Onegafer commited on
Commit
7d7f8d9
·
1 Parent(s): ac06bee

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - depth-estimation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: glpn-nyu-finetuned-diode-230530-204740
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # glpn-nyu-finetuned-diode-230530-204740
16
+
17
+ This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.5139
20
+ - Mae: 3.0509
21
+ - Rmse: 3.4756
22
+ - Abs Rel: 5.7613
23
+ - Log Mae: 0.6836
24
+ - Log Rmse: 0.8048
25
+ - Delta1: 0.3028
26
+ - Delta2: 0.3079
27
+ - Delta3: 0.3096
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 24
48
+ - eval_batch_size: 48
49
+ - seed: 2022
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 10
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 |
59
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:|
60
+ | No log | 1.0 | 1 | 1.5335 | 3.1427 | 3.6089 | 5.9847 | 0.6920 | 0.8173 | 0.3016 | 0.3077 | 0.3094 |
61
+ | No log | 2.0 | 2 | 1.5297 | 3.1246 | 3.5833 | 5.9419 | 0.6903 | 0.8149 | 0.3018 | 0.3077 | 0.3094 |
62
+ | No log | 3.0 | 3 | 1.5263 | 3.1085 | 3.5602 | 5.9033 | 0.6889 | 0.8128 | 0.3020 | 0.3078 | 0.3095 |
63
+ | No log | 4.0 | 4 | 1.5234 | 3.0947 | 3.5400 | 5.8694 | 0.6876 | 0.8109 | 0.3022 | 0.3078 | 0.3095 |
64
+ | No log | 5.0 | 5 | 1.5208 | 3.0825 | 3.5222 | 5.8395 | 0.6865 | 0.8092 | 0.3024 | 0.3079 | 0.3095 |
65
+ | No log | 6.0 | 6 | 1.5185 | 3.0723 | 3.5072 | 5.8144 | 0.6856 | 0.8078 | 0.3025 | 0.3079 | 0.3095 |
66
+ | No log | 7.0 | 7 | 1.5167 | 3.0639 | 3.4949 | 5.7937 | 0.6848 | 0.8067 | 0.3026 | 0.3079 | 0.3096 |
67
+ | No log | 8.0 | 8 | 1.5153 | 3.0574 | 3.4852 | 5.7775 | 0.6842 | 0.8057 | 0.3027 | 0.3079 | 0.3096 |
68
+ | No log | 9.0 | 9 | 1.5143 | 3.0531 | 3.4788 | 5.7667 | 0.6838 | 0.8051 | 0.3028 | 0.3079 | 0.3096 |
69
+ | No log | 10.0 | 10 | 1.5139 | 3.0509 | 3.4756 | 5.7613 | 0.6836 | 0.8048 | 0.3028 | 0.3079 | 0.3096 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.29.2
75
+ - Pytorch 2.0.1+cu118
76
+ - Tokenizers 0.13.3