code / SparseNeuS_demo_v1 /models /sparse_neus_renderer.py
Chao Xu
code pruning
216282e
raw
history blame contribute delete
No virus
44.7 kB
"""
The codes are heavily borrowed from NeuS
"""
import os
import cv2 as cv
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
import mcubes
from icecream import ic
from models.render_utils import sample_pdf
from models.projector import Projector
from tsparse.torchsparse_utils import sparse_to_dense_channel
from models.fast_renderer import FastRenderer
from models.patch_projector import PatchProjector
class SparseNeuSRenderer(nn.Module):
"""
conditional neus render;
optimize on normalized world space;
warped by nn.Module to support DataParallel traning
"""
def __init__(self,
rendering_network_outside,
sdf_network,
variance_network,
rendering_network,
n_samples,
n_importance,
n_outside,
perturb,
alpha_type='div',
conf=None
):
super(SparseNeuSRenderer, self).__init__()
self.conf = conf
self.base_exp_dir = conf['general.base_exp_dir']
# network setups
self.rendering_network_outside = rendering_network_outside
self.sdf_network = sdf_network
self.variance_network = variance_network
self.rendering_network = rendering_network
self.n_samples = n_samples
self.n_importance = n_importance
self.n_outside = n_outside
self.perturb = perturb
self.alpha_type = alpha_type
self.rendering_projector = Projector() # used to obtain features for generalized rendering
self.h_patch_size = self.conf.get_int('model.h_patch_size', default=3)
self.patch_projector = PatchProjector(self.h_patch_size)
self.ray_tracer = FastRenderer() # ray_tracer to extract depth maps from sdf_volume
# - fitted rendering or general rendering
try:
self.if_fitted_rendering = self.sdf_network.if_fitted_rendering
except:
self.if_fitted_rendering = False
def up_sample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_variance,
conditional_valid_mask_volume=None):
device = rays_o.device
batch_size, n_samples = z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] # n_rays, n_samples, 3
if conditional_valid_mask_volume is not None:
pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume)
pts_mask = pts_mask.reshape(batch_size, n_samples)
pts_mask = pts_mask[:, :-1] * pts_mask[:, 1:] # [batch_size, n_samples-1]
else:
pts_mask = torch.ones([batch_size, n_samples]).to(pts.device)
sdf = sdf.reshape(batch_size, n_samples)
prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:]
mid_sdf = (prev_sdf + next_sdf) * 0.5
dot_val = None
if self.alpha_type == 'uniform':
dot_val = torch.ones([batch_size, n_samples - 1]) * -1.0
else:
dot_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5)
prev_dot_val = torch.cat([torch.zeros([batch_size, 1]).to(device), dot_val[:, :-1]], dim=-1)
dot_val = torch.stack([prev_dot_val, dot_val], dim=-1)
dot_val, _ = torch.min(dot_val, dim=-1, keepdim=False)
dot_val = dot_val.clip(-10.0, 0.0) * pts_mask
dist = (next_z_vals - prev_z_vals)
prev_esti_sdf = mid_sdf - dot_val * dist * 0.5
next_esti_sdf = mid_sdf + dot_val * dist * 0.5
prev_cdf = torch.sigmoid(prev_esti_sdf * inv_variance)
next_cdf = torch.sigmoid(next_esti_sdf * inv_variance)
alpha_sdf = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
alpha = alpha_sdf
# - apply pts_mask
alpha = pts_mask * alpha
weights = alpha * torch.cumprod(
torch.cat([torch.ones([batch_size, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:, :-1]
z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach()
return z_samples
def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, lod,
sdf_network, gru_fusion,
# * related to conditional feature
conditional_volume=None,
conditional_valid_mask_volume=None
):
device = rays_o.device
batch_size, n_samples = z_vals.shape
