language_model.model.layers.18.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
145
+ "language_model.model.layers.18.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
146
+ "language_model.model.layers.18.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
147
+ "language_model.model.layers.18.ffn_norm.weight": "model-00002-of-00003.safetensors",
148
+ "language_model.model.layers.19.attention.wo.weight": "model-00002-of-00003.safetensors",
149
+ "language_model.model.layers.19.attention.wqkv.weight": "model-00002-of-00003.safetensors",
150
+ "language_model.model.layers.19.attention_norm.weight": "model-00002-of-00003.safetensors",
151
+ "language_model.model.layers.19.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
152
+ "language_model.model.layers.19.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
153
+ "language_model.model.layers.19.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
154
+ "language_model.model.layers.19.ffn_norm.weight": "model-00002-of-00003.safetensors",
155
+ "language_model.model.layers.2.attention.wo.weight": "model-00001-of-00003.safetensors",
156
+ "language_model.model.layers.2.attention.wqkv.weight": "model-00001-of-00003.safetensors",
157
+ "language_model.model.layers.2.attention_norm.weight": "model-00001-of-00003.safetensors",
158
+ "language_model.model.layers.2.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
159
+ "language_model.model.layers.2.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
160
+ "language_model.model.layers.2.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
161
+ "language_model.model.layers.2.ffn_norm.weight": "model-00001-of-00003.safetensors",
162
+ "language_model.model.layers.20.attention.wo.weight": "model-00002-of-00003.safetensors",
163
+ "language_model.model.layers.20.attention.wqkv.weight": "model-00002-of-00003.safetensors",
164
+ "language_model.model.layers.20.attention_norm.weight": "model-00002-of-00003.safetensors",
165
+ "language_model.model.layers.20.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
166
+ "language_model.model.layers.20.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
167
+ "language_model.model.layers.20.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
168
+ "language_model.model.layers.20.ffn_norm.weight": "model-00002-of-00003.safetensors",
169
+ "language_model.model.layers.21.attention.wo.weight": "model-00002-of-00003.safetensors",
170
+ "language_model.model.layers.21.attention.wqkv.weight": "model-00002-of-00003.safetensors",
171
+ "language_model.model.layers.21.attention_norm.weight": "model-00002-of-00003.safetensors",
172
+ "language_model.model.layers.21.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
173
+ "language_model.model.layers.21.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
174
+ "language_model.model.layers.21.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
175
+ "language_model.model.layers.21.ffn_norm.weight": "model-00002-of-00003.safetensors",
176
+ "language_model.model.layers.22.attention.wo.weight": "model-00002-of-00003.safetensors",
177
+ "language_model.model.layers.22.attention.wqkv.weight": "model-00002-of-00003.safetensors",
178
+ "language_model.model.layers.22.attention_norm.weight": "model-00002-of-00003.safetensors",
179
+ "language_model.model.layers.22.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
180
+ "language_model.model.layers.22.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
181
+ "language_model.model.layers.22.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
182
+ "language_model.model.layers.22.ffn_norm.weight": "model-00002-of-00003.safetensors",
183
+ "language_model.model.layers.23.attention.wo.weight": "model-00002-of-00003.safetensors",
184
+ "language_model.model.layers.23.attention.wqkv.weight": "model-00002-of-00003.safetensors",
185
+ "language_model.model.layers.23.attention_norm.weight": "model-00002-of-00003.safetensors",
186
+ "language_model.model.layers.23.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
187
+ "language_model.model.layers.23.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
188
+ "language_model.model.layers.23.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
189
+ "language_model.model.layers.23.ffn_norm.weight": "model-00002-of-00003.safetensors",
190
+ "language_model.model.layers.3.attention.wo.weight": "model-00001-of-00003.safetensors",
191
+ "language_model.model.layers.3.attention.wqkv.weight": "model-00001-of-00003.safetensors",
192
+ "language_model.model.layers.3.attention_norm.weight": "model-00001-of-00003.safetensors",
193
+ "language_model.model.layers.3.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
194
+ "language_model.model.layers.3.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
195
+ "language_model.model.layers.3.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
196
+ "language_model.model.layers.3.ffn_norm.weight": "model-00001-of-00003.safetensors",
197
+ "language_model.model.layers.4.attention.wo.weight": "model-00001-of-00003.safetensors",
198
+ "language_model.model.layers.4.attention.wqkv.weight": "model-00001-of-00003.safetensors",
199
+ "language_model.model.layers.4.attention_norm.weight": "model-00001-of-00003.safetensors",
200
+ "language_model.model.layers.4.feed_forward.w1.weight": "model-00001-of-00003.safetensors",
201
+ "language_model.model.layers.4.feed_forward.w2.weight": "model-00001-of-00003.safetensors",
202
+ "language_model.model.layers.4.feed_forward.w3.weight": "model-00001-of-00003.safetensors",
203
+ "language_model.model.layers.4.ffn_norm.weight": "model-00001-of-00003.safetensors",
204
+ "language_model.model.layers.5.attention.wo.weight": "model-00001-of-00003.safetensors",
205
+ "language_model.model.layers.5.attention.wqkv.weight": "model-00001-of-00003.safetensors",
206
+ "language_model.model.layers.5.attention_norm.weight": "model-00002-of-00003.safetensors",
207
+ "language_model.model.layers.5.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
208
+ "language_model.model.layers.5.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
209
+ "language_model.model.layers.5.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
210
+ "language_model.model.layers.5.ffn_norm.weight": "model-00002-of-00003.safetensors",
211
+ "language_model.model.layers.6.attention.wo.weight": "model-00002-of-00003.safetensors",
212
+ "language_model.model.layers.6.attention.wqkv.weight": "model-00002-of-00003.safetensors",
213
+ "language_model.model.layers.6.attention_norm.weight": "model-00002-of-00003.safetensors",
214
+ "language_model.model.layers.6.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
215
+ "language_model.model.layers.6.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
216
+ "language_model.model.layers.6.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
217
+ "language_model.model.layers.6.ffn_norm.weight": "model-00002-of-00003.safetensors",
218
+ "language_model.model.layers.7.attention.wo.weight": "model-00002-of-00003.safetensors",
219
+ "language_model.model.layers.7.attention.wqkv.weight": "model-00002-of-00003.safetensors",
220
+ "language_model.model.layers.7.attention_norm.weight": "model-00002-of-00003.safetensors",
221
+ "language_model.model.layers.7.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
222
+ "language_model.model.layers.7.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
223
+ "language_model.model.layers.7.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
224
+ "language_model.model.layers.7.ffn_norm.weight": "model-00002-of-00003.safetensors",
225
+ "language_model.model.layers.8.attention.wo.weight": "model-00002-of-00003.safetensors",
226
+ "language_model.model.layers.8.attention.wqkv.weight": "model-00002-of-00003.safetensors",
227
+ "language_model.model.layers.8.attention_norm.weight": "model-00002-of-00003.safetensors",
228
+ "language_model.model.layers.8.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
229
+ "language_model.model.layers.8.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
230
+ "language_model.model.layers.8.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
231
+ "language_model.model.layers.8.ffn_norm.weight": "model-00002-of-00003.safetensors",
232
+ "language_model.model.layers.9.attention.wo.weight": "model-00002-of-00003.safetensors",
233
+ "language_model.model.layers.9.attention.wqkv.weight": "model-00002-of-00003.safetensors",
234
+ "language_model.model.layers.9.attention_norm.weight": "model-00002-of-00003.safetensors",
235
+ "language_model.model.layers.9.feed_forward.w1.weight": "model-00002-of-00003.safetensors",
236
+ "language_model.model.layers.9.feed_forward.w2.weight": "model-00002-of-00003.safetensors",
237
+ "language_model.model.layers.9.feed_forward.w3.weight": "model-00002-of-00003.safetensors",
238
+ "language_model.model.layers.9.ffn_norm.weight": "model-00002-of-00003.safetensors",
239
+ "language_model.model.norm.weight": "model-00002-of-00003.safetensors",
240
+ "language_model.model.tok_embeddings.weight": "model-00001-of-00003.safetensors",
241
+ "language_model.output.weight": "model-00003-of-00003.safetensors"
242
+ }
243
+ }
modeling_holistic_embedding.py ADDED
@@ -0,0 +1,954 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+ from functools import partial
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from einops import rearrange
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ SequenceClassifierOutputWithPast,
35
+ )
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from timm.models.layers import DropPath
44
+
45
+ compute_ARank = False # [ARank] Set this to True to compute attention rank
46
+
47
+ try:
48
+ from transformers.generation.streamers import BaseStreamer
49
+ except: # noqa # pylint: disable=bare-except
50
+ BaseStreamer = None
51
+
52
+ from .configuration_holistic_embedding import HolisticEmbeddingConfig
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ _CONFIG_FOR_DOC = "HolisticEmbeddingConfig"
57
+
58
+ flash_attn_func, flash_attn_varlen_func = None, None
59
+ pad_input, index_first_axis, unpad_input = None, None, None
60
+ def _import_flash_attn():
61
+ global flash_attn_func, flash_attn_varlen_func
62
+ global pad_input, index_first_axis, unpad_input
63
+ try:
64
+ from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
65
+ from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
66
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
67
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
68
+ except ImportError:
69
+ raise ImportError("flash_attn is not installed.")
70
+
71
+ _import_flash_attn()
72
+
73
+
74
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
75
+ def _get_unpad_data(attention_mask):
76
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
77
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
78
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
79
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
80
+ return (
81
+ indices,
82
+ cu_seqlens,
83
+ max_seqlen_in_batch,
84
+ )
85
+
86
+
87
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
88
+ def _make_causal_mask(
89
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
90
+ ):
91
+ """
92
+ Make causal mask used for bi-directional self-attention.
93
+ """
94
+ bsz, tgt_len = input_ids_shape
95
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
96
+ mask_cond = torch.arange(mask.size(-1), device=device)
97
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
98
+ mask = mask.to(dtype)
99
+
100
+ if past_key_values_length > 0:
101
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
102
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
103
+
104
+
105
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
106
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
107
+ """
108
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
109
+ """
110
+ bsz, src_len = mask.size()
111
+ tgt_len = tgt_len if tgt_len is not None else src_len
112
+
113
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
114
+
115
+ inverted_mask = 1.0 - expanded_mask
116
+
117
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
118
+
119
+
120
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
121
+ class InternLM2RMSNorm(nn.Module):
122
+ def __init__(self, hidden_size, eps=1e-6):
123
+ """
124
+ InternLM2RMSNorm is equivalent to T5LayerNorm
125
+ """
126
+ super().__init__()
127
+ self.weight = nn.Parameter(torch.ones(hidden_size))
128
+ self.variance_epsilon = eps
129
+
130
+ def forward(self, hidden_states):
131
+ input_dtype = hidden_states.dtype
132
+ hidden_states = hidden_states.to(torch.float32)
133
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
134
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
135
+ return self.weight * hidden_states.to(input_dtype)
136
+
137
+
138
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
139
+ class InternLM2RotaryEmbedding(nn.Module):
140
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
141
+ super().__init__()
142
+
143
+ self.dim = dim
144
+ self.max_position_embeddings = max_position_embeddings
145
+ self.base = base
146
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
147
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
148
+
149
+ # Build here to make `torch.jit.trace` work.
