Text-to-3D
image-to-3d
code / SparseNeuS_demo_v1 /models /fast_renderer.py
Chao Xu
sparseneus and elev est
854f0d0
raw
history blame
15.5 kB
import torch
import torch.nn.functional as F
import torch.nn as nn
from icecream import ic
# - neus: use sphere-tracing to speed up depth maps extraction
# This code snippet is heavily borrowed from IDR.
class FastRenderer(nn.Module):
def __init__(self):
super(FastRenderer, self).__init__()
self.sdf_threshold = 5e-5
self.line_search_step = 0.5
self.line_step_iters = 1
self.sphere_tracing_iters = 10
self.n_steps = 100
self.n_secant_steps = 8
# - use sdf_network to inference sdf value or directly interpolate sdf value from precomputed sdf_volume
self.network_inference = False
def extract_depth_maps(self, rays_o, rays_d, near, far, sdf_network, conditional_volume):
with torch.no_grad():
curr_start_points, network_object_mask, acc_start_dis = self.get_intersection(
rays_o, rays_d, near, far,
sdf_network, conditional_volume)
network_object_mask = network_object_mask.reshape(-1)
return network_object_mask, acc_start_dis
def get_intersection(self, rays_o, rays_d, near, far, sdf_network, conditional_volume):
device = rays_o.device
num_pixels, _ = rays_d.shape
curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis = \
self.sphere_tracing(rays_o, rays_d, near, far, sdf_network, conditional_volume)
network_object_mask = (acc_start_dis < acc_end_dis)
# The non convergent rays should be handled by the sampler
sampler_mask = unfinished_mask_start
sampler_net_obj_mask = torch.zeros_like(sampler_mask).bool().to(device)
if sampler_mask.sum() > 0:
# sampler_min_max = torch.zeros((num_pixels, 2)).to(device)
# sampler_min_max[sampler_mask, 0] = acc_start_dis[sampler_mask]
# sampler_min_max[sampler_mask, 1] = acc_end_dis[sampler_mask]
# ray_sampler(self, rays_o, rays_d, near, far, sampler_mask):
sampler_pts, sampler_net_obj_mask, sampler_dists = self.ray_sampler(rays_o,
rays_d,
acc_start_dis,
acc_end_dis,
sampler_mask,
sdf_network,
conditional_volume
)
curr_start_points[sampler_mask] = sampler_pts[sampler_mask]
acc_start_dis[sampler_mask] = sampler_dists[sampler_mask][:, None]
network_object_mask[sampler_mask] = sampler_net_obj_mask[sampler_mask][:, None]
# print('----------------------------------------------------------------')
# print('RayTracing: object = {0}/{1}, secant on {2}/{3}.'
# .format(network_object_mask.sum(), len(network_object_mask), sampler_net_obj_mask.sum(),
# sampler_mask.sum()))
# print('----------------------------------------------------------------')
return curr_start_points, network_object_mask, acc_start_dis
def sphere_tracing(self, rays_o, rays_d, near, far, sdf_network, conditional_volume):
''' Run sphere tracing algorithm for max iterations from both sides of unit sphere intersection '''
device = rays_o.device
unfinished_mask_start = (near < far).reshape(-1).clone()
unfinished_mask_end = (near < far).reshape(-1).clone()
# Initialize start current points
curr_start_points = rays_o + rays_d * near
acc_start_dis = near.clone()
# Initialize end current points
curr_end_points = rays_o + rays_d * far
acc_end_dis = far.clone()
# Initizlize min and max depth
min_dis = acc_start_dis.clone()
max_dis = acc_end_dis.clone()
# Iterate on the rays (from both sides) till finding a surface
iters = 0
next_sdf_start = torch.zeros_like(acc_start_dis).to(device)
if self.network_inference:
sdf_func = sdf_network.sdf
else:
sdf_func = sdf_network.sdf_from_sdfvolume
next_sdf_start[unfinished_mask_start] = sdf_func(
curr_start_points[unfinished_mask_start],
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]
next_sdf_end = torch.zeros_like(acc_end_dis).to(device)
next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end],
conditional_volume, lod=0, gru_fusion=False)[
'sdf_pts_scale%d' % 0]
while True:
# Update sdf
curr_sdf_start = torch.zeros_like(acc_start_dis).to(device)
curr_sdf_start[unfinished_mask_start] = next_sdf_start[unfinished_mask_start]