_, n_importance = new_z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None]
if conditional_valid_mask_volume is not None:
pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume)
pts_mask = pts_mask.reshape(batch_size, n_importance)
pts_mask_bool = (pts_mask > 0).view(-1)
else:
pts_mask = torch.ones([batch_size, n_importance]).to(pts.device)
new_sdf = torch.ones([batch_size * n_importance, 1]).to(pts.dtype).to(device) * 100
if torch.sum(pts_mask) > 1:
new_outputs = sdf_network.sdf(pts.reshape(-1, 3)[pts_mask_bool], conditional_volume, lod=lod)
new_sdf[pts_mask_bool] = new_outputs['sdf_pts_scale%d' % lod] # .reshape(batch_size, n_importance)
new_sdf = new_sdf.view(batch_size, n_importance)
z_vals = torch.cat([z_vals, new_z_vals], dim=-1)
sdf = torch.cat([sdf, new_sdf], dim=-1)
z_vals, index = torch.sort(z_vals, dim=-1)
xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1)
index = index.reshape(-1)
sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance)
return z_vals, sdf
@torch.no_grad()
def get_pts_mask_for_conditional_volume(self, pts, mask_volume):
"""
:param pts: [N, 3]
:param mask_volume: [1, 1, X, Y, Z]
:return:
"""
num_pts = pts.shape[0]
pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1)
pts = torch.flip(pts, dims=[-1])
pts_mask = F.grid_sample(mask_volume, pts, mode='nearest') # [1, c, 1, 1, num_pts]
pts_mask = pts_mask.view(-1, num_pts).permute(1, 0).contiguous() # [num_pts, 1]
return pts_mask
def render_core(self,
rays_o,
rays_d,
z_vals,
sample_dist,
lod,
sdf_network,
rendering_network,
background_alpha=None, # - no use here
background_sampled_color=None, # - no use here
background_rgb=None, # - no use here
alpha_inter_ratio=0.0,
# * related to conditional feature
conditional_volume=None,
conditional_valid_mask_volume=None,
# * 2d feature maps
feature_maps=None,
color_maps=None,
w2cs=None,
intrinsics=None,
img_wh=None,
query_c2w=None, # - used for testing
if_general_rendering=True,
if_render_with_grad=True,
# * used for blending mlp rendering network
img_index=None,
rays_uv=None,
# * used for clear bg and fg
bg_num=0
):
device = rays_o.device
N_rays = rays_o.shape[0]
_, n_samples = z_vals.shape
dists = z_vals[..., 1:] - z_vals[..., :-1]
dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape).to(device)], -1)
mid_z_vals = z_vals + dists * 0.5
mid_dists = mid_z_vals[..., 1:] - mid_z_vals[..., :-1]
pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None] # n_rays, n_samples, 3
dirs = rays_d[:, None, :].expand(pts.shape)
pts = pts.reshape(-1, 3)
dirs = dirs.reshape(-1, 3)
# * if conditional_volume is restored from sparse volume, need mask for pts
if conditional_valid_mask_volume is not None:
pts_mask = self.get_pts_mask_for_conditional_volume(pts, conditional_valid_mask_volume)
pts_mask = pts_mask.reshape(N_rays, n_samples).float().detach()
pts_mask_bool = (pts_mask > 0).view(-1)
if torch.sum(pts_mask_bool.float()) < 1: # ! when render out image, may meet this problem
pts_mask_bool[:100] = True
else:
pts_mask = torch.ones([N_rays, n_samples]).to(pts.device)
# import ipdb; ipdb.set_trace()
# pts_valid = pts[pts_mask_bool]
sdf_nn_output = sdf_network.sdf(pts[pts_mask_bool], conditional_volume, lod=lod)
sdf = torch.ones([N_rays * n_samples, 1]).to(pts.dtype).to(device) * 100
sdf[pts_mask_bool] = sdf_nn_output['sdf_pts_scale%d' % lod] # [N_rays*n_samples, 1]
feature_vector_valid = sdf_nn_output['sdf_features_pts_scale%d' % lod]
feature_vector = torch.zeros([N_rays * n_samples, feature_vector_valid.shape[1]]).to(pts.dtype).to(device)
feature_vector[pts_mask_bool] = feature_vector_valid
# * estimate alpha from sdf
gradients = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device)
# import ipdb; ipdb.set_trace()
gradients[pts_mask_bool] = sdf_network.gradient(