150
+ self._set_cos_sin_cache(
151
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
152
+ )
153
+
154
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
155
+ self.max_seq_len_cached = seq_len
156
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
157
+
158
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
159
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
160
+ emb = torch.cat((freqs, freqs), dim=-1)
161
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
162
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
163
+
164
+ def forward(self, x, seq_len=None):
165
+ # x: [bs, num_attention_heads, seq_len, head_size]
166
+ if seq_len > self.max_seq_len_cached:
167
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
168
+
169
+ return (
170
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
171
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
172
+ )
173
+
174
+
175
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
176
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
177
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
178
+
179
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
180
+ self.scaling_factor = scaling_factor
181
+ super().__init__(dim, max_position_embeddings, base, device)
182
+
183
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
184
+ self.max_seq_len_cached = seq_len
185
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
186
+ t = t / self.scaling_factor
187
+
188
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
189
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
190
+ emb = torch.cat((freqs, freqs), dim=-1)
191
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
192
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
193
+
194
+
195
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
196
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
197
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
198
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
199
+ """
200
+
201
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
202
+ self.scaling_factor = scaling_factor
203
+ super().__init__(dim, max_position_embeddings, base, device)
204
+
205
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
206
+ self.max_seq_len_cached = seq_len
207
+
208
+ if seq_len > self.max_position_embeddings:
209
+ base = self.base * (
210
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
211
+ ) ** (self.dim / (self.dim - 2))
212
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
213
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
214
+
215
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
216
+
217
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
218
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
219
+ emb = torch.cat((freqs, freqs), dim=-1)
220
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
221
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
222
+
223
+
224
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
225
+ def rotate_half(x):
226
+ """Rotates half the hidden dims of the input."""
227
+ x1 = x[..., : x.shape[-1] // 2]
228
+ x2 = x[..., x.shape[-1] // 2 :]
229
+ return torch.cat((-x2, x1), dim=-1)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
233
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
234
+ """Applies Rotary Position Embedding to the query and key tensors."""
235
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
236
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
237
+ q_embed = (q * cos) + (rotate_half(q) * sin)
238
+ k_embed = (k * cos) + (rotate_half(k) * sin)
239
+ return q_embed, k_embed
240
+
241
+
242
+ class InternLM2MLP(nn.Module):
243
+ def __init__(self, config):
244
+ super().__init__()
245
+ self.config = config
246
+ self.hidden_size = config.hidden_size
247
+ self.intermediate_size = config.intermediate_size
248
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
249
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
250
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
251
+ self.act_fn = ACT2FN[config.hidden_act]
252
+
253
+ def forward(self, x):
254
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
255
+
256
+ return down_proj
257
+
258
+
259
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
260
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
261
+ """
262
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
263
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
264
+ """
265
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
266
+ if n_rep == 1:
267
+ return hidden_states
268
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
269
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
270
+
271
+
272
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
273
+ class InternLM2Attention(nn.Module):
274
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
275
+
276
+ def __init__(self, config: HolisticEmbeddingConfig):
277
+ super().__init__()
278
+ self.config = config
279
+ self.hidden_size = config.hidden_size
280
+ self.num_heads = config.num_attention_heads
281
+ self.head_dim = self.hidden_size // self.num_heads
282
+ self.num_key_value_heads = config.num_key_value_heads
283
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
284
+ self.max_position_embeddings = config.max_position_embeddings
285
+ self.is_causal = True
286
+
287
+ if (self.head_dim * self.num_heads) != self.hidden_size:
288
+ raise ValueError(
289
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
290
+ f" and `num_heads`: {self.num_heads})."
291
+ )
292
+
293
+ self.wqkv = nn.Linear(
294
+ self.hidden_size,
295
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
296
+ bias=config.attention_bias,
297
+ )
298
+
299
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
300
+ self._init_rope()
301
+
302
+ def _init_rope(self):
303
+ if self.config.rope_scaling is None:
304
+ self.rotary_emb = InternLM2RotaryEmbedding(
305
+ self.head_dim,
306
+ max_position_embeddings=self.max_position_embeddings,
307
+ base=self.config.rope_theta,
308
+ )
309
+ else:
310
+ scaling_type = self.config.rope_scaling["type"]
311
+ scaling_factor = self.config.rope_scaling["factor"]
312
+ if scaling_type == "dynamic":
313
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
314
+ self.head_dim,
315
+ max_position_embeddings=self.max_position_embeddings,
316
+ base=self.config.rope_theta,
317
+ scaling_factor=scaling_factor,
318
+ )
319
+ elif scaling_type == "linear":
320
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
321
+ self.head_dim,
322
+ max_position_embeddings=self.max_position_embeddings,
323
+ base=self.config.rope_theta,
324
+ scaling_factor=scaling_factor,
325
+ )
326
+ else:
327
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
328
+ return self.rotary_emb
329
+
330
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
331
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
332
+
333
+ def forward(
334
+ self,
335
+ hidden_states: torch.Tensor,
336
+ attention_mask: Optional[torch.Tensor] = None,
337
+ position_ids: Optional[torch.LongTensor] = None,
338
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
339
+ output_attentions: bool = False,
340
+ use_cache: bool = False,
341
+ **kwargs,
342
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
343
+ if "padding_mask" in kwargs:
344
+ warnings.warn(
345
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
346
+ "Please make sure use `attention_mask` instead.`"
347
+ )
348
+
349
+ bsz, q_len, _ = hidden_states.size()
350
+ if attention_mask is not None and len(attention_mask.shape) == 2: # Flash Attention Mode to Attention Mode
351
+ new_attention_mask = torch.zeros(bsz, 1, q_len, q_len).to(hidden_states.device)
352
+ upper_tri_indices = torch.triu_indices(row=q_len, col=q_len, offset=1)
353
+ new_attention_mask[:, :, upper_tri_indices[0], upper_tri_indices[1]] = -65504.
354
+ attention_mask = new_attention_mask
355
+
356
+ qkv_states = self.wqkv(hidden_states)
357
+
358
+ qkv_states = rearrange(
359
+ qkv_states,
360
+ "b q (h gs d) -> b q h gs d",
361
+ gs=2 + self.num_key_value_groups,
362
+ d=self.head_dim,
363
+ )
364
+
365
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
366
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
367
+ key_states = qkv_states[..., -2, :]
368
+ value_states = qkv_states[..., -1, :]
369
+
370
+ query_states = query_states.transpose(1, 2)
371
+ key_states = key_states.transpose(1, 2)
372
+ value_states = value_states.transpose(1, 2)
373
+
374
+ kv_seq_len = key_states.shape[-2]
375
+ if past_key_value is not None:
376
+ kv_seq_len += past_key_value[0].shape[-2]
377
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
378
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
379
+
380
+ if past_key_value is not None:
381
+ # reuse k, v, self_attention
382
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
383
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
384
+
385
+ past_key_value = (key_states, value_states) if use_cache else None
386
+
387
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
388
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
389
+
390
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
391
+
392
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
393
+ raise ValueError(
394
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
395
+ f" {attn_weights.size()}"
396
+ )
397
+
398
+ if attention_mask is not None:
399
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
400
+ raise ValueError(
401
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
402
+ )
403
+ # min_dtype = torch.finfo(attn_weights.dtype).min
404
+ # causal_mask = torch.full(
405
+ # (q_len, kv_seq_len), fill_value=min_dtype, dtype=attn_weights.dtype, device=attn_weights.device
406
+ # )
407
+ # if q_len != 1:
408
+ # causal_mask = torch.triu(causal_mask, diagonal=1)
409
+ # # causal_mask *= torch.arange(kv_seq_len, device=device) > cache_position.reshape(-1, 1)
410
+ # causal_mask = causal_mask[None, None, :, :].expand(bsz, 1, -1, -1)
411
+ # attention_mask = causal_mask
412
+ attn_weights = attn_weights + attention_mask
413
+
414
+ # upcast attention to fp32
415
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
416
+ attn_output = torch.matmul(attn_weights, value_states)
417
+
418
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
419
+ raise ValueError(
420
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
421
+ f" {attn_output.size()}"
422
+ )
423
+
424
+ attn_output = attn_output.transpose(1, 2).contiguous()
425
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
426
+
427
+ attn_output = self.wo(attn_output)
428
+
429
+ if not output_attentions:
430
+ attn_weights = None
431
+
432
+ return attn_output, attn_weights, past_key_value
433
+
434
+
435
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
436
+ class InternLM2FlashAttention2(InternLM2Attention):
437
+ """
438
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
439
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
440
+ flash attention and deal with padding tokens in case the input contains any of them.
441
+ """
442
+
443
+ def forward(
444
+ self,
445
+ hidden_states: torch.Tensor,
446
+ attention_mask: Optional[torch.LongTensor] = None,
447
+ position_ids: Optional[torch.LongTensor] = None,
448
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
449
+ output_attentions: bool = False,
450
+ use_cache: bool = False,
451
+ **kwargs,
452
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
453
+ # InternLM2FlashAttention2 attention does not support output_attentions
454
+ if "padding_mask" in kwargs:
455
+ warnings.warn(
456
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
457
+ "Please make sure use `attention_mask` instead.`"
458
+ )
459
+
460
+ # overwrite attention_mask with padding_mask
461
+ attention_mask = kwargs.pop("padding_mask")
462
+
463
+ output_attentions = False
464
+
465
+ bsz, q_len, _ = hidden_states.size()
466
+
467
+ qkv_states = self.wqkv(hidden_states)
468
+
469
+ qkv_states = rearrange(
470
+ qkv_states,
471
+ "b q (h gs d) -> b q h gs d",
472
+ gs=2 + self.num_key_value_groups,
473
+ d=self.head_dim,
474
+ )
475
+
476
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
477
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
478
+ key_states = qkv_states[..., -2, :]
479
+ value_states = qkv_states[..., -1, :]
480
+
481
+ query_states = query_states.transpose(1, 2)
482
+ key_states = key_states.transpose(1, 2)
483
+ value_states = value_states.transpose(1, 2)
484
+
485
+ kv_seq_len = key_states.shape[-2]
486
+ if past_key_value is not None:
487
+ kv_seq_len += past_key_value[0].shape[-2]
488
+
489
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
490
+
491
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
492
+
493
+ if past_key_value is not None:
494
+ # reuse k, v, self_attention
495
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
496
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
497
+
498
+ past_key_value = (key_states, value_states) if use_cache else None
499
+
500
+ query_states = query_states.transpose(1, 2)
501
+ key_states = key_states.transpose(1, 2)
502
+ value_states = value_states.transpose(1, 2)
503
+
504
+ attn_output = self._flash_attention_forward(
505
+ query_states, key_states, value_states, attention_mask, q_len
506
+ )
507
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
508
+ attn_output = self.wo(attn_output)
509
+
510
+ if not output_attentions:
511
+ attn_weights = None
512
+
513
+ return attn_output, attn_weights, past_key_value
514
+
515
+ def _flash_attention_forward(
516
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
517
+ ):
518
+ """
519
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
520
+ first unpad the input, then computes the attention scores and pad the final attention scores.
