Text-to-3D
image-to-3d
code / SparseNeuS_demo_v1 /models /render_utils.py
Chao Xu
code pruning
216282e
raw
history blame
4.74 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from ops.back_project import cam2pixel
def sample_pdf(bins, weights, n_samples, det=False):
'''
:param bins: tensor of shape [N_rays, M+1], M is the number of bins
:param weights: tensor of shape [N_rays, M]
:param N_samples: number of samples along each ray
:param det: if True, will perform deterministic sampling
:return: [N_rays, N_samples]
'''
device = weights.device
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[..., :1]).to(device), cdf], -1)
# if bins.shape[1] != weights.shape[1]: # - minor modification, add this constraint
# cdf = torch.cat([torch.zeros_like(cdf[..., :1]).to(device), cdf], -1)
# Take uniform samples
if det:
u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(device)
u = u.expand(list(cdf.shape[:-1]) + [n_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(device)
# Invert CDF
u = u.contiguous()
# inds = searchsorted(cdf, u, side='right')
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, n_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[..., 1] - cdf_g[..., 0])
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
# pdb.set_trace()
return samples
def sample_ptsFeatures_from_featureVolume(pts, featureVolume, vol_dims=None, partial_vol_origin=None, vol_size=None):
"""
sample feature of pts_wrd from featureVolume, all in world space
:param pts: [N_rays, n_samples, 3]
:param featureVolume: [C,wX,wY,wZ]
:param vol_dims: [3] "3" for dimX, dimY, dimZ
:param partial_vol_origin: [3]
:return: pts_feature: [N_rays, n_samples, C]
:return: valid_mask: [N_rays]
"""
N_rays, n_samples, _ = pts.shape
if vol_dims is None:
pts_normalized = pts
else:
# normalized to (-1, 1)
pts_normalized = 2 * (pts - partial_vol_origin[None, None, :]) / (vol_size * (vol_dims[None, None, :] - 1)) - 1
valid_mask = (torch.abs(pts_normalized[:, :, 0]) < 1.0) & (
torch.abs(pts_normalized[:, :, 1]) < 1.0) & (
torch.abs(pts_normalized[:, :, 2]) < 1.0) # (N_rays, n_samples)
pts_normalized = torch.flip(pts_normalized, dims=[-1]) # ! reverse the xyz for grid_sample
# ! checked grid_sample, (x,y,z) is for (D,H,W), reverse for (W,H,D)
pts_feature = F.grid_sample(featureVolume[None, :, :, :, :], pts_normalized[None, None, :, :, :],
padding_mode='zeros',
align_corners=True).view(-1, N_rays, n_samples) # [C, N_rays, n_samples]
pts_feature = pts_feature.permute(1, 2, 0) # [N_rays, n_samples, C]
return pts_feature, valid_mask
def sample_ptsFeatures_from_featureMaps(pts, featureMaps, w2cs, intrinsics, WH, proj_matrix=None, return_mask=False):
"""
sample features of pts from 2d feature maps
:param pts: [N_rays, N_samples, 3]
:param featureMaps: [N_views, C, H, W]
:param w2cs: [N_views, 4, 4]
:param intrinsics: [N_views, 3, 3]
:param proj_matrix: [N_views, 4, 4]
:param HW:
:return:
"""
# normalized to (-1, 1)
N_rays, n_samples, _ = pts.shape
N_views = featureMaps.shape[0]
if proj_matrix is None:
proj_matrix = torch.matmul(intrinsics, w2cs[:, :3, :])
pts = pts.permute(2, 0, 1).contiguous().view(1, 3, N_rays, n_samples).repeat(N_views, 1, 1, 1)
pixel_grids = cam2pixel(pts, proj_matrix[:, :3, :3], proj_matrix[:, :3, 3:],
'zeros', sizeH=WH[1], sizeW=WH[0]) # (nviews, N_rays, n_samples, 2)
valid_mask = (torch.abs(pixel_grids[:, :, :, 0]) < 1.0) & (
torch.abs(pixel_grids[:, :, :, 1]) < 1.00) # (nviews, N_rays, n_samples)
pts_feature = F.grid_sample(featureMaps, pixel_grids,
padding_mode='zeros',
align_corners=True) # [N_views, C, N_rays, n_samples]
if return_mask:
return pts_feature, valid_mask
else:
return pts_feature