pts[pts_mask_bool], conditional_volume, lod=lod).squeeze()
sampled_color_mlp = None
rendering_valid_mask_mlp = None
sampled_color_patch = None
rendering_patch_mask = None
if self.if_fitted_rendering: # used for fine-tuning
position_latent = sdf_nn_output['sampled_latent_scale%d' % lod]
sampled_color_mlp = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device)
sampled_color_mlp_mask = torch.zeros([N_rays * n_samples, 1]).to(pts.dtype).to(device)
# - extract pixel
pts_pixel_color, pts_pixel_mask = self.patch_projector.pixel_warp(
pts[pts_mask_bool][:, None, :], color_maps, intrinsics,
w2cs, img_wh=None) # [N_rays * n_samples,1, N_views, 3] , [N_rays*n_samples, 1, N_views]
pts_pixel_color = pts_pixel_color[:, 0, :, :] # [N_rays * n_samples, N_views, 3]
pts_pixel_mask = pts_pixel_mask[:, 0, :] # [N_rays*n_samples, N_views]
# - extract patch
if_patch_blending = False if rays_uv is None else True
pts_patch_color, pts_patch_mask = None, None
if if_patch_blending:
pts_patch_color, pts_patch_mask = self.patch_projector.patch_warp(
pts.reshape([N_rays, n_samples, 3]),
rays_uv, gradients.reshape([N_rays, n_samples, 3]),
color_maps,
intrinsics[0], intrinsics,
query_c2w[0], torch.inverse(w2cs), img_wh=None
) # (N_rays, n_samples, N_src, Npx, 3), (N_rays, n_samples, N_src, Npx)
N_src, Npx = pts_patch_mask.shape[2:]
pts_patch_color = pts_patch_color.view(N_rays * n_samples, N_src, Npx, 3)[pts_mask_bool]
pts_patch_mask = pts_patch_mask.view(N_rays * n_samples, N_src, Npx)[pts_mask_bool]
sampled_color_patch = torch.zeros([N_rays * n_samples, Npx, 3]).to(device)
sampled_color_patch_mask = torch.zeros([N_rays * n_samples, 1]).to(device)
sampled_color_mlp_, sampled_color_mlp_mask_, \
sampled_color_patch_, sampled_color_patch_mask_ = sdf_network.color_blend(
pts[pts_mask_bool],
position_latent,
gradients[pts_mask_bool],
dirs[pts_mask_bool],
feature_vector[pts_mask_bool],
img_index=img_index,
pts_pixel_color=pts_pixel_color,
pts_pixel_mask=pts_pixel_mask,
pts_patch_color=pts_patch_color,
pts_patch_mask=pts_patch_mask
) # [n, 3], [n, 1]
sampled_color_mlp[pts_mask_bool] = sampled_color_mlp_
sampled_color_mlp_mask[pts_mask_bool] = sampled_color_mlp_mask_.float()
sampled_color_mlp = sampled_color_mlp.view(N_rays, n_samples, 3)
sampled_color_mlp_mask = sampled_color_mlp_mask.view(N_rays, n_samples)
rendering_valid_mask_mlp = torch.mean(pts_mask * sampled_color_mlp_mask, dim=-1, keepdim=True) > 0.5
# patch blending
if if_patch_blending:
sampled_color_patch[pts_mask_bool] = sampled_color_patch_
sampled_color_patch_mask[pts_mask_bool] = sampled_color_patch_mask_.float()
sampled_color_patch = sampled_color_patch.view(N_rays, n_samples, Npx, 3)
sampled_color_patch_mask = sampled_color_patch_mask.view(N_rays, n_samples)
rendering_patch_mask = torch.mean(pts_mask * sampled_color_patch_mask, dim=-1,
keepdim=True) > 0.5 # [N_rays, 1]
else:
sampled_color_patch, rendering_patch_mask = None, None
if if_general_rendering: # used for general training
# [512, 128, 16]; [4, 512, 128, 59]; [4, 512, 128, 4]
ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask, _, _ = self.rendering_projector.compute(
pts.view(N_rays, n_samples, 3),
# * 3d geometry feature volumes
geometryVolume=conditional_volume[0],
geometryVolumeMask=conditional_valid_mask_volume[0],
# * 2d rendering feature maps
rendering_feature_maps=feature_maps, # [n_views, 56, 256, 256]
color_maps=color_maps,
w2cs=w2cs,
intrinsics=intrinsics,
img_wh=img_wh,
query_img_idx=0, # the index of the N_views dim for rendering
query_c2w=query_c2w,
)
# (N_rays, n_samples, 3)
if if_render_with_grad:
# import ipdb; ipdb.set_trace()
# [nrays, 3] [nrays, 1]
sampled_color, rendering_valid_mask = rendering_network(
ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask)