521
+
522
+ Args:
523
+ query_states (`torch.Tensor`):
524
+ Input query states to be passed to Flash Attention API
525
+ key_states (`torch.Tensor`):
526
+ Input key states to be passed to Flash Attention API
527
+ value_states (`torch.Tensor`):
528
+ Input value states to be passed to Flash Attention API
529
+ attention_mask (`torch.Tensor`):
530
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
531
+ position of padding tokens and 1 for the position of non-padding tokens.
532
+ dropout (`int`, *optional*):
533
+ Attention dropout
534
+ softmax_scale (`float`, *optional*):
535
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
536
+ """
537
+ # Contains at least one padding token in the sequence
538
+ causal = self.is_causal and query_length != 1
539
+ if attention_mask is not None:
540
+ batch_size = query_states.shape[0]
541
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
542
+ query_states, key_states, value_states, attention_mask, query_length
543
+ )
544
+
545
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
546
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
547
+
548
+ attn_output_unpad = flash_attn_varlen_func(
549
+ query_states,
550
+ key_states,
551
+ value_states,
552
+ cu_seqlens_q=cu_seqlens_q,
553
+ cu_seqlens_k=cu_seqlens_k,
554
+ max_seqlen_q=max_seqlen_in_batch_q,
555
+ max_seqlen_k=max_seqlen_in_batch_k,
556
+ dropout_p=dropout,
557
+ softmax_scale=softmax_scale,
558
+ causal=causal,
559
+ )
560
+
561
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
562
+ else:
563
+ attn_output = flash_attn_func(
564
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
565
+ )
566
+
567
+ return attn_output
568
+
569
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
570
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
571
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
572
+
573
+ key_layer = index_first_axis(
574
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
575
+ )
576
+ value_layer = index_first_axis(
577
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
578
+ )
579
+
580
+ if query_length == kv_seq_len:
581
+ query_layer = index_first_axis(
582
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
583
+ )
584
+ cu_seqlens_q = cu_seqlens_k
585
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
586
+ indices_q = indices_k
587
+ elif query_length == 1:
588
+ max_seqlen_in_batch_q = 1
589
+ cu_seqlens_q = torch.arange(
590
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
591
+ ) # There is a memcpy here, that is very bad.
592
+ indices_q = cu_seqlens_q[:-1]
593
+ query_layer = query_layer.squeeze(1)
594
+ else:
595
+ # The -q_len: slice assumes left padding.
596
+ attention_mask = attention_mask[:, -query_length:]
597
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
598
+
599
+ return (
600
+ query_layer,
601
+ key_layer,
602
+ value_layer,
603
+ indices_q.to(torch.int64),
604
+ (cu_seqlens_q, cu_seqlens_k),
605
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
606
+ )
607
+
608
+
609
+ INTERNLM2_ATTENTION_CLASSES = {
610
+ "eager": InternLM2Attention,
611
+ "flash_attention_2": InternLM2FlashAttention2,
612
+ }
613
+
614
+
615
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
616
+ class InternLM2DecoderLayer(nn.Module):
617
+ def __init__(self, config: HolisticEmbeddingConfig, drop_path_rate=0.0):
618
+ super().__init__()
619
+ self.hidden_size = config.hidden_size
620
+ self.config = config
621
+
622
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config) if not compute_ARank else InternLM2Attention(config=config)
623
+
624
+ self.feed_forward = InternLM2MLP(config)
625
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
626
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
627
+
628
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
629
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
630
+
631
+ def forward(
632
+ self,
633
+ hidden_states: torch.Tensor,
634
+ attention_mask: Optional[torch.Tensor] = None,
635
+ position_ids: Optional[torch.LongTensor] = None,
636
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
637
+ output_attentions: Optional[bool] = False,
638
+ use_cache: Optional[bool] = False,
639
+ **kwargs,
640
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
641
+ """
642
+ Args:
643
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
644
+ attention_mask (`torch.FloatTensor`, *optional*):
645
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
646
+ query_sequence_length, key_sequence_length)` if default attention is used.
647
+ output_attentions (`bool`, *optional*):
648
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
649
+ returned tensors for more detail.
650
+ use_cache (`bool`, *optional*):
651
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
652
+ (see `past_key_values`).
653
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
654
+ """
655
+ if "padding_mask" in kwargs:
656
+ warnings.warn(
657
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
658
+ "Please make sure use `attention_mask` instead.`"
659
+ )
660
+
661
+ residual = hidden_states
662
+
663
+ hidden_states = self.attention_norm(hidden_states)
664
+
665
+ # Self Attention
666
+ hidden_states, self_attn_weights, present_key_value = self.attention(
667
+ hidden_states=hidden_states,
668
+ attention_mask=attention_mask,
669
+ position_ids=position_ids,
670
+ past_key_value=past_key_value,
671
+ output_attentions=output_attentions,
672
+ use_cache=use_cache,
673
+ **kwargs,
674
+ )
675
+ hidden_states = residual + self.drop_path1(hidden_states)
676
+
677
+ # Fully Connected
678
+ residual = hidden_states
679
+ hidden_states = self.ffn_norm(hidden_states)
680
+ hidden_states = self.feed_forward(hidden_states)
681
+
682
+ hidden_states = residual + self.drop_path2(hidden_states)
683
+
684
+ outputs = (hidden_states,)
685
+
686
+ if output_attentions:
687
+ outputs += (self_attn_weights,)
688
+
689
+ if use_cache:
690
+ outputs += (present_key_value,)
691
+
692
+ return outputs
693
+
694
+
695
+ class VisionEmbeddings(nn.Module):
696
+ def __init__(self, config: HolisticEmbeddingConfig):
697
+ super().__init__()
698
+ self.config = config
699
+ self.embed_dim = config.hidden_size
700
+ self.image_size = config.image_size
701
+ self.patch_size = config.patch_size
702
+
703
+ self.class_embedding = nn.Parameter(
704
+ torch.randn(1, 1, self.embed_dim),
705
+ )
706
+
707
+ self.patch_embedding = nn.Conv2d(
708
+ in_channels=self.config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
709
+ )
710
+
711
+ self.num_patches = (self.image_size // self.patch_size) ** 2
712
+ self.num_positions = self.num_patches + 1
713
+
714
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
715
+
716
+ self.post_init()
717
+
718
+ def post_init(self):
719
+ for m in self.modules():
720
+ if isinstance(m, nn.Conv2d):
721
+ torch.nn.init.normal_(m.weight, mean=0.0, std=0.02)
722
+ if m.bias is not None:
723
+ nn.init.zeros_(m.bias)
724
+ if isinstance(m, nn.Linear):
725
+ torch.nn.init.normal_(m.weight, mean=0.0, std=0.02)
726
+ if m.bias is not None:
727
+ nn.init.zeros_(m.bias)
728
+
729
+ def _get_pos_embed(self, pos_embed, H, W):
730
+ target_dtype = pos_embed.dtype
731
+ pos_embed = pos_embed.float().reshape(
732
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
733
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
734
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
735
+ return pos_embed
736
+
737
+ def forward(self, pixel_values: torch.FloatTensor,
738
+ use_cls_token=False,
739
+ ) -> torch.Tensor:
740
+ target_dtype = self.patch_embedding.weight.dtype
741
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
742
+ batch_size, _, height, width = patch_embeds.shape
743
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
744
+ if use_cls_token:
745
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
746
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
747
+ assert not self.config.use_2d_sincos_pos_embed, '2D SinCos pos embed is not supported with use_cls_token'
748
+ position_embedding = torch.cat([
749
+ self.position_embedding[:, :1, :],
750
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
751
+ ], dim=1)
752
+ embeddings = embeddings + position_embedding
753
+ else:
754
+ position_embedding = self._get_pos_embed(self.position_embedding[:, 1:, :], height, width).to(target_dtype)
755
+ embeddings = patch_embeds + position_embedding
756
+
757
+ return embeddings
758
+
759
+
760
+ class HolisticEmbedding(PreTrainedModel):
761
+ config_class = HolisticEmbeddingConfig
762
+ _supports_flash_attn_2 = True
763
+
764
+ def __init__(self, config: HolisticEmbeddingConfig):
765
+ super().__init__(config)
766
+ self.config = config
767
+ self.hidden_size = self.config.hidden_size
768
+ self.gradient_checkpointing = True
769
+
770
+ self.vision_embeddings = VisionEmbeddings(config)
771
+ self.llm_text_embeddings = nn.Embedding(self.config.llm_vocab_size, self.config.llm_hidden_size)
772
+ self.special_token_maps = config.special_token_maps
773
+ if len(self.special_token_maps) > 0:
774
+ self.special_text_embeddings = nn.Embedding(len(config.special_token_maps), self.config.llm_hidden_size)
775
+
776
+ assert self.config.use_ls is False, 'LS is not supported in InternLM2'
777
+ if hasattr(config, 'drop_path_rate'):
778
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
779
+ else:
780
+ dpr = [0.0] * config.num_hidden_layers
781
+ self.encoder = nn.ModuleList([
782
+ InternLM2DecoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)
783
+ ])
784
+
785
+ if self.config.use_pixel_shuffle_proj:
786
+ self.pixel_shuffle_proj = nn.Sequential(
787
+ nn.Linear(int(config.hidden_size / (config.downsample_ratio * config.downsample_ratio)), config.hidden_size),
788
+ nn.GELU(),
789
+ nn.Linear(config.hidden_size, config.hidden_size)
790
+ )
791
+
792
+ self.num_img_tokens = (self.config.image_size // self.config.patch_size) ** 2
793
+
794
+ def set_gradient_checkpointing(self):
795
+ self.gradient_checkpointing = True
796
+ for layer in self.encoder:
797
+ layer.gradient_checkpointing = True
798
+
799
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
800
+ pos_emb = self.vision_embeddings.position_embedding
801
+ _, num_positions, embed_dim = pos_emb.shape
802
+ cls_emb = pos_emb[:, :1, :]
803
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
804
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
805
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
806
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
807
+ self.vision_embeddings.position_embedding = nn.Parameter(pos_emb)
808
