|
import os |
|
import json |
|
import albumentations |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
from torch.utils.data import Dataset |
|
from abc import abstractmethod |
|
|
|
|
|
class CocoBase(Dataset): |
|
"""needed for (image, caption, segmentation) pairs""" |
|
def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False, |
|
crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None): |
|
self.split = self.get_split() |
|
self.size = size |
|
if crop_size is None: |
|
self.crop_size = size |
|
else: |
|
self.crop_size = crop_size |
|
|
|
assert crop_type in [None, 'random', 'center'] |
|
self.crop_type = crop_type |
|
self.use_segmenation = use_segmentation |
|
self.onehot = onehot_segmentation |
|
self.stuffthing = use_stuffthing |
|
if self.onehot and not self.stuffthing: |
|
raise NotImplemented("One hot mode is only supported for the " |
|
"stuffthings version because labels are stored " |
|
"a bit different.") |
|
|
|
data_json = datajson |
|
with open(data_json) as json_file: |
|
self.json_data = json.load(json_file) |
|
self.img_id_to_captions = dict() |
|
self.img_id_to_filepath = dict() |
|
self.img_id_to_segmentation_filepath = dict() |
|
|
|
assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json", |
|
f"captions_val{self.year()}.json"] |
|
|
|
|
|
if self.use_segmenation: |
|
if self.stuffthing: |
|
self.segmentation_prefix = ( |
|
f"data/cocostuffthings/val{self.year()}" if |
|
data_json.endswith(f"captions_val{self.year()}.json") else |
|
f"data/cocostuffthings/train{self.year()}") |
|
else: |
|
self.segmentation_prefix = ( |
|
f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if |
|
data_json.endswith(f"captions_val{self.year()}.json") else |
|
f"data/coco/annotations/stuff_train{self.year()}_pixelmaps") |
|
|
|
imagedirs = self.json_data["images"] |
|
self.labels = {"image_ids": list()} |
|
for imgdir in tqdm(imagedirs, desc="ImgToPath"): |
|
self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"]) |
|
self.img_id_to_captions[imgdir["id"]] = list() |
|
pngfilename = imgdir["file_name"].replace("jpg", "png") |
|
if self.use_segmenation: |
|
self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join( |
|
self.segmentation_prefix, pngfilename) |
|
if given_files is not None: |
|
if pngfilename in given_files: |
|
self.labels["image_ids"].append(imgdir["id"]) |
|
else: |
|
self.labels["image_ids"].append(imgdir["id"]) |
|
|
|
capdirs = self.json_data["annotations"] |
|
for capdir in tqdm(capdirs, desc="ImgToCaptions"): |
|
|
|
|
|
self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"]) |
|
|
|
self.rescaler = albumentations.SmallestMaxSize(max_size=self.size) |
|
if self.split=="validation": |
|
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) |
|
else: |
|
|
|
if self.crop_type in [None, 'random']: |
|
self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) |
|
else: |
|
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) |
|
self.preprocessor = albumentations.Compose( |
|
[self.rescaler, self.cropper], |
|
additional_targets={"segmentation": "image"}) |
|
if force_no_crop: |
|
self.rescaler = albumentations.Resize(height=self.size, width=self.size) |
|
self.preprocessor = albumentations.Compose( |
|
[self.rescaler], |
|
additional_targets={"segmentation": "image"}) |
|
|
|
@abstractmethod |
|
def year(self): |
|
raise NotImplementedError() |
|
|
|
def __len__(self): |
|
return len(self.labels["image_ids"]) |
|
|
|
def preprocess_image(self, image_path, segmentation_path=None): |
|
image = Image.open(image_path) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
image = np.array(image).astype(np.uint8) |
|
if segmentation_path: |
|
segmentation = Image.open(segmentation_path) |
|
if not self.onehot and not segmentation.mode == "RGB": |
|
segmentation = segmentation.convert("RGB") |
|
segmentation = np.array(segmentation).astype(np.uint8) |
|
if self.onehot: |
|
assert self.stuffthing |
|
|
|
|
|
|
|
|
|
|
|
|
|
assert segmentation.dtype == np.uint8 |
|
segmentation = segmentation + 1 |
|
|
|
processed = self.preprocessor(image=image, segmentation=segmentation) |
|
|
|
