|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from icecream import ic |
|
|
|
|
|
|
|
|
|
class FastRenderer(nn.Module): |
|
def __init__(self): |
|
super(FastRenderer, self).__init__() |
|
|
|
self.sdf_threshold = 5e-5 |
|
self.line_search_step = 0.5 |
|
self.line_step_iters = 1 |
|
self.sphere_tracing_iters = 10 |
|
self.n_steps = 100 |
|
self.n_secant_steps = 8 |
|
|
|
|
|
self.network_inference = False |
|
|
|
def extract_depth_maps(self, rays_o, rays_d, near, far, sdf_network, conditional_volume): |
|
with torch.no_grad(): |
|
curr_start_points, network_object_mask, acc_start_dis = self.get_intersection( |
|
rays_o, rays_d, near, far, |
|
sdf_network, conditional_volume) |
|
|
|
network_object_mask = network_object_mask.reshape(-1) |
|
|
|
return network_object_mask, acc_start_dis |
|
|
|
def get_intersection(self, rays_o, rays_d, near, far, sdf_network, conditional_volume): |
|
device = rays_o.device |
|
num_pixels, _ = rays_d.shape |
|
|
|
curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis = \ |
|
self.sphere_tracing(rays_o, rays_d, near, far, sdf_network, conditional_volume) |
|
|
|
network_object_mask = (acc_start_dis < acc_end_dis) |
|
|
|
|
|
sampler_mask = unfinished_mask_start |
|
sampler_net_obj_mask = torch.zeros_like(sampler_mask).bool().to(device) |
|
if sampler_mask.sum() > 0: |
|
|
|
|
|
|
|
|
|
|
|
sampler_pts, sampler_net_obj_mask, sampler_dists = self.ray_sampler(rays_o, |
|
rays_d, |
|
acc_start_dis, |
|
acc_end_dis, |
|
sampler_mask, |
|
sdf_network, |
|
conditional_volume |
|
) |
|
|
|
curr_start_points[sampler_mask] = sampler_pts[sampler_mask] |
|
acc_start_dis[sampler_mask] = sampler_dists[sampler_mask][:, None] |
|
network_object_mask[sampler_mask] = sampler_net_obj_mask[sampler_mask][:, None] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return curr_start_points, network_object_mask, acc_start_dis |
|
|
|
def sphere_tracing(self, rays_o, rays_d, near, far, sdf_network, conditional_volume): |
|
''' Run sphere tracing algorithm for max iterations from both sides of unit sphere intersection ''' |
|
|
|
device = rays_o.device |
|
|
|
unfinished_mask_start = (near < far).reshape(-1).clone() |
|
unfinished_mask_end = (near < far).reshape(-1).clone() |
|
|
|
|
|
curr_start_points = rays_o + rays_d * near |
|
acc_start_dis = near.clone() |
|
|
|
|
|
curr_end_points = rays_o + rays_d * far |
|
acc_end_dis = far.clone() |
|
|
|
|
|
min_dis = acc_start_dis.clone() |
|
max_dis = acc_end_dis.clone() |
|
|
|
|
|
iters = 0 |
|
|
|
next_sdf_start = torch.zeros_like(acc_start_dis).to(device) |
|
|
|
if self.network_inference: |
|
sdf_func = sdf_network.sdf |
|
else: |
|
sdf_func = sdf_network.sdf_from_sdfvolume |
|
|
|
next_sdf_start[unfinished_mask_start] = sdf_func( |
|
curr_start_points[unfinished_mask_start], |
|
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0] |
|
|
|
next_sdf_end = torch.zeros_like(acc_end_dis).to(device) |
|
next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end], |
|
conditional_volume, lod=0, gru_fusion=False)[ |
|
'sdf_pts_scale%d' % 0] |
|
|
|
while True: |
|
|
|
curr_sdf_start = torch.zeros_like(acc_start_dis).to(device) |
|
curr_sdf_start[unfinished_mask_start] = next_sdf_start[unfinished_mask_start] |
|
curr_sdf_start[curr_sdf_start <= self.sdf_threshold] = 0 |
|
|
|
curr_sdf_end = torch.zeros_like(acc_end_dis).to(device) |
|
curr_sdf_end[unfinished_mask_end] = next_sdf_end[unfinished_mask_end] |
|
curr_sdf_end[curr_sdf_end <= self.sdf_threshold] = 0 |
|
|
|
|
|
unfinished_mask_start = unfinished_mask_start & (curr_sdf_start > self.sdf_threshold).reshape(-1) |
|
unfinished_mask_end = unfinished_mask_end & (curr_sdf_end > self.sdf_threshold).reshape(-1) |
|
|
|
if ( |
|
unfinished_mask_start.sum() == 0 and unfinished_mask_end.sum() == 0) or iters == self.sphere_tracing_iters: |
|
break |
|
iters += 1 |
|
|
|
|
|
|
|
acc_start_dis = acc_start_dis + curr_sdf_start |
|
acc_end_dis = acc_end_dis - curr_sdf_end |
|
|
|
|
|
curr_start_points = rays_o + acc_start_dis * rays_d |
|
curr_end_points = rays_o + acc_end_dis * rays_d |
|
|
|
|
|
next_sdf_start = torch.zeros_like(acc_start_dis).to(device) |
|
if unfinished_mask_start.sum() > 0: |
|
next_sdf_start[unfinished_mask_start] = sdf_func(curr_start_points[unfinished_mask_start], |
|
conditional_volume, lod=0, gru_fusion=False)[ |
|
'sdf_pts_scale%d' % 0] |
|
|
|
next_sdf_end = torch.zeros_like(acc_end_dis).to(device) |
|
if unfinished_mask_end.sum() > 0: |
|
next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end], |
|
conditional_volume, lod=0, gru_fusion=False)[ |
|
'sdf_pts_scale%d' % 0] |
|
|
|
not_projected_start = (next_sdf_start < 0).reshape(-1) |
|
not_projected_end = (next_sdf_end < 0).reshape(-1) |
|
not_proj_iters = 0 |
|
|
|
while ( |
|
not_projected_start.sum() > 0 or not_projected_end.sum() > 0) and not_proj_iters < self.line_step_iters: |
|
|
|
if not_projected_start.sum() > 0: |
|
acc_start_dis[not_projected_start] -= ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \ |
|
curr_sdf_start[not_projected_start] |
|
curr_start_points[not_projected_start] = (rays_o + acc_start_dis * rays_d)[not_projected_start] |
|
|
|
next_sdf_start[not_projected_start] = sdf_func( |
|
curr_start_points[not_projected_start], |
|
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0] |
|
|
|
if not_projected_end.sum() > 0: |
|
acc_end_dis[not_projected_end] += ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \ |
|
curr_sdf_end[ |
|
not_projected_end] |
|
curr_end_points[not_projected_end] = (rays_o + acc_end_dis * rays_d)[not_projected_end] |
|
|
|
|
|
|
|
next_sdf_end[not_projected_end] = sdf_func( |
|
curr_end_points[not_projected_end], |
|
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0] |
|
|
|
|
|
not_projected_start = (next_sdf_start < 0).reshape(-1) |
|
not_projected_end = (next_sdf_end < 0).reshape(-1) |
|
not_proj_iters += 1 |
|
|
|
unfinished_mask_start = unfinished_mask_start & (acc_start_dis < acc_end_dis).reshape(-1) |
|
unfinished_mask_end = unfinished_mask_end & (acc_start_dis < acc_end_dis).reshape(-1) |
|
|
|
return curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis |
|
|
|
def ray_sampler(self, rays_o, rays_d, near, far, sampler_mask, sdf_network, conditional_volume): |
|
''' Sample the ray in a given range and run secant on rays which have sign transition ''' |
|
device = rays_o.device |
|
num_pixels, _ = rays_d.shape |
|
sampler_pts = torch.zeros(num_pixels, 3).to(device).float() |
|
sampler_dists = torch.zeros(num_pixels).to(device).float() |
|
|
|
intervals_dist = torch.linspace(0, 1, steps=self.n_steps).to(device).view(1, -1) |
|
|
|
pts_intervals = near + intervals_dist * (far - near) |
|
points = rays_o[:, None, :] + pts_intervals[:, :, None] * rays_d[:, None, :] |
|
|
|
|
|
mask_intersect_idx = torch.nonzero(sampler_mask).flatten() |
|
points = points.reshape((-1, self.n_steps, 3))[sampler_mask, :, :] |
|
pts_intervals = pts_intervals.reshape((-1, self.n_steps))[sampler_mask] |
|
|
|
if self.network_inference: |
|
sdf_func = sdf_network.sdf |
|
else: |
|
sdf_func = sdf_network.sdf_from_sdfvolume |
|
|
|
sdf_val_all = [] |
|
for pnts in torch.split(points.reshape(-1, 3), 100000, dim=0): |
|
sdf_val_all.append(sdf_func(pnts, |
|
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]) |
|
sdf_val = torch.cat(sdf_val_all).reshape(-1, self.n_steps) |
|
|
|
tmp = torch.sign(sdf_val) * torch.arange(self.n_steps, 0, -1).to(device).float().reshape( |
|
(1, self.n_steps)) |
|
sampler_pts_ind = torch.argmin(tmp, -1) |
|
sampler_pts[mask_intersect_idx] = points[torch.arange(points.shape[0]), sampler_pts_ind, :] |
|
sampler_dists[mask_intersect_idx] = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind] |
|
|
|
net_surface_pts = (sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind] < 0) |
|
|
|
|
|
p_out_mask = ~net_surface_pts |
|
n_p_out = p_out_mask.sum() |
|
if n_p_out > 0: |
|
out_pts_idx = torch.argmin(sdf_val[p_out_mask, :], -1) |
|
sampler_pts[mask_intersect_idx[p_out_mask]] = points[p_out_mask, :, :][torch.arange(n_p_out), out_pts_idx, |
|
:] |
|
sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[p_out_mask, :][ |
|
torch.arange(n_p_out), out_pts_idx] |
|
|
|
|
|
sampler_net_obj_mask = sampler_mask.clone() |
|
sampler_net_obj_mask[mask_intersect_idx[~net_surface_pts]] = False |
|
|
|
|
|
secant_pts = net_surface_pts |
|
n_secant_pts = secant_pts.sum() |
|
if n_secant_pts > 0: |
|
|
|
z_high = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind][secant_pts] |
|
sdf_high = sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind][secant_pts] |
|
z_low = pts_intervals[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1] |
|
sdf_low = sdf_val[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1] |
|
|
|
cam_loc_secant = rays_o[mask_intersect_idx[secant_pts]] |
|
ray_directions_secant = rays_d[mask_intersect_idx[secant_pts]] |
|
z_pred_secant = self.secant(sdf_low, sdf_high, z_low, z_high, cam_loc_secant, ray_directions_secant, |
|
sdf_network, conditional_volume) |
|
|
|
|
|
sampler_pts[mask_intersect_idx[secant_pts]] = cam_loc_secant + z_pred_secant[:, |
|
None] * ray_directions_secant |
|
sampler_dists[mask_intersect_idx[secant_pts]] = z_pred_secant |
|
|
|
return sampler_pts, sampler_net_obj_mask, sampler_dists |
|
|
|
def secant(self, sdf_low, sdf_high, z_low, z_high, rays_o, rays_d, sdf_network, conditional_volume): |
|
''' Runs the secant method for interval [z_low, z_high] for n_secant_steps ''' |
|
|
|
if self.network_inference: |
|
sdf_func = sdf_network.sdf |
|
else: |
|
sdf_func = sdf_network.sdf_from_sdfvolume |
|
|
|
z_pred = -sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low |
|
for i in range(self.n_secant_steps): |
|
p_mid = rays_o + z_pred[:, None] * rays_d |
|
sdf_mid = sdf_func(p_mid, |
|
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0].reshape(-1) |
|
ind_low = (sdf_mid > 0).reshape(-1) |
|
if ind_low.sum() > 0: |
|
z_low[ind_low] = z_pred[ind_low] |
|
sdf_low[ind_low] = sdf_mid[ind_low] |
|
ind_high = sdf_mid < 0 |
|
if ind_high.sum() > 0: |
|
z_high[ind_high] = z_pred[ind_high] |
|
sdf_high[ind_high] = sdf_mid[ind_high] |
|
|
|
z_pred = - sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low |
|
|
|
return z_pred |
|
|
|
def minimal_sdf_points(self, num_pixels, sdf, cam_loc, ray_directions, mask, min_dis, max_dis): |
|
''' Find points with minimal SDF value on rays for P_out pixels ''' |
|
device = sdf.device |
|
n_mask_points = mask.sum() |
|
|
|
n = self.n_steps |
|
|
|
steps = torch.empty(n).uniform_(0.0, 1.0).to(device) |
|
mask_max_dis = max_dis[mask].unsqueeze(-1) |
|
mask_min_dis = min_dis[mask].unsqueeze(-1) |
|
steps = steps.unsqueeze(0).repeat(n_mask_points, 1) * (mask_max_dis - mask_min_dis) + mask_min_dis |
|
|
|
mask_points = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape(-1, 3)[mask] |
|
mask_rays = ray_directions[mask, :] |
|
|
|
mask_points_all = mask_points.unsqueeze(1).repeat(1, n, 1) + steps.unsqueeze(-1) * mask_rays.unsqueeze( |
|
1).repeat(1, n, 1) |
|
points = mask_points_all.reshape(-1, 3) |
|
|
|
mask_sdf_all = [] |
|
for pnts in torch.split(points, 100000, dim=0): |
|
mask_sdf_all.append(sdf(pnts)) |
|
|
|
mask_sdf_all = torch.cat(mask_sdf_all).reshape(-1, n) |
|
min_vals, min_idx = mask_sdf_all.min(-1) |
|
min_mask_points = mask_points_all.reshape(-1, n, 3)[torch.arange(0, n_mask_points), min_idx] |
|
min_mask_dist = steps.reshape(-1, n)[torch.arange(0, n_mask_points), min_idx] |
|
|
|
return min_mask_points, min_mask_dist |
|
|