+ self.vision_embeddings.image_size = new_size
809
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
810
+
811
+ def replace_img_tokens(self, input_ids, hidden_states, vision_hidden_states):
812
+ img_context_token_mask = (input_ids == self.config.img_context_token_id)
813
+ hidden_states[img_context_token_mask] = hidden_states[img_context_token_mask] * 0.0 + vision_hidden_states.flatten(0, 1)
814
+
815
+ return hidden_states
816
+
817
+ def get_ignore_mask(self, input_ids):
818
+ ignore_ids = torch.tensor(
819
+ [self.special_token_maps[token] for token in [IMG_START_TOKEN, IMG_END_TOKEN]],
820
+ device=input_ids.device)
821
+ ignore_mask = torch.isin(input_ids, ignore_ids)
822
+
823
+ return ignore_mask
824
+
825
+ def get_text_mask(self, input_ids):
826
+ txt_mask = (input_ids != self.config.img_context_token_id)
827
+
828
+ return txt_mask
829
+
830
+ def get_input_embeddings(self, input_ids):
831
+ special_mask = input_ids > self.llm_text_embeddings.weight.shape[0] - 1
832
+ llm_embeddings = self.llm_text_embeddings(input_ids * (~special_mask).to(input_ids))
833
+
834
+ if len(self.special_token_maps) > 0:
835
+ special_embeddings = self.special_text_embeddings((input_ids - self.llm_text_embeddings.weight.shape[0]) * special_mask.to(input_ids))
836
+ special_mask = special_mask.unsqueeze(-1)
837
+ text_embeddings = llm_embeddings * (~special_mask).to(llm_embeddings) + \
838
+ special_embeddings * special_mask.to(llm_embeddings)
839
+ else:
840
+ text_embeddings = llm_embeddings
841
+
842
+ return text_embeddings
843
+
844
+ def get_txt_embeddings(self, input_ids):
845
+ B, L = input_ids.shape
846
+ txt_mask = (input_ids != self.config.img_context_token_id)
847
+ txt_embeddings = self.llm_text_embeddings(input_ids[txt_mask])
848
+ txt_embeddings = txt_embeddings.reshape(-1, txt_embeddings.shape[-1])
849
+
850
+ return txt_embeddings
851
+
852
+ def get_txt_feature(self, input_ids, feature):
853
+ B, L, C = feature.shape
854
+ txt_mask = (input_ids != self.config.img_context_token_id)
855
+ txt_feature = feature[txt_mask].reshape(-1, C)
856
+
857
+ return txt_feature
858
+
859
+ def get_img_feature(self, input_ids, feature):
860
+ B, L, C = feature.shape
861
+ img_mask = (input_ids == self.config.img_context_token_id)
862
+ img_feature = feature[img_mask].reshape(-1, C)
863
+
864
+ return img_feature
865
+
866
+ def pixel_shuffle(self, x, scale_factor=0.5):
867
+ if getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post':
868
+ x = x.view(x.shape[0]//self.num_img_tokens, self.num_img_tokens, -1)
869
+
870
+ n, l, c = x.size()
871
+ h = w = int(l ** 0.5)
872
+ # N, W, H, C --> N, W, H * scale, C // scale
873
+ x = x.reshape(n, w, int(h * scale_factor), int(c / scale_factor))
874
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
875
+ x = x.permute(0, 2, 1, 3).contiguous()
876
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
877
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
878
+ int(c / (scale_factor * scale_factor)))
879
+ x = x.permute(0, 2, 1, 3).reshape(n, int(l * scale_factor * scale_factor), int(c / (scale_factor * scale_factor))).contiguous()
880
+
881
+ if getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post':
882
+ x = x.view(int(x.shape[0]*self.num_img_tokens*(self.config.downsample_ratio**2)), -1)
883
+ return x
884
+
885
+ def forward(
886
+ self,
887
+ input_ids: Optional[torch.LongTensor] = None,
888
+ attention_mask: Optional[torch.Tensor] = None,
889
+ position_ids: Optional[torch.LongTensor] = None,
890
+ pixel_values: Optional[torch.FloatTensor] = None,
891
+ output_hidden_states: Optional[bool] = None,
892
+ return_dict: Optional[bool] = None,
893
+ use_cache: Optional[bool] = None,
894
+ ):
895
+ output_hidden_states = (
896
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
897
+ )
898
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
899
+
900
+ if pixel_values is not None:
901
+ if len(pixel_values.shape) == 4:
902
+ if self.gradient_checkpointing and self.training:
903
+ vision_hidden_states = torch.utils.checkpoint.checkpoint(self.vision_embeddings, pixel_values)
904
+ else:
905
+ vision_hidden_states = self.vision_embeddings(pixel_values)
906
+
907
+ if self.config.use_pixel_shuffle_proj and getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'pre':
908
+ vision_hidden_states = self.pixel_shuffle(vision_hidden_states, scale_factor=self.config.downsample_ratio)
909
+ if self.gradient_checkpointing and self.training:
910
+ vision_hidden_states = torch.utils.checkpoint.checkpoint(self.pixel_shuffle_proj, vision_hidden_states)
911
+ else:
912
+ vision_hidden_states = self.pixel_shuffle_proj(vision_hidden_states)
913
+
914
+ hidden_states = self.get_input_embeddings(input_ids)
915
+ hidden_states = self.replace_img_tokens(input_ids, hidden_states, vision_hidden_states)
916
+ else:
917
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
918
+ else:
919
+ hidden_states = self.get_input_embeddings(input_ids)
920
+
921
+ if position_ids is None:
922
+ position_ids = torch.arange(
923
+ hidden_states.shape[1], device=hidden_states.device
924
+ ).unsqueeze(0)
925
+
926
+ next_past_key_values = []
927
+ for layer_idx, layer_module in enumerate(self.encoder):
928
+ if self.gradient_checkpointing and self.training:
929
+ assert use_cache is None, 'Gradient checkpointing is not compatible with cache'
930
+ outputs = torch.utils.checkpoint.checkpoint(layer_module,
931
+ hidden_states,
932
+ attention_mask,
933
+ position_ids,
934
+ None, False, False,
935
+ )
936
+ hidden_states = outputs[0]
937
+ else:
938
+ outputs = layer_module(
939
+ hidden_states=hidden_states,
940
+ attention_mask=attention_mask,
941
+ position_ids=position_ids,
942
+ use_cache=use_cache,
943
+ )
944
+ hidden_states = outputs[0]
945
+ if use_cache:
946
+ next_past_key_values.append(outputs[-1])
947
+
948
+ img_feature = self.get_img_feature(input_ids, hidden_states)
949
+
950
+ if self.config.use_pixel_shuffle_proj and getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post':
951
+ img_feature = self.pixel_shuffle(img_feature, scale_factor=self.config.downsample_ratio)
952
+ img_feature = self.pixel_shuffle_proj(img_feature)
953
+
954
+ return img_feature, hidden_states, next_past_key_values
modeling_internlm2.py ADDED
@@ -0,0 +1,1392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+ Args:
516
+ query_states (`torch.Tensor`):
517
+ Input query states to be passed to Flash Attention API
518
+ key_states (`torch.Tensor`):
519
+ Input key states to be passed to Flash Attention API
520
+ value_states (`torch.Tensor`):
521
+ Input value states to be passed to Flash Attention API
522
+ attention_mask (`torch.Tensor`):
523
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
524
+ position of padding tokens and 1 for the position of non-padding tokens.
525
+ dropout (`int`, *optional*):
526
+ Attention dropout
527
+ softmax_scale (`float`, *optional*):
528
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
529
+ """
530
+ # Contains at least one padding token in the sequence
531
+ causal = self.is_causal and query_length != 1
532
+ if attention_mask is not None:
533
+ batch_size = query_states.shape[0]
534
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
535
+ query_states, key_states, value_states, attention_mask, query_length
536
+ )
537
+
538
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
539
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
540
+
541
+ attn_output_unpad = flash_attn_varlen_func(
542
+ query_states,
543
+ key_states,
544
+ value_states,
545
+ cu_seqlens_q=cu_seqlens_q,
546
+ cu_seqlens_k=cu_seqlens_k,
547
+ max_seqlen_q=max_seqlen_in_batch_q,
548
+ max_seqlen_k=max_seqlen_in_batch_k,
549
+ dropout_p=dropout,
550
+ softmax_scale=softmax_scale,
551
+ causal=causal,
552
+ )
553
+
554
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
555
+ else:
556
+ attn_output = flash_attn_func(
557
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
558
+ )
559
+
560
+ return attn_output
561
+
562
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
563
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
564
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
565
+
566
+ key_layer = index_first_axis(
567
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
568
+ )
569
+ value_layer = index_first_axis(
570
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
571
+ )
572
+
573
+ if query_length == kv_seq_len:
574
+ query_layer = index_first_axis(
575
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
576
+ )
577
+ cu_seqlens_q = cu_seqlens_k
578
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
579
+ indices_q = indices_k
580
+ elif query_length == 1:
581
+ max_seqlen_in_batch_q = 1
582
+ cu_seqlens_q = torch.arange(
583
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
584
+ ) # There is a memcpy here, that is very bad.
585
+ indices_q = cu_seqlens_q[:-1]
586
+ query_layer = query_layer.squeeze(1)
587
+ else:
588
+ # The -q_len: slice assumes left padding.
589
+ attention_mask = attention_mask[:, -query_length:]
590
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
591
+
592
+ return (
593
+ query_layer,
594
+ key_layer,
595
+ value_layer,
596
+ indices_q.to(torch.int64),
597
+ (cu_seqlens_q, cu_seqlens_k),
598
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
599
+ )
600
+
601
+
602
+ INTERNLM2_ATTENTION_CLASSES = {
603
+ 'eager': InternLM2Attention,
604
+ 'flash_attention_2': InternLM2FlashAttention2,
605
+ }
606
+
607
+
608
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
609
+ class InternLM2DecoderLayer(nn.Module):
610
+ def __init__(self, config: InternLM2Config):
611
+ super().__init__()
612
+ self.hidden_size = config.hidden_size
613
+
614
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
615
+
616
+ self.feed_forward = InternLM2MLP(config)
617
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
618
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+
620
+ def forward(
621
+ self,
622
+ hidden_states: torch.Tensor,
623
+ attention_mask: Optional[torch.Tensor] = None,
624
+ position_ids: Optional[torch.LongTensor] = None,
625
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
626
+ output_attentions: Optional[bool] = False,
627
+ use_cache: Optional[bool] = False,
628
+ **kwargs,
629
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
630
+ """
631
+ Args:
632
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
633
+ attention_mask (`torch.FloatTensor`, *optional*):
634
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
635
+ query_sequence_length, key_sequence_length)` if default attention is used.