image, segmentation = processed["image"], processed["segmentation"] |
|
else: |
|
image = self.preprocessor(image=image,)['image'] |
|
|
|
image = (image / 127.5 - 1.0).astype(np.float32) |
|
if segmentation_path: |
|
if self.onehot: |
|
assert segmentation.dtype == np.uint8 |
|
|
|
n_labels = 183 |
|
flatseg = np.ravel(segmentation) |
|
onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool) |
|
onehot[np.arange(flatseg.size), flatseg] = True |
|
onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int) |
|
segmentation = onehot |
|
else: |
|
segmentation = (segmentation / 127.5 - 1.0).astype(np.float32) |
|
return image, segmentation |
|
else: |
|
return image |
|
|
|
def __getitem__(self, i): |
|
img_path = self.img_id_to_filepath[self.labels["image_ids"][i]] |
|
if self.use_segmenation: |
|
seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]] |
|
image, segmentation = self.preprocess_image(img_path, seg_path) |
|
else: |
|
image = self.preprocess_image(img_path) |
|
captions = self.img_id_to_captions[self.labels["image_ids"][i]] |
|
|
|
caption = captions[np.random.randint(0, len(captions))] |
|
example = {"image": image, |
|
|
|
"caption": caption, |
|
"img_path": img_path, |
|
"filename_": img_path.split(os.sep)[-1] |
|
} |
|
if self.use_segmenation: |
|
example.update({"seg_path": seg_path, 'segmentation': segmentation}) |
|
return example |
|
|
|
|
|
class CocoImagesAndCaptionsTrain2017(CocoBase): |
|
"""returns a pair of (image, caption)""" |
|
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,): |
|
super().__init__(size=size, |
|
dataroot="data/coco/train2017", |
|
datajson="data/coco/annotations/captions_train2017.json", |
|
onehot_segmentation=onehot_segmentation, |
|
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop) |
|
|
|
def get_split(self): |
|
return "train" |
|
|
|
def year(self): |
|
return '2017' |
|
|
|
|
|
class CocoImagesAndCaptionsValidation2017(CocoBase): |
|
"""returns a pair of (image, caption)""" |
|
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False, |
|
given_files=None): |
|
super().__init__(size=size, |
|
dataroot="data/coco/val2017", |
|
datajson="data/coco/annotations/captions_val2017.json", |
|
onehot_segmentation=onehot_segmentation, |
|
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, |
|
given_files=given_files) |
|
|
|
def get_split(self): |
|
return "validation" |
|
|
|
def year(self): |
|
return '2017' |
|
|
|
|
|
|
|
class CocoImagesAndCaptionsTrain2014(CocoBase): |
|
"""returns a pair of (image, caption)""" |
|
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'): |
|
super().__init__(size=size, |
|
dataroot="data/coco/train2014", |
|
datajson="data/coco/annotations2014/annotations/captions_train2014.json", |
|
onehot_segmentation=onehot_segmentation, |
|
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, |
|
use_segmentation=False, |
|
crop_type=crop_type) |
|
|
|
def get_split(self): |
|
return "train" |
|
|
|
def year(self): |
|
return '2014' |
|
|
|
class CocoImagesAndCaptionsValidation2014(CocoBase): |
|
"""returns a pair of (image, caption)""" |
|
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False, |
|
given_files=None,crop_type='center',**kwargs): |
|
super().__init__(size=size, |
|
dataroot="data/coco/val2014", |
|
datajson="data/coco/annotations2014/annotations/captions_val2014.json", |
|
onehot_segmentation=onehot_segmentation, |
|
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop, |
|
given_files=given_files, |
|
use_segmentation=False, |
|
crop_type=crop_type) |
|
|
|
def get_split(self): |
|
return "validation" |
|
|
|
def year(self): |
|
return '2014' |
|
|
|
if __name__ == '__main__': |
|
with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file: |
|
json_data = json.load(json_file) |
|
capdirs = json_data["annotations"] |
|
import pudb; pudb.set_trace() |
|
|
|
d2 = CocoImagesAndCaptionsValidation2014(size=256) |
|
print("constructed dataset.") |
|
print(f"length of {d2.__class__.__name__}: {len(d2)}") |
|
|
|
ex2 = d2[0] |
|
|
|
|
|
print(ex2["image"].shape) |
|
|
|
|
|
print(ex2["caption"].__class__.__name__) |
|
|