curr_sdf_start[curr_sdf_start <= self.sdf_threshold] = 0
curr_sdf_end = torch.zeros_like(acc_end_dis).to(device)
curr_sdf_end[unfinished_mask_end] = next_sdf_end[unfinished_mask_end]
curr_sdf_end[curr_sdf_end <= self.sdf_threshold] = 0
# Update masks
unfinished_mask_start = unfinished_mask_start & (curr_sdf_start > self.sdf_threshold).reshape(-1)
unfinished_mask_end = unfinished_mask_end & (curr_sdf_end > self.sdf_threshold).reshape(-1)
if (
unfinished_mask_start.sum() == 0 and unfinished_mask_end.sum() == 0) or iters == self.sphere_tracing_iters:
break
iters += 1
# Make step
# Update distance
acc_start_dis = acc_start_dis + curr_sdf_start
acc_end_dis = acc_end_dis - curr_sdf_end
# Update points
curr_start_points = rays_o + acc_start_dis * rays_d
curr_end_points = rays_o + acc_end_dis * rays_d
# Fix points which wrongly crossed the surface
next_sdf_start = torch.zeros_like(acc_start_dis).to(device)
if unfinished_mask_start.sum() > 0:
next_sdf_start[unfinished_mask_start] = sdf_func(curr_start_points[unfinished_mask_start],
conditional_volume, lod=0, gru_fusion=False)[
'sdf_pts_scale%d' % 0]
next_sdf_end = torch.zeros_like(acc_end_dis).to(device)
if unfinished_mask_end.sum() > 0:
next_sdf_end[unfinished_mask_end] = sdf_func(curr_end_points[unfinished_mask_end],
conditional_volume, lod=0, gru_fusion=False)[
'sdf_pts_scale%d' % 0]
not_projected_start = (next_sdf_start < 0).reshape(-1)
not_projected_end = (next_sdf_end < 0).reshape(-1)
not_proj_iters = 0
while (
not_projected_start.sum() > 0 or not_projected_end.sum() > 0) and not_proj_iters < self.line_step_iters:
# Step backwards
if not_projected_start.sum() > 0:
acc_start_dis[not_projected_start] -= ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \
curr_sdf_start[not_projected_start]
curr_start_points[not_projected_start] = (rays_o + acc_start_dis * rays_d)[not_projected_start]
next_sdf_start[not_projected_start] = sdf_func(
curr_start_points[not_projected_start],
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]
if not_projected_end.sum() > 0:
acc_end_dis[not_projected_end] += ((1 - self.line_search_step) / (2 ** not_proj_iters)) * \
curr_sdf_end[
not_projected_end]
curr_end_points[not_projected_end] = (rays_o + acc_end_dis * rays_d)[not_projected_end]
# Calc sdf
next_sdf_end[not_projected_end] = sdf_func(
curr_end_points[not_projected_end],
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0]
# Update mask
not_projected_start = (next_sdf_start < 0).reshape(-1)
not_projected_end = (next_sdf_end < 0).reshape(-1)
not_proj_iters += 1
unfinished_mask_start = unfinished_mask_start & (acc_start_dis < acc_end_dis).reshape(-1)
unfinished_mask_end = unfinished_mask_end & (acc_start_dis < acc_end_dis).reshape(-1)
return curr_start_points, unfinished_mask_start, acc_start_dis, acc_end_dis, min_dis, max_dis
def ray_sampler(self, rays_o, rays_d, near, far, sampler_mask, sdf_network, conditional_volume):
''' Sample the ray in a given range and run secant on rays which have sign transition '''
device = rays_o.device
num_pixels, _ = rays_d.shape
sampler_pts = torch.zeros(num_pixels, 3).to(device).float()
sampler_dists = torch.zeros(num_pixels).to(device).float()
intervals_dist = torch.linspace(0, 1, steps=self.n_steps).to(device).view(1, -1)
pts_intervals = near + intervals_dist * (far - near)
points = rays_o[:, None, :] + pts_intervals[:, :, None] * rays_d[:, None, :]
# Get the non convergent rays
mask_intersect_idx = torch.nonzero(sampler_mask).flatten()
points = points.reshape((-1, self.n_steps, 3))[sampler_mask, :, :]
pts_intervals = pts_intervals.reshape((-1, self.n_steps))[sampler_mask]
if self.network_inference:
sdf_func = sdf_network.sdf
else:
sdf_func = sdf_network.sdf_from_sdfvolume
sdf_val_all = []
for pnts in torch.split(points.reshape(-1, 3), 100000, dim=0):
sdf_val_all.append(sdf_func(pnts,
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0])
sdf_val = torch.cat(sdf_val_all).reshape(-1, self.n_steps)
tmp = torch.sign(sdf_val) * torch.arange(self.n_steps, 0, -1).to(device).float().reshape(