636
+ output_attentions (`bool`, *optional*):
637
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
638
+ returned tensors for more detail.
639
+ use_cache (`bool`, *optional*):
640
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
641
+ (see `past_key_values`).
642
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
643
+ """
644
+ if 'padding_mask' in kwargs:
645
+ warnings.warn(
646
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
647
+ 'Please make sure use `attention_mask` instead.`'
648
+ )
649
+
650
+ residual = hidden_states
651
+
652
+ hidden_states = self.attention_norm(hidden_states)
653
+
654
+ # Self Attention
655
+ hidden_states, self_attn_weights, present_key_value = self.attention(
656
+ hidden_states=hidden_states,
657
+ attention_mask=attention_mask,
658
+ position_ids=position_ids,
659
+ past_key_value=past_key_value,
660
+ output_attentions=output_attentions,
661
+ use_cache=use_cache,
662
+ **kwargs,
663
+ )
664
+ hidden_states = residual + hidden_states
665
+
666
+ # Fully Connected
667
+ residual = hidden_states
668
+ hidden_states = self.ffn_norm(hidden_states)
669
+ hidden_states = self.feed_forward(hidden_states)
670
+ hidden_states = residual + hidden_states
671
+
672
+ outputs = (hidden_states,)
673
+
674
+ if output_attentions:
675
+ outputs += (self_attn_weights,)
676
+
677
+ if use_cache:
678
+ outputs += (present_key_value,)
679
+
680
+ return outputs
681
+
682
+
683
+ InternLM2_START_DOCSTRING = r"""
684
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
685
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
686
+ etc.)
687
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
688
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
689
+ and behavior.
690
+ Parameters:
691
+ config ([`InternLM2Config`]):
692
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
693
+ load the weights associated with the model, only the configuration. Check out the
694
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
695
+ """
696
+
697
+
698
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
699
+ @add_start_docstrings(
700
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
701
+ InternLM2_START_DOCSTRING,
702
+ )
703
+ class InternLM2PreTrainedModel(PreTrainedModel):
704
+ config_class = InternLM2Config
705
+ base_model_prefix = 'model'
706
+ supports_gradient_checkpointing = True
707
+ _no_split_modules = ['InternLM2DecoderLayer']
708
+ _skip_keys_device_placement = 'past_key_values'
709
+ _supports_flash_attn_2 = True
710
+
711
+ def _init_weights(self, module):
712
+ std = self.config.initializer_range
713
+ if isinstance(module, nn.Linear):
714
+ module.weight.data.normal_(mean=0.0, std=std)
715
+ if module.bias is not None:
716
+ module.bias.data.zero_()
717
+ elif isinstance(module, nn.Embedding):
718
+ module.weight.data.normal_(mean=0.0, std=std)
719
+ if module.padding_idx is not None:
720
+ module.weight.data[module.padding_idx].zero_()
721
+
722
+
723
+ InternLM2_INPUTS_DOCSTRING = r"""
724
+ Args:
725
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
726
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
727
+ it.
728
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
729
+ [`PreTrainedTokenizer.__call__`] for details.
730
+ [What are input IDs?](../glossary#input-ids)
731
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
732
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
733
+ - 1 for tokens that are **not masked**,
734
+ - 0 for tokens that are **masked**.
735
+ [What are attention masks?](../glossary#attention-mask)
736
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
737
+ [`PreTrainedTokenizer.__call__`] for details.
738
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
739
+ `past_key_values`).
740
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
741
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
742
+ information on the default strategy.
743
+ - 1 indicates the head is **not masked**,
744
+ - 0 indicates the head is **masked**.
745
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
746
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
747
+ config.n_positions - 1]`.
748
+ [What are position IDs?](../glossary#position-ids)
749
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
750
+ when `config.use_cache=True`):
751
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
752
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
753
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
754
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
755
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
756
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
757
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
758
+ of shape `(batch_size, sequence_length)`.
759
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
760
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
761
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
762
+ model's internal embedding lookup matrix.
763
+ use_cache (`bool`, *optional*):
764
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
765
+ `past_key_values`).
766
+ output_attentions (`bool`, *optional*):
767
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
768
+ tensors for more detail.
769
+ output_hidden_states (`bool`, *optional*):
770
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
771
+ more detail.
772
+ return_dict (`bool`, *optional*):
773
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
774
+ """
775
+
776
+
777
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
778
+ @add_start_docstrings(
779
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
780
+ InternLM2_START_DOCSTRING,
781
+ )
782
+ class InternLM2Model(InternLM2PreTrainedModel):
783
+ """
784
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
785
+ Args:
786
+ config: InternLM2Config
787
+ """
788
+
789
+ _auto_class = 'AutoModel'
790
+
791
+ def __init__(self, config: InternLM2Config):
792
+ super().__init__(config)
793
+ self.padding_idx = config.pad_token_id
794
+ self.vocab_size = config.vocab_size
795
+ self.config = config
796
+ if not has_flash_attn:
797
+ self.config.attn_implementation = 'eager'
798
+ print('Warning: Flash attention is not available, using eager attention instead.')
799
+
800
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
801
+
802
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
803
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
804
+
805
+ self.gradient_checkpointing = False
806
+ # Initialize weights and apply final processing
807
+ self.post_init()
808
+
809
+ def get_input_embeddings(self):
810
+ return self.tok_embeddings
811
+
812
+ def set_input_embeddings(self, value):
813
+ self.tok_embeddings = value
814
+
815
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
816
+ # create causal mask
817
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
818
+ combined_attention_mask = None
819
+ if input_shape[-1] > 1:
820
+ combined_attention_mask = _make_causal_mask(
821
+ input_shape,
822
+ inputs_embeds.dtype,
823
+ device=inputs_embeds.device,
824
+ past_key_values_length=past_key_values_length,
825
+ )
826
+
827
+ if attention_mask is not None:
828
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
829
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
830
+ inputs_embeds.device
831
+ )
832
+ combined_attention_mask = (
833
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
834
+ )
835
+
836
+ return combined_attention_mask
837
+
838
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
839
+ def forward(
840
+ self,
841
+ input_ids: torch.LongTensor = None,
842
+ attention_mask: Optional[torch.Tensor] = None,
843
+ position_ids: Optional[torch.LongTensor] = None,
844
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
845
+ inputs_embeds: Optional[torch.FloatTensor] = None,
846
+ use_cache: Optional[bool] = None,
847
+ output_attentions: Optional[bool] = None,
848
+ output_hidden_states: Optional[bool] = None,
849
+ return_dict: Optional[bool] = None,
850
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
851
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
852
+ output_hidden_states = (
853
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
854
+ )
855
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
856
+
857
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
858
+
859
+ if self.config.attn_implementation == 'flash_attention_2':
860
+ _import_flash_attn()
861
+
862
+ # retrieve input_ids and inputs_embeds
863
+ if input_ids is not None and inputs_embeds is not None:
864
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
865
+ elif input_ids is not None:
866
+ batch_size, seq_length = input_ids.shape[:2]
867
+ elif inputs_embeds is not None:
868
+ batch_size, seq_length = inputs_embeds.shape[:2]
869
+ else:
870
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
871
+
872
+ seq_length_with_past = seq_length
873
+ past_key_values_length = 0
874
+ if past_key_values is not None:
875
+ past_key_values_length = past_key_values[0][0].shape[2]
876
+ seq_length_with_past = seq_length_with_past + past_key_values_length
877
+
878
+ if position_ids is None:
879
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
880
+ position_ids = torch.arange(
881
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
882
+ )
883
+ position_ids = position_ids.unsqueeze(0)
884
+
885
+ if inputs_embeds is None:
886
+ inputs_embeds = self.tok_embeddings(input_ids)
887
+
888
+ if self.config.attn_implementation == 'flash_attention_2':
889
+ # 2d mask is passed through the layers
890
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
891
+ else:
892
+ if attention_mask is None:
893
+ attention_mask = torch.ones(
894
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
895
+ )
896
+ attention_mask = self._prepare_decoder_attention_mask(
897
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
898
+ )
899
+
900
+ # embed positions
901
+ hidden_states = inputs_embeds
902
+
903
+ if self.gradient_checkpointing and self.training:
904
+ if use_cache:
905
+ logger.warning_once(
906
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
907
+ )
908
+ use_cache = False
909
+
910
+ # decoder layers
911
+ all_hidden_states = () if output_hidden_states else None
912
+ all_self_attns = () if output_attentions else None
913
+ next_decoder_cache = () if use_cache else None
914
+
915
+ for idx, decoder_layer in enumerate(self.layers):
916
+ if output_hidden_states:
917
+ all_hidden_states += (hidden_states,)
918
+
919
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
920
+
921
+ if self.gradient_checkpointing and self.training:
922
+
923
+ def create_custom_forward(module):
924
+ def custom_forward(*inputs):
925
+ # None for past_key_value
926
+ return module(*inputs, output_attentions, None)
927
+
928
+ return custom_forward
929
+
930
+ layer_outputs = torch.utils.checkpoint.checkpoint(
931
+ create_custom_forward(decoder_layer),
932
+ hidden_states,
933
+ attention_mask,
934
+ position_ids,
935
+ None,
936
+ )
937
+ else:
938
+ layer_outputs = decoder_layer(
939
+ hidden_states,
940
+ attention_mask=attention_mask,
941
+ position_ids=position_ids,
942
+ past_key_value=past_key_value,
943
+ output_attentions=output_attentions,
944
+ use_cache=use_cache,
945
+ )
946
+
947
+ hidden_states = layer_outputs[0]
948
+
949
+ if use_cache:
950
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