# import ipdb; ipdb.set_trace()
else:
with torch.no_grad():
sampled_color, rendering_valid_mask = rendering_network(
ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask)
else:
sampled_color, rendering_valid_mask = None, None
inv_variance = self.variance_network(feature_vector)[:, :1].clip(1e-6, 1e6)
true_dot_val = (dirs * gradients).sum(-1, keepdim=True) # * calculate
iter_cos = -(F.relu(-true_dot_val * 0.5 + 0.5) * (1.0 - alpha_inter_ratio) + F.relu(
-true_dot_val) * alpha_inter_ratio) # always non-positive
iter_cos = iter_cos * pts_mask.view(-1, 1)
true_estimate_sdf_half_next = sdf + iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5
true_estimate_sdf_half_prev = sdf - iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5
prev_cdf = torch.sigmoid(true_estimate_sdf_half_prev * inv_variance)
next_cdf = torch.sigmoid(true_estimate_sdf_half_next * inv_variance)
p = prev_cdf - next_cdf
c = prev_cdf
if self.alpha_type == 'div':
alpha_sdf = ((p + 1e-5) / (c + 1e-5)).reshape(N_rays, n_samples).clip(0.0, 1.0)
elif self.alpha_type == 'uniform':
uniform_estimate_sdf_half_next = sdf - dists.reshape(-1, 1) * 0.5
uniform_estimate_sdf_half_prev = sdf + dists.reshape(-1, 1) * 0.5
uniform_prev_cdf = torch.sigmoid(uniform_estimate_sdf_half_prev * inv_variance)
uniform_next_cdf = torch.sigmoid(uniform_estimate_sdf_half_next * inv_variance)
uniform_alpha = F.relu(
(uniform_prev_cdf - uniform_next_cdf + 1e-5) / (uniform_prev_cdf + 1e-5)).reshape(
N_rays, n_samples).clip(0.0, 1.0)
alpha_sdf = uniform_alpha
else:
assert False
alpha = alpha_sdf
# - apply pts_mask
alpha = alpha * pts_mask
# pts_radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).reshape(N_rays, n_samples)
# inside_sphere = (pts_radius < 1.0).float().detach()
# relax_inside_sphere = (pts_radius < 1.2).float().detach()
inside_sphere = pts_mask
relax_inside_sphere = pts_mask
weights = alpha * torch.cumprod(torch.cat([torch.ones([N_rays, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:,
:-1] # n_rays, n_samples
weights_sum = weights.sum(dim=-1, keepdim=True)
alpha_sum = alpha.sum(dim=-1, keepdim=True)
if bg_num > 0:
weights_sum_fg = weights[:, :-bg_num].sum(dim=-1, keepdim=True)
else:
weights_sum_fg = weights_sum
if sampled_color is not None:
color = (sampled_color * weights[:, :, None]).sum(dim=1)
else:
color = None
# import ipdb; ipdb.set_trace()
if background_rgb is not None and color is not None:
color = color + background_rgb * (1.0 - weights_sum)
# print("color device:" + str(color.device))
# if color is not None:
# # import ipdb; ipdb.set_trace()
# color = color + (1.0 - weights_sum)
###################* mlp color rendering #####################
color_mlp = None
# import ipdb; ipdb.set_trace()
if sampled_color_mlp is not None:
color_mlp = (sampled_color_mlp * weights[:, :, None]).sum(dim=1)
if background_rgb is not None and color_mlp is not None:
color_mlp = color_mlp + background_rgb * (1.0 - weights_sum)
############################ * patch blending ################
blended_color_patch = None
if sampled_color_patch is not None:
blended_color_patch = (sampled_color_patch * weights[:, :, None, None]).sum(dim=1) # [N_rays, Npx, 3]
######################################################
gradient_error = (torch.linalg.norm(gradients.reshape(N_rays, n_samples, 3), ord=2,
dim=-1) - 1.0) ** 2
# ! the gradient normal should be masked out, the pts out of the bounding box should also be penalized
gradient_error = (pts_mask * gradient_error).sum() / (
(pts_mask).sum() + 1e-5)
depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True)
# print("[TEST]: weights_sum in render_core", weights_sum.mean())
# print("[TEST]: weights_sum in render_core NAN number", weights_sum.isnan().sum())
# if weights_sum.isnan().sum() > 0:
# import ipdb; ipdb.set_trace()
return {