(1, self.n_steps)) # Force argmin to return the first min value
sampler_pts_ind = torch.argmin(tmp, -1)
sampler_pts[mask_intersect_idx] = points[torch.arange(points.shape[0]), sampler_pts_ind, :]
sampler_dists[mask_intersect_idx] = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind]
net_surface_pts = (sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind] < 0)
# take points with minimal SDF value for P_out pixels
p_out_mask = ~net_surface_pts
n_p_out = p_out_mask.sum()
if n_p_out > 0:
out_pts_idx = torch.argmin(sdf_val[p_out_mask, :], -1)
sampler_pts[mask_intersect_idx[p_out_mask]] = points[p_out_mask, :, :][torch.arange(n_p_out), out_pts_idx,
:]
sampler_dists[mask_intersect_idx[p_out_mask]] = pts_intervals[p_out_mask, :][
torch.arange(n_p_out), out_pts_idx]
# Get Network object mask
sampler_net_obj_mask = sampler_mask.clone()
sampler_net_obj_mask[mask_intersect_idx[~net_surface_pts]] = False
# Run Secant method
secant_pts = net_surface_pts
n_secant_pts = secant_pts.sum()
if n_secant_pts > 0:
# Get secant z predictions
z_high = pts_intervals[torch.arange(pts_intervals.shape[0]), sampler_pts_ind][secant_pts]
sdf_high = sdf_val[torch.arange(sdf_val.shape[0]), sampler_pts_ind][secant_pts]
z_low = pts_intervals[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1]
sdf_low = sdf_val[secant_pts][torch.arange(n_secant_pts), sampler_pts_ind[secant_pts] - 1]
cam_loc_secant = rays_o[mask_intersect_idx[secant_pts]]
ray_directions_secant = rays_d[mask_intersect_idx[secant_pts]]
z_pred_secant = self.secant(sdf_low, sdf_high, z_low, z_high, cam_loc_secant, ray_directions_secant,
sdf_network, conditional_volume)
# Get points
sampler_pts[mask_intersect_idx[secant_pts]] = cam_loc_secant + z_pred_secant[:,
None] * ray_directions_secant
sampler_dists[mask_intersect_idx[secant_pts]] = z_pred_secant
return sampler_pts, sampler_net_obj_mask, sampler_dists
def secant(self, sdf_low, sdf_high, z_low, z_high, rays_o, rays_d, sdf_network, conditional_volume):
''' Runs the secant method for interval [z_low, z_high] for n_secant_steps '''
if self.network_inference:
sdf_func = sdf_network.sdf
else:
sdf_func = sdf_network.sdf_from_sdfvolume
z_pred = -sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low
for i in range(self.n_secant_steps):
p_mid = rays_o + z_pred[:, None] * rays_d
sdf_mid = sdf_func(p_mid,
conditional_volume, lod=0, gru_fusion=False)['sdf_pts_scale%d' % 0].reshape(-1)
ind_low = (sdf_mid > 0).reshape(-1)
if ind_low.sum() > 0:
z_low[ind_low] = z_pred[ind_low]
sdf_low[ind_low] = sdf_mid[ind_low]
ind_high = sdf_mid < 0
if ind_high.sum() > 0:
z_high[ind_high] = z_pred[ind_high]
sdf_high[ind_high] = sdf_mid[ind_high]
z_pred = - sdf_low * (z_high - z_low) / (sdf_high - sdf_low) + z_low
return z_pred # 1D tensor
def minimal_sdf_points(self, num_pixels, sdf, cam_loc, ray_directions, mask, min_dis, max_dis):
''' Find points with minimal SDF value on rays for P_out pixels '''
device = sdf.device
n_mask_points = mask.sum()
n = self.n_steps
# steps = torch.linspace(0.0, 1.0,n).to(device)
steps = torch.empty(n).uniform_(0.0, 1.0).to(device)
mask_max_dis = max_dis[mask].unsqueeze(-1)
mask_min_dis = min_dis[mask].unsqueeze(-1)
steps = steps.unsqueeze(0).repeat(n_mask_points, 1) * (mask_max_dis - mask_min_dis) + mask_min_dis
mask_points = cam_loc.unsqueeze(1).repeat(1, num_pixels, 1).reshape(-1, 3)[mask]
mask_rays = ray_directions[mask, :]
mask_points_all = mask_points.unsqueeze(1).repeat(1, n, 1) + steps.unsqueeze(-1) * mask_rays.unsqueeze(
1).repeat(1, n, 1)
points = mask_points_all.reshape(-1, 3)
mask_sdf_all = []
for pnts in torch.split(points, 100000, dim=0):
mask_sdf_all.append(sdf(pnts))
mask_sdf_all = torch.cat(mask_sdf_all).reshape(-1, n)
min_vals, min_idx = mask_sdf_all.min(-1)
min_mask_points = mask_points_all.reshape(-1, n, 3)[torch.arange(0, n_mask_points), min_idx]
min_mask_dist = steps.reshape(-1, n)[torch.arange(0, n_mask_points), min_idx]
return min_mask_points, min_mask_dist