951
+
952
+ if output_attentions:
953
+ all_self_attns += (layer_outputs[1],)
954
+
955
+ hidden_states = self.norm(hidden_states)
956
+
957
+ # add hidden states from the last decoder layer
958
+ if output_hidden_states:
959
+ all_hidden_states += (hidden_states,)
960
+
961
+ next_cache = next_decoder_cache if use_cache else None
962
+ if not return_dict:
963
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
964
+ return BaseModelOutputWithPast(
965
+ last_hidden_state=hidden_states,
966
+ past_key_values=next_cache,
967
+ hidden_states=all_hidden_states,
968
+ attentions=all_self_attns,
969
+ )
970
+
971
+
972
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
973
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
974
+ _auto_class = 'AutoModelForCausalLM'
975
+
976
+ _tied_weights_keys = ['output.weight']
977
+
978
+ def __init__(self, config):
979
+ super().__init__(config)
980
+ self.model = InternLM2Model(config)
981
+ self.vocab_size = config.vocab_size
982
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
983
+
984
+ # Initialize weights and apply final processing
985
+ self.post_init()
986
+
987
+ def get_input_embeddings(self):
988
+ return self.model.tok_embeddings
989
+
990
+ def set_input_embeddings(self, value):
991
+ self.model.tok_embeddings = value
992
+
993
+ def get_output_embeddings(self):
994
+ return self.output
995
+
996
+ def set_output_embeddings(self, new_embeddings):
997
+ self.output = new_embeddings
998
+
999
+ def set_decoder(self, decoder):
1000
+ self.model = decoder
1001
+
1002
+ def get_decoder(self):
1003
+ return self.model
1004
+
1005
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1006
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1007
+ def forward(
1008
+ self,
1009
+ input_ids: torch.LongTensor = None,
1010
+ attention_mask: Optional[torch.Tensor] = None,
1011
+ position_ids: Optional[torch.LongTensor] = None,
1012
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1013
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1014
+ labels: Optional[torch.LongTensor] = None,
1015
+ use_cache: Optional[bool] = None,
1016
+ output_attentions: Optional[bool] = None,
1017
+ output_hidden_states: Optional[bool] = None,
1018
+ return_dict: Optional[bool] = None,
1019
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1020
+ r"""
1021
+ Args:
1022
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1023
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1024
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1025
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1026
+ Returns:
1027
+ Example:
1028
+ ```python
1029
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1030
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1031
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1032
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1033
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1034
+ >>> # Generate
1035
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1036
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1037
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1038
+ ```"""
1039
+
1040
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1041
+ output_hidden_states = (
1042
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1043
+ )
1044
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1045
+
1046
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1047
+ outputs = self.model(
1048
+ input_ids=input_ids,
1049
+ attention_mask=attention_mask,
1050
+ position_ids=position_ids,
1051
+ past_key_values=past_key_values,
1052
+ inputs_embeds=inputs_embeds,
1053
+ use_cache=use_cache,
1054
+ output_attentions=output_attentions,
1055
+ output_hidden_states=output_hidden_states,
1056
+ return_dict=return_dict,
1057
+ )
1058
+
1059
+ hidden_states = outputs[0]
1060
+ logits = self.output(hidden_states)
1061
+ logits = logits.float()
1062
+
1063
+ loss = None
1064
+ if labels is not None:
1065
+ # Shift so that tokens < n predict n
1066
+ shift_logits = logits[..., :-1, :].contiguous()
1067
+ shift_labels = labels[..., 1:].contiguous()
1068
+ # Flatten the tokens
1069
+ loss_fct = CrossEntropyLoss()
1070
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1071
+ shift_labels = shift_labels.view(-1)
1072
+ # Enable model parallelism
1073
+ shift_labels = shift_labels.to(shift_logits.device)
1074
+ loss = loss_fct(shift_logits, shift_labels)
1075
+
1076
+ if not return_dict:
1077
+ output = (logits,) + outputs[1:]
1078
+ return (loss,) + output if loss is not None else output
1079
+
1080
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1081
+ output = CausalLMOutputWithPast(
1082
+ loss=loss,
1083
+ logits=logits,
1084
+ past_key_values=outputs.past_key_values,
1085
+ hidden_states=outputs.hidden_states,
1086
+ attentions=outputs.attentions,
1087
+ )
1088
+ output['logits'] = output['logits'].to(device)
1089
+ return output
1090
+
1091
+ def prepare_inputs_for_generation(
1092
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1093
+ ):
1094
+ if past_key_values is not None:
1095
+ past_length = past_key_values[0][0].shape[2]
1096
+
1097
+ # Some generation methods already pass only the last input ID
1098
+ if input_ids.shape[1] > past_length:
1099
+ remove_prefix_length = past_length
1100
+ else:
1101
+ # Default to old behavior: keep only final ID
1102
+ remove_prefix_length = input_ids.shape[1] - 1
1103
+
1104
+ input_ids = input_ids[:, remove_prefix_length:]
1105
+
1106
+ position_ids = kwargs.get('position_ids', None)
1107
+ if attention_mask is not None and position_ids is None:
1108
+ # create position_ids on the fly for batch generation
1109
+ position_ids = attention_mask.long().cumsum(-1) - 1
1110
+ position_ids.masked_fill_(attention_mask == 0, 1)
1111
+ if past_key_values:
1112
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1113
+
1114
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1115
+ if inputs_embeds is not None and past_key_values is None:
1116
+ model_inputs = {'inputs_embeds': inputs_embeds}
1117
+ else:
1118
+ model_inputs = {'input_ids': input_ids}
1119
+
1120
+ model_inputs.update(
1121
+ {
1122
+ 'position_ids': position_ids,
1123
+ 'past_key_values': past_key_values,
1124
+ 'use_cache': kwargs.get('use_cache'),
1125
+ 'attention_mask': attention_mask,
1126
+ }
1127
+ )
1128
+ return model_inputs
1129
+
1130
+ @staticmethod
1131
+ def _reorder_cache(past_key_values, beam_idx):
1132
+ reordered_past = ()
1133
+ for layer_past in past_key_values:
1134
+ reordered_past += (
1135
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1136
+ )
1137
+ return reordered_past
1138
+
1139
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1140
+ if tokenizer.add_bos_token:
1141
+ prompt = ''
1142
+ else:
1143
+ prompt = tokenizer.bos_token
1144
+ if meta_instruction:
1145
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1146
+ for record in history:
1147
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1148
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1149
+ return tokenizer([prompt], return_tensors='pt')
1150
+
1151
+ @torch.no_grad()
1152
+ def chat(
1153
+ self,
1154
+ tokenizer,
1155
+ query: str,
1156
+ history: List[Tuple[str, str]] = [],
1157
+ streamer: Optional[BaseStreamer] = None,
1158
+ max_new_tokens: int = 1024,
1159
+ do_sample: bool = True,
1160
+ temperature: float = 0.8,
1161
+ top_p: float = 0.8,
1162
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1163
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1164
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1165
+ **kwargs,
1166
+ ):
1167
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1168
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1169
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1170
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1171
+ outputs = self.generate(
1172
+ **inputs,
1173
+ streamer=streamer,
1174
+ max_new_tokens=max_new_tokens,
1175
+ do_sample=do_sample,
1176
+ temperature=temperature,
1177
+ top_p=top_p,
1178
+ eos_token_id=eos_token_id,
1179
+ **kwargs,
1180
+ )
1181
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1182
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1183
+ response = response.split('<|im_end|>')[0]
1184
+ history = history + [(query, response)]
1185
+ return response, history
1186
+
1187
+ @torch.no_grad()
1188
+ def stream_chat(
1189
+ self,
1190
+ tokenizer,
1191
+ query: str,
1192
+ history: List[Tuple[str, str]] = [],
1193
+ max_new_tokens: int = 1024,
1194
+ do_sample: bool = True,
1195
+ temperature: float = 0.8,
1196
+ top_p: float = 0.8,
1197
+ **kwargs,
1198
+ ):
1199
+ """
1200
+ Return a generator in format: (response, history)
1201
+ Eg.
1202
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1203
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1204
+ """
1205
+ if BaseStreamer is None:
1206
+ raise ModuleNotFoundError(
1207
+ 'The version of `transformers` is too low. Please make sure '
1208
+ 'that you have installed `transformers>=4.28.0`.'
1209
+ )
1210
+
1211
+ response_queue = queue.Queue(maxsize=20)
1212
+
1213
+ class ChatStreamer(BaseStreamer):
1214
+ def __init__(self, tokenizer) -> None:
1215
+ super().__init__()
1216
+ self.tokenizer = tokenizer
1217
+ self.queue = response_queue
1218
+ self.query = query
1219
+ self.history = history
1220
+ self.response = ''
1221
+ self.cache = []
1222
+ self.received_inputs = False
1223
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1224
+
1225
+ def put(self, value):
1226
+ if len(value.shape) > 1 and value.shape[0] > 1:
1227
+ raise ValueError('ChatStreamer only supports batch size 1')
1228
+ elif len(value.shape) > 1:
1229
+ value = value[0]
1230
+
1231
+ if not self.received_inputs:
1232
+ # The first received value is input_ids, ignore here
1233
+ self.received_inputs = True
1234
+ return
1235
+
1236
+ self.cache.extend(value.tolist())
1237
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1238
+ if token.strip() != '<|im_end|>':
1239
+ self.response = self.response + token
1240
+ history = self.history + [(self.query, self.response)]
1241
+ self.queue.put((self.response, history))
1242
+ self.cache = []
1243
+ else:
1244
+ self.end()
1245
+
1246
+ def end(self):
1247
+ self.queue.put(None)
1248
+
1249
+ def stream_producer():
1250
+ return self.chat(
1251
+ tokenizer=tokenizer,
1252
+ query=query,
1253
+ streamer=ChatStreamer(tokenizer=tokenizer),
1254
+ history=history,
1255
+ max_new_tokens=max_new_tokens,
1256
+ do_sample=do_sample,
1257
+ temperature=temperature,
1258
+ top_p=top_p,
1259
+ **kwargs,
1260
+ )
1261
+
1262
+ def consumer():
1263
+ producer = threading.Thread(target=stream_producer)
1264
+ producer.start()
1265
+ while True:
1266
+ res = response_queue.get()
1267
+ if res is None:
1268
+ return
1269
+ yield res
1270
+
1271
+ return consumer()
1272
+
1273
+
1274
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1275
+ @add_start_docstrings(
1276
+ """
1277
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1278
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1279
+ as other causal models (e.g. GPT-2) do.
1280
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1281
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1282
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1283
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1284
+ each row of the batch).