'color': color,
'color_mask': rendering_valid_mask, # (N_rays, 1)
'color_mlp': color_mlp,
'color_mlp_mask': rendering_valid_mask_mlp,
'sdf': sdf, # (N_rays, n_samples)
'depth': depth, # (N_rays, 1)
'dists': dists,
'gradients': gradients.reshape(N_rays, n_samples, 3),
'variance': 1.0 / inv_variance,
'mid_z_vals': mid_z_vals,
'weights': weights,
'weights_sum': weights_sum,
'alpha_sum': alpha_sum,
'alpha_mean': alpha.mean(),
'cdf': c.reshape(N_rays, n_samples),
'gradient_error': gradient_error,
'inside_sphere': inside_sphere,
'blended_color_patch': blended_color_patch,
'blended_color_patch_mask': rendering_patch_mask,
'weights_sum_fg': weights_sum_fg
}
def render(self, rays_o, rays_d, near, far, sdf_network, rendering_network,
perturb_overwrite=-1,
background_rgb=None,
alpha_inter_ratio=0.0,
# * related to conditional feature
lod=None,
conditional_volume=None,
conditional_valid_mask_volume=None,
# * 2d feature maps
feature_maps=None,
color_maps=None,
w2cs=None,
intrinsics=None,
img_wh=None,
query_c2w=None, # -used for testing
if_general_rendering=True,
if_render_with_grad=True,
# * used for blending mlp rendering network
img_index=None,
rays_uv=None,
# * importance sample for second lod network
pre_sample=False, # no use here
# * for clear foreground
bg_ratio=0.0
):
device = rays_o.device
N_rays = len(rays_o)
# sample_dist = 2.0 / self.n_samples
sample_dist = ((far - near) / self.n_samples).mean().item()
z_vals = torch.linspace(0.0, 1.0, self.n_samples).to(device)
z_vals = near + (far - near) * z_vals[None, :]
bg_num = int(self.n_samples * bg_ratio)
if z_vals.shape[0] == 1:
z_vals = z_vals.repeat(N_rays, 1)
if bg_num > 0:
z_vals_bg = z_vals[:, self.n_samples - bg_num:]
z_vals = z_vals[:, :self.n_samples - bg_num]
n_samples = self.n_samples - bg_num
perturb = self.perturb
# - significantly speed up training, for the second lod network
if pre_sample:
z_vals = self.sample_z_vals_from_maskVolume(rays_o, rays_d, near, far,
conditional_valid_mask_volume)
if perturb_overwrite >= 0:
perturb = perturb_overwrite
if perturb > 0:
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], -1)
lower = torch.cat([z_vals[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape).to(device)
z_vals = lower + (upper - lower) * t_rand
background_alpha = None
background_sampled_color = None
z_val_before = z_vals.clone()
# Up sample
if self.n_importance > 0:
with torch.no_grad():
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
sdf_outputs = sdf_network.sdf(
pts.reshape(-1, 3), conditional_volume, lod=lod)
# pdb.set_trace()
sdf = sdf_outputs['sdf_pts_scale%d' % lod].reshape(N_rays, self.n_samples - bg_num)
n_steps = 4
for i in range(n_steps):
new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_importance // n_steps,
64 * 2 ** i,
conditional_valid_mask_volume=conditional_valid_mask_volume,
)
# if new_z_vals.isnan().sum() > 0:
# import ipdb; ipdb.set_trace()
z_vals, sdf = self.cat_z_vals(
rays_o, rays_d, z_vals, new_z_vals, sdf, lod,
sdf_network, gru_fusion=False,
conditional_volume=conditional_volume,
conditional_valid_mask_volume=conditional_valid_mask_volume,
)
del sdf
n_samples = self.n_samples + self.n_importance
# Background
ret_outside = None
# Render
if bg_num > 0:
z_vals = torch.cat([z_vals, z_vals_bg], dim=1)
# if z_vals.isnan().sum() > 0:
# import ipdb; ipdb.set_trace()
ret_fine = self.render_core(rays_o,
rays_d,
z_vals,
sample_dist,
lod,
sdf_network,
rendering_network,
background_rgb=background_rgb,
background_alpha=background_alpha,
background_sampled_color=background_sampled_color,
alpha_inter_ratio=alpha_inter_ratio,
# * related to conditional feature
conditional_volