update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- super_glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: 1_6e-3_10_0.1
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# 1_6e-3_10_0.1
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the super_glue dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9853
|
22 |
+
- Accuracy: 0.7416
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.006
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 11
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 100.0
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| 1.4161 | 1.0 | 590 | 1.9327 | 0.6217 |
|
54 |
+
| 1.4964 | 2.0 | 1180 | 1.4733 | 0.6217 |
|
55 |
+
| 1.4294 | 3.0 | 1770 | 1.3770 | 0.6217 |
|
56 |
+
| 1.3196 | 4.0 | 2360 | 1.1956 | 0.4070 |
|
57 |
+
| 1.1661 | 5.0 | 2950 | 0.9866 | 0.6333 |
|
58 |
+
| 1.1565 | 6.0 | 3540 | 0.9164 | 0.6453 |
|
59 |
+
| 1.0435 | 7.0 | 4130 | 1.0146 | 0.5786 |
|
60 |
+
| 1.0861 | 8.0 | 4720 | 0.8707 | 0.6541 |
|
61 |
+
| 1.0246 | 9.0 | 5310 | 0.9747 | 0.6728 |
|
62 |
+
| 0.9761 | 10.0 | 5900 | 1.0055 | 0.6560 |
|
63 |
+
| 0.9672 | 11.0 | 6490 | 0.7808 | 0.6869 |
|
64 |
+
| 0.8746 | 12.0 | 7080 | 0.8158 | 0.6768 |
|
65 |
+
| 0.8883 | 13.0 | 7670 | 0.7982 | 0.6917 |
|
66 |
+
| 0.8257 | 14.0 | 8260 | 0.9875 | 0.6869 |
|
67 |
+
| 0.8053 | 15.0 | 8850 | 0.9210 | 0.7171 |
|
68 |
+
| 0.7995 | 16.0 | 9440 | 0.7910 | 0.7168 |
|
69 |
+
| 0.7376 | 17.0 | 10030 | 0.8382 | 0.7122 |
|
70 |
+
| 0.6743 | 18.0 | 10620 | 1.0620 | 0.6141 |
|
71 |
+
| 0.6343 | 19.0 | 11210 | 0.7421 | 0.7245 |
|
72 |
+
| 0.6499 | 20.0 | 11800 | 0.7841 | 0.7187 |
|
73 |
+
| 0.5897 | 21.0 | 12390 | 0.9551 | 0.6713 |
|
74 |
+
| 0.6163 | 22.0 | 12980 | 1.0281 | 0.7135 |
|
75 |
+
| 0.5617 | 23.0 | 13570 | 0.9252 | 0.7245 |
|
76 |
+
| 0.5282 | 24.0 | 14160 | 0.8599 | 0.7080 |
|
77 |
+
| 0.5402 | 25.0 | 14750 | 0.8381 | 0.7254 |
|
78 |
+
| 0.493 | 26.0 | 15340 | 1.0387 | 0.6657 |
|
79 |
+
| 0.474 | 27.0 | 15930 | 0.7978 | 0.7266 |
|
80 |
+
| 0.4658 | 28.0 | 16520 | 0.8697 | 0.7306 |
|
81 |
+
| 0.4624 | 29.0 | 17110 | 0.8746 | 0.7287 |
|
82 |
+
| 0.4333 | 30.0 | 17700 | 0.9256 | 0.7254 |
|
83 |
+
| 0.4324 | 31.0 | 18290 | 0.8635 | 0.7336 |
|
84 |
+
| 0.4352 | 32.0 | 18880 | 1.0482 | 0.7232 |
|
85 |
+
| 0.4144 | 33.0 | 19470 | 1.2383 | 0.6872 |
|
86 |
+
| 0.3822 | 34.0 | 20060 | 0.9361 | 0.7324 |
|
87 |
+
| 0.3549 | 35.0 | 20650 | 0.9758 | 0.7180 |
|
88 |
+
| 0.3597 | 36.0 | 21240 | 1.1784 | 0.7239 |
|
89 |
+
| 0.3598 | 37.0 | 21830 | 0.9757 | 0.7336 |
|
90 |
+
| 0.3421 | 38.0 | 22420 | 1.3951 | 0.7245 |
|
91 |
+
| 0.3309 | 39.0 | 23010 | 1.1202 | 0.7401 |
|
92 |
+
| 0.3209 | 40.0 | 23600 | 0.9882 | 0.7358 |
|
93 |
+
| 0.3214 | 41.0 | 24190 | 0.9997 | 0.7343 |
|
94 |
+
| 0.3101 | 42.0 | 24780 | 0.8871 | 0.7376 |
|
95 |
+
| 0.2913 | 43.0 | 25370 | 1.0116 | 0.7401 |
|
96 |
+
| 0.2884 | 44.0 | 25960 | 1.1248 | 0.7291 |
|
97 |
+
| 0.2761 | 45.0 | 26550 | 0.8363 | 0.7291 |
|
98 |
+
| 0.2761 | 46.0 | 27140 | 1.0666 | 0.7202 |
|
99 |
+
| 0.2674 | 47.0 | 27730 | 1.0285 | 0.7416 |
|
100 |
+
| 0.2647 | 48.0 | 28320 | 0.9575 | 0.7300 |
|
101 |
+
| 0.2662 | 49.0 | 28910 | 0.9258 | 0.7373 |
|
102 |
+
| 0.2726 | 50.0 | 29500 | 1.0936 | 0.7346 |
|
103 |
+
| 0.2461 | 51.0 | 30090 | 1.0192 | 0.7196 |
|
104 |
+
| 0.2485 | 52.0 | 30680 | 1.0543 | 0.7382 |
|
105 |
+
| 0.245 | 53.0 | 31270 | 0.9507 | 0.7336 |
|
106 |
+
| 0.2377 | 54.0 | 31860 | 0.8907 | 0.7361 |
|
107 |
+
| 0.2379 | 55.0 | 32450 | 0.9788 | 0.7327 |
|
108 |
+
| 0.2335 | 56.0 | 33040 | 1.0168 | 0.7413 |
|
109 |
+
| 0.2251 | 57.0 | 33630 | 1.0117 | 0.7346 |
|
110 |
+
| 0.2293 | 58.0 | 34220 | 0.9280 | 0.7336 |
|
111 |
+
| 0.2211 | 59.0 | 34810 | 0.9735 | 0.7401 |
|
112 |
+
| 0.2236 | 60.0 | 35400 | 0.9822 | 0.7404 |
|
113 |
+
| 0.2123 | 61.0 | 35990 | 1.0189 | 0.7346 |
|
114 |
+
| 0.207 | 62.0 | 36580 | 1.0436 | 0.7401 |
|
115 |
+
| 0.2059 | 63.0 | 37170 | 0.9571 | 0.7410 |
|
116 |
+
| 0.2052 | 64.0 | 37760 | 1.0027 | 0.7419 |
|
117 |
+
| 0.193 | 65.0 | 38350 | 0.9395 | 0.7413 |
|
118 |
+
| 0.2099 | 66.0 | 38940 | 1.0325 | 0.7358 |
|
119 |
+
| 0.1968 | 67.0 | 39530 | 1.0441 | 0.7398 |
|
120 |
+
| 0.1887 | 68.0 | 40120 | 1.1337 | 0.7413 |
|
121 |
+
| 0.1911 | 69.0 | 40710 | 1.0438 | 0.7382 |
|
122 |
+
| 0.1955 | 70.0 | 41300 | 1.0361 | 0.7394 |
|
123 |
+
| 0.1998 | 71.0 | 41890 | 1.0202 | 0.7349 |
|
124 |
+
| 0.1944 | 72.0 | 42480 | 1.0261 | 0.7407 |
|
125 |
+
| 0.1755 | 73.0 | 43070 | 1.0091 | 0.7422 |
|
126 |
+
| 0.1836 | 74.0 | 43660 | 0.9986 | 0.7425 |
|
127 |
+
| 0.1856 | 75.0 | 44250 | 0.9461 | 0.7404 |
|
128 |
+
| 0.187 | 76.0 | 44840 | 0.9383 | 0.7385 |
|
129 |
+
| 0.1873 | 77.0 | 45430 | 1.0445 | 0.7416 |
|
130 |
+
| 0.1763 | 78.0 | 46020 | 1.0263 | 0.7410 |
|
131 |
+
| 0.1749 | 79.0 | 46610 | 0.9650 | 0.7370 |
|
132 |
+
| 0.1728 | 80.0 | 47200 | 0.9903 | 0.7343 |
|
133 |
+
| 0.1668 | 81.0 | 47790 | 1.0391 | 0.7382 |
|
134 |
+
| 0.1693 | 82.0 | 48380 | 0.9794 | 0.7346 |
|
135 |
+
| 0.1665 | 83.0 | 48970 | 1.0463 | 0.7355 |
|
136 |
+
| 0.1609 | 84.0 | 49560 | 0.9976 | 0.7373 |
|
137 |
+
| 0.165 | 85.0 | 50150 | 1.0040 | 0.7404 |
|
138 |
+
| 0.1622 | 86.0 | 50740 | 1.0184 | 0.7419 |
|
139 |
+
| 0.1615 | 87.0 | 51330 | 0.9825 | 0.7336 |
|
140 |
+
| 0.1624 | 88.0 | 51920 | 0.9889 | 0.7394 |
|
141 |
+
| 0.1557 | 89.0 | 52510 | 0.9938 | 0.7370 |
|
142 |
+
| 0.1515 | 90.0 | 53100 | 1.0207 | 0.7385 |
|
143 |
+
| 0.1565 | 91.0 | 53690 | 1.0081 | 0.7401 |
|
144 |
+
| 0.1582 | 92.0 | 54280 | 0.9308 | 0.7364 |
|
145 |
+
| 0.1513 | 93.0 | 54870 | 0.9795 | 0.7398 |
|
146 |
+
| 0.1572 | 94.0 | 55460 | 0.9688 | 0.7382 |
|
147 |
+
| 0.1514 | 95.0 | 56050 | 1.0002 | 0.7410 |
|
148 |
+
| 0.1546 | 96.0 | 56640 | 0.9869 | 0.7401 |
|
149 |
+
| 0.1534 | 97.0 | 57230 | 0.9694 | 0.7370 |
|
150 |
+
| 0.1405 | 98.0 | 57820 | 0.9705 | 0.7404 |
|
151 |
+
| 0.149 | 99.0 | 58410 | 0.9859 | 0.7413 |
|
152 |
+
| 0.1456 | 100.0 | 59000 | 0.9853 | 0.7416 |
|
153 |
+
|
154 |
+
|
155 |
+
### Framework versions
|
156 |
+
|
157 |
+
- Transformers 4.30.0
|
158 |
+
- Pytorch 2.0.1+cu117
|
159 |
+
- Datasets 2.14.4
|
160 |
+
- Tokenizers 0.13.3
|