1285
+ """,
1286
+ InternLM2_START_DOCSTRING,
1287
+ )
1288
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1289
+ def __init__(self, config):
1290
+ super().__init__(config)
1291
+ self.num_labels = config.num_labels
1292
+ self.model = InternLM2Model(config)
1293
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1294
+
1295
+ # Initialize weights and apply final processing
1296
+ self.post_init()
1297
+
1298
+ def get_input_embeddings(self):
1299
+ return self.model.tok_embeddings
1300
+
1301
+ def set_input_embeddings(self, value):
1302
+ self.model.tok_embeddings = value
1303
+
1304
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1305
+ def forward(
1306
+ self,
1307
+ input_ids: torch.LongTensor = None,
1308
+ attention_mask: Optional[torch.Tensor] = None,
1309
+ position_ids: Optional[torch.LongTensor] = None,
1310
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1311
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1312
+ labels: Optional[torch.LongTensor] = None,
1313
+ use_cache: Optional[bool] = None,
1314
+ output_attentions: Optional[bool] = None,
1315
+ output_hidden_states: Optional[bool] = None,
1316
+ return_dict: Optional[bool] = None,
1317
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1318
+ r"""
1319
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1320
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1321
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1322
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1323
+ """
1324
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1325
+
1326
+ transformer_outputs = self.model(
1327
+ input_ids,
1328
+ attention_mask=attention_mask,
1329
+ position_ids=position_ids,
1330
+ past_key_values=past_key_values,
1331
+ inputs_embeds=inputs_embeds,
1332
+ use_cache=use_cache,
1333
+ output_attentions=output_attentions,
1334
+ output_hidden_states=output_hidden_states,
1335
+ return_dict=return_dict,
1336
+ )
1337
+ hidden_states = transformer_outputs[0]
1338
+ logits = self.score(hidden_states)
1339
+
1340
+ if input_ids is not None:
1341
+ batch_size = input_ids.shape[0]
1342
+ else:
1343
+ batch_size = inputs_embeds.shape[0]
1344
+
1345
+ if self.config.pad_token_id is None and batch_size != 1:
1346
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1347
+ if self.config.pad_token_id is None:
1348
+ sequence_lengths = -1
1349
+ else:
1350
+ if input_ids is not None:
1351
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1352
+ logits.device
1353
+ )
1354
+ else:
1355
+ sequence_lengths = -1
1356
+
1357
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1358
+
1359
+ loss = None
1360
+ if labels is not None:
1361
+ labels = labels.to(logits.device)
1362
+ if self.config.problem_type is None:
1363
+ if self.num_labels == 1:
1364
+ self.config.problem_type = 'regression'
1365
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1366
+ self.config.problem_type = 'single_label_classification'
1367
+ else:
1368
+ self.config.problem_type = 'multi_label_classification'
1369
+
1370
+ if self.config.problem_type == 'regression':
1371
+ loss_fct = MSELoss()
1372
+ if self.num_labels == 1:
1373
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1374
+ else:
1375
+ loss = loss_fct(pooled_logits, labels)
1376
+ elif self.config.problem_type == 'single_label_classification':
1377
+ loss_fct = CrossEntropyLoss()
1378
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1379
+ elif self.config.problem_type == 'multi_label_classification':
1380
+ loss_fct = BCEWithLogitsLoss()
1381
+ loss = loss_fct(pooled_logits, labels)
1382
+ if not return_dict:
1383
+ output = (pooled_logits,) + transformer_outputs[1:]
1384
+ return ((loss,) + output) if loss is not None else output
1385
+
1386
+ return SequenceClassifierOutputWithPast(
1387
+ loss=loss,
1388
+ logits=pooled_logits,
1389
+ past_key_values=transformer_outputs.past_key_values,
1390
+ hidden_states=transformer_outputs.hidden_states,
1391
+ attentions=transformer_outputs.attentions,
1392
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from dataclasses import dataclass
8
+ from typing import Any, List, Optional, Tuple, Union
9
+ from copy import deepcopy
10
+
11
+ import torch.distributed as dist
12
+ import torch.utils.checkpoint
13
+ import torch.nn as nn
14
+ import transformers
15
+
16
+ from peft import LoraConfig, get_peft_model
17
+ from torch import nn
18
+ from torch.nn import CrossEntropyLoss
19
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
20
+ LlamaTokenizer, Qwen2ForCausalLM)
21
+ from transformers.modeling_outputs import CausalLMOutputWithPast
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.utils import ModelOutput, logging
24
+ from transformers.trainer_pt_utils import LabelSmoother
25
+ IGNORE_TOKEN_ID = LabelSmoother.ignore_index
26
+
27
+ from .configuration_internvl_chat import InternVLChatConfig
28
+ from .conversation import get_conv_template
29
+ from .modeling_internlm2 import InternLM2ForCausalLM
30
+ from .modeling_holistic_embedding import (HolisticEmbedding,
31
+ HolisticEmbeddingConfig)
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ def version_cmp(v1, v2, op='eq'):
37
+ import operator
38
+
39
+ from packaging import version
40
+ op_func = getattr(operator, op)
41
+ return op_func(version.parse(v1), version.parse(v2))
42
+
43
+
44
+ class InternVLChatModel(PreTrainedModel):
45
+ config_class = InternVLChatConfig
46
+ # main_input_name = 'pixel_values'
47
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
48
+ 'Phi3DecoderLayer', 'Qwen2DecoderLayer']
49
+ _supports_flash_attn_2 = True
50
+
51
+ def __init__(self, config: InternVLChatConfig, embedding_model=None, language_model=None):
52
+ super().__init__(config)
53
+
54
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
55
+ image_size = config.force_image_size or config.embedding_config.image_size
56
+ patch_size = config.embedding_config.patch_size
57
+ self.image_size = image_size
58
+ self.patch_size = patch_size
59
+ self.select_layer = config.select_layer
60
+ self.template = config.template
61
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
62
+ self.downsample_ratio = config.downsample_ratio
63
+ self.ps_version = config.ps_version
64
+ self.use_thumbnail = config.use_thumbnail
65
+
66
+ logger.info(f'num_image_token: {self.num_image_token}')
67
+ logger.info(f'ps_version: {self.ps_version}')
68
+ if embedding_model is not None:
69
+ self.embedding_model = embedding_model
70
+ else:
71
+ self.embedding_model = HolisticEmbedding(config.embedding_config)
72
+
73
+ if language_model is not None:
74
+ self.language_model = language_model
75
+ else:
76
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
77
+ self.language_model = LlamaForCausalLM(config.llm_config)
78
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
79
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
80
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
81
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
82
+ else:
83
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
84
+
85
+ self.img_context_token_id = None
86
+ self.conv_template = get_conv_template(self.template)
87
+ self.system_message = self.conv_template.system_message
88
+ self.num_samples = 0
89
+
90
+ if config.use_backbone_lora:
91
+ self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
92
+
93
+ if config.use_llm_lora:
94
+ self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
95
+
96
+ def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
97
+ lora_config = LoraConfig(
98
+ r=r,
99
+ target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
100
+ lora_alpha=lora_alpha,
101
+ lora_dropout=lora_dropout,
102
+ )
103
+ self.embedding_model = get_peft_model(self.embedding_model, lora_config)
104
+ self.embedding_model.print_trainable_parameters()
105
+
106
+ def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
107
+ lora_config = LoraConfig(
108
+ r=r,
109
+ target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
110
+ 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
111
+ lora_alpha=lora_alpha,
112
+ lora_dropout=lora_dropout,
113
+ task_type='CAUSAL_LM'
114
+ )
115
+ self.language_model = get_peft_model(self.language_model, lora_config)
116
+ self.language_model.enable_input_require_grads()
117
+ self.language_model.print_trainable_parameters()
118
+
119
+ def forward(
120
+ self,
121
+ pixel_values: torch.FloatTensor = None,
122
+ input_ids: torch.LongTensor = None,
123
+ input_embeds: Optional[torch.FloatTensor] = None,
124
+ attention_mask: Optional[torch.Tensor] = None,
125
+ position_ids: Optional[torch.LongTensor] = None,
126
+ image_flags: Optional[torch.LongTensor] = None,
127
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
128
+ labels: Optional[torch.LongTensor] = None,
129
+ use_cache: Optional[bool] = None,
130
+ output_attentions: Optional[bool] = None,
131
+ output_hidden_states: Optional[bool] = None,
132
+ return_dict: Optional[bool] = None,
133
+ statistics: Optional[torch.LongTensor] = None,
134
+ loss_weight: Optional[List] = None,
135
+ loss_reduction_all_gather: Optional[bool] = False,
136
+ query = None,
137
+ hd_input_ids = None,
138
+ hd_attention_mask = None,
139
+ hd_position_ids = None,
140
+ hd_input_embeds = None,
141
+ hd_labels = None,
142
+ hd_loss_weight = None,
143
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
144
+
145
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
146
+
147
+ if input_embeds is None:
148
+ if image_flags is not None:
149
+ image_flags = image_flags.squeeze(-1)
150
+ pixel_values = pixel_values[image_flags == 1]
151
+ if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']:
152
+ assert hd_input_ids is not None, 'hd_input_ids is required for pixel_shuffle_loc=post'
153
+ embedding_input_ids = hd_input_ids
154
+ embedding_attention_mask = hd_attention_mask
155
+ embedding_position_ids = hd_position_ids
156
+ else:
157
+ embedding_input_ids = input_ids
158
+ embedding_attention_mask = attention_mask
159
+ embedding_position_ids = position_ids
160
+ image_embeds, input_embeds, next_past_key_values = self.embedding_model(input_ids=embedding_input_ids,
161
+ pixel_values=pixel_values,
162
+ attention_mask=embedding_attention_mask,
163
+ position_ids=embedding_position_ids,
164
+ use_cache=use_cache,)
165
+
166
+ B, N = embedding_input_ids.shape
167
+ image_batch_size = pixel_values.shape[0] if pixel_values is not None else 0
168
+ C = image_embeds.shape[-1]
169
+ input_embeds = input_embeds.reshape(B * N, C)
170
+
171
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
172
+ print(f'dynamic ViT batch size: {image_batch_size}, images per sample: {image_batch_size / B}, dynamic token length: {N}')
173
+ if statistics is not None:
174
+ num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
175
+ self.num_samples += num_samples
176
+ print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
177
+
178
+ if image_batch_size != 0:
179
+ if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) == 'post':
180
+ B, N = input_ids.shape
181
+ llm_input_embeds = torch.zeros(input_ids.shape[1], C, device=input_ids.device, dtype=input_embeds.dtype)
182
+ llm_selected = input_ids.flatten() == self.img_context_token_id
183
+ hd_llm_selected = hd_input_ids.flatten() == self.img_context_token_id
184
+ llm_input_embeds[~llm_selected] = input_embeds[~hd_llm_selected]
185
+ llm_input_embeds[llm_selected] = image_embeds.reshape(-1, C)
186
+ input_embeds = llm_input_embeds
187
+
188
+ input_embeds = input_embeds.reshape(B, N, C)
189
+
190
+ else:
191
+ next_past_key_values = []
192
+ if getattr(self.embedding_model.config, 'pixel_shuffle_loc', None) in ['post']:
193
+ embedding_input_embeds = hd_input_embeds
194
+ embedding_attention_mask = hd_attention_mask
195
+ embedding_position_ids = hd_position_ids
196
+ else:
197
+ embedding_input_embeds = input_embeds
198
+ embedding_attention_mask = attention_mask
199
+ embedding_position_ids = position_ids
200
+ for layer_idx, layer_module in enumerate(self.embedding_model.encoder):
201
+ outputs = layer_module(
202
+ hidden_states=embedding_input_embeds,
203
+ attention_mask=embedding_attention_mask,
204
+ position_ids=embedding_position_ids,
205
+ past_key_value=past_key_values[layer_idx],
206
+ use_cache=use_cache,
207
+ )
208
+ embedding_input_embeds = outputs[0]
209
+ if use_cache:
210
+ next_past_key_values.append(outputs[1])
211
+
212
+ input_embeds = embedding_input_embeds
213
+
214
+ if self.config.normalize_encoder_output:
215
+ input_embeds = input_embeds / input_embeds.norm(dim=-1, keepdim=True)
216
+
217
+ llm_attention_mask = attention_mask
218
+ llm_position_ids = position_ids
219
+
220
+ outputs = self.language_model(
221
+ inputs_embeds=input_embeds,
222
+ attention_mask=llm_attention_mask,
223
+ position_ids=llm_position_ids,
224
+ past_key_values=past_key_values[layer_idx+1:] if past_key_values is not None else None,
225
+ use_cache=use_cache,
226
+ output_attentions=output_attentions,
227
+ output_hidden_states=output_hidden_states,
228
+ return_dict=return_dict,
229
+ )
230
+ logits = outputs.logits
231
+
232
+ loss = None
233
+ if labels is not None and loss_weight is not None:
234
+ loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
235
+ # Shift so that tokens < n predict n
236
+ shift_logits = logits[..., :-1, :].contiguous()
237
+ shift_labels = labels[..., 1:].contiguous()
238
+ shift_weights = loss_weight[..., 1:].contiguous()
239
+ # Flatten the tokens
240
+ loss_fct = CrossEntropyLoss(reduction='none')
241
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
242
+ shift_labels = shift_labels.view(-1)
243
+ shift_weights = shift_weights.view(-1)
244
+ # Enable model parallelism
245
+ shift_labels = shift_labels.to(shift_logits.device)
246
+ shift_weights = shift_weights.to(shift_logits.device)
247
+ loss = loss_fct(shift_logits, shift_labels)
248
+
249
+ shift_weights_sum = shift_weights.sum()
250
+ if loss_reduction_all_gather:
251
+ dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
252
+
253
+ loss = loss * shift_weights
254
+ loss = loss.sum() / shift_weights_sum
255
+ elif labels is not None:
256
+ # Shift so that tokens < n predict n
257
+ shift_logits = logits[..., :-1, :].contiguous()
258
+ shift_labels = labels[..., 1:].contiguous()
259
+ # Flatten the tokens
260
+ loss_fct = CrossEntropyLoss()
261
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
262
+ shift_labels = shift_labels.view(-1)
263
+ # Enable model parallelism
264
+ shift_labels = shift_labels.to(shift_logits.device)
265
+ loss = loss_fct(shift_logits, shift_labels)
266
+
267
+ if not return_dict:
268
+ output = (logits,) + outputs[1:]
269
+ return (loss,) + output if loss is not None else output
270
+
271
+ if use_cache:
272
+ for past_key_value in outputs.past_key_values:
273
+ next_past_key_values.append(past_key_value)
274
+ else:
275
+ next_past_key_values = None
276
+
277
+ return CausalLMOutputWithPast(
278
+ loss=loss,
279
+ logits=logits,
280
+ past_key_values=next_past_key_values,
281
+ hidden_states=outputs.hidden_states,
282
+ attentions=outputs.attentions,
283
+ )
284
+
285
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
286
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
287
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
288
+ if history is not None or return_history:
289
+ print('Now multi-turn chat is not supported in batch_chat.')
290
+ raise NotImplementedError
291
+
292
+ if image_counts is not None:
293
+ num_patches_list = image_counts
294
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
295
+
296
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
297
+ self.img_context_token_id = img_context_token_id
298
+
299
+ if verbose and pixel_values is not None:
300
+ image_bs = pixel_values.shape[0]
301
+ print(f'dynamic ViT batch size: {image_bs}')
302
+
303
+ queries = []
304
+ for idx, num_patches in enumerate(num_patches_list):
305
+ question = questions[idx]
306
+ if pixel_values is not None and '<image>' not in question:
307
+ question = '<image>\n' + question
308
+ template = get_conv_template(self.template)
309
+ template.append_message(template.roles[0], question)
310
+ template.append_message(template.roles[1], None)
311
+ query = template.get_prompt()
312
+
313
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
314
+ query = query.replace('<image>', image_tokens, 1)
315
+ queries.append(query)
316
+
317
+ tokenizer.padding_side = 'left'
318
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
319
+ input_ids = model_inputs['input_ids'].cuda()
320
+ attention_mask = model_inputs['attention_mask'].cuda()
321
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
322
+ generation_config['eos_token_id'] = eos_token_id
323
+ generation_output = self.generate(
324
+ pixel_values=pixel_values,
325
+ input_ids=input_ids,
326
+ attention_mask=attention_mask,
327
+ **generation_config
328
+ )
329
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
330
+ responses = [response.split(template.sep)[0].strip() for response in responses]
331
+ return responses
332
+
333
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
334
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
335
+ verbose=False):
336
+
337
+ if history is None and pixel_values is not None and '<image>' not in question:
338
+ question = '<image>\n' + question
339
+
340
+ if num_patches_list is None:
341
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
342
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
343
+
344
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
345
+ self.img_context_token_id = img_context_token_id
346
+
347
+ template = get_conv_template(self.template)
348
+ template.system_message = self.system_message
349
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
350
+
351
+ history = [] if history is None else history
352
+ for (old_question, old_answer) in history:
353
+ template.append_message(template.roles[0], old_question)
354
+ template.append_message(template.roles[1], old_answer)
355
+ template.append_message(template.roles[0], question)
356
+ template.append_message(template.roles[1], None)
357
+ query = template.get_prompt()
358
+
359
+ if verbose and pixel_values is not None:
360
+ image_bs = pixel_values.shape[0]
361
+ print(f'dynamic ViT batch size: {image_bs}')
362
+
363
+ hd_query = deepcopy(query)
364
+ for num_patches in num_patches_list:
365
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
366
+ hd_image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * int(self.num_image_token // self.downsample_ratio**2) * num_patches + IMG_END_TOKEN
367
+ query = query.replace('<image>', image_tokens, 1)
368
+ hd_query = hd_query.replace('<image>', hd_image_tokens, 1)
369
+
370
+ model_inputs = tokenizer(query, return_tensors='pt')
371
+ hd_model_inputs = tokenizer(hd_query, return_tensors='pt')
372
+ input_ids = model_inputs['input_ids'].cuda()
373
+ attention_mask = model_inputs['attention_mask'].cuda()
374
+ hd_input_ids = hd_model_inputs['input_ids'].cuda()
375
+ hd_attention_mask = hd_model_inputs['attention_mask'].cuda()
376
+
377
+ generation_config['eos_token_id'] = eos_token_id
378
+ generation_output = super().generate(
379
+ pixel_values=pixel_values,
380
+ input_ids=input_ids,
381
+ attention_mask=attention_mask,
382
+ hd_input_ids=hd_input_ids,
383
+ hd_attention_mask=hd_attention_mask,
384
+ **generation_config
385
+ )
386
+ generation_output = generation_output[:, input_ids.shape[1]:]
387
+
388
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
389
+ response = response.split(template.sep)[0].strip()
390
+ history.append((question, response))
391
+ if return_history:
392
+ return response, history
393
+ else:
394
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
395
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
396
+ if verbose:
397
+ print(query_to_print, response)
398
+ return response
399
+
400
+ def prepare_inputs_for_generation(
401
+ self, input_ids, past_key_values=None, attention_mask=None, input_embeds=None,
402
+ tile_pos_offsets=None, hd_input_ids=None, hd_attention_mask=None, img_mask=None, **kwargs
403
+ ):
404
+ if past_key_values is not None:
405
+ past_length = past_key_values[-1][0].shape[2]
406
+
407
+ # Some generation methods already pass only the last input ID
408
+ if input_ids.shape[1] > past_length:
409
+ remove_prefix_length = past_length
410
+ else:
411
+ # Default to old behavior: keep only final ID
412
+ remove_prefix_length = input_ids.shape[1] - 1
413
+
414
+ input_ids = input_ids[:, remove_prefix_length:]
415
+ input_embeds = self.embedding_model.get_input_embeddings(input_ids)
416
+ hd_input_ids = input_ids
417
+ hd_input_embeds = input_embeds
418
+
419
+ position_ids = kwargs.get('position_ids', None)
420
+ if attention_mask is not None and position_ids is None:
421
+ # create position_ids on the fly for batch generation
422
+ position_ids = attention_mask.long().cumsum(-1) - 1
423
+ position_ids.masked_fill_(attention_mask == 0, 1)
424
+ if past_key_values:
425
+ position_ids = position_ids[:, -input_ids.shape[1]:]
426
+
427
+ hd_position_ids = kwargs.get('hd_position_ids', None)
428
+ if hd_attention_mask is not None and hd_position_ids is None:
429
+ # create position_ids on the fly for batch generation
430
+ hd_position_ids = hd_attention_mask.long().cumsum(-1) - 1
431
+ hd_position_ids.masked_fill_(hd_attention_mask == 0, 1)
432
+ if past_key_values:
433
+ hd_position_ids = hd_position_ids[:, -hd_input_ids.shape[1]:]
434
+
435
+ if input_embeds is not None:
436
+ model_inputs = {'input_embeds': input_embeds, 'hd_input_embeds': hd_input_embeds}
437
+ else:
438
+ model_inputs = {'input_ids': input_ids, 'pixel_values': kwargs.get('pixel_values'), 'hd_input_ids': hd_input_ids}
439
+
440
+ model_inputs.update(
441
+ {
442
+ 'position_ids': position_ids,
443
+ 'past_key_values': past_key_values,
444
+ 'use_cache': kwargs.get('use_cache'),
445
+ 'attention_mask': attention_mask,
446
+ 'hd_position_ids': hd_position_ids,
447
+ 'hd_attention_mask': hd_attention_mask,
448
+ }
449
+ )
450
+ return model_inputs
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>"
18
+ ],
19
+ "bos_token": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "eos_token": {
27
+ "content": "</s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "unk_token": {
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ }
147
+ },
148
+ "additional_special_tokens": [
149
+ "<|im_start|>",
150
+ "<|im_end|>",
151
+ "<|action_start|>",
152
+ "<|action_end|>",
153
+ "<|interpreter|>",
154
+ "<|plugin|>",
155
+ "<img>",
156
+ "</img>",
157
+ "<IMG_CONTEXT>",
158
+ "<quad>",
159
+ "</quad>",
160
+ "<ref>",
161
+ "</ref>",
162
+ "<box>",
163
+ "</box>"
164
+ ],
165
+ "auto_map": {
166
+ "AutoTokenizer": [
167
+ "tokenization_internlm2.InternLM2Tokenizer",
168
+ null
169
+ ]
170
+ },
171
+ "bos_token": "<s>",
172
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "</s>",
175
+ "model_max_length": 8192,
176
+ "pad_token": "</s>",
177
+ "tokenizer_class": "InternLM2Tokenizer",
178
+ "unk_token": "<unk>"
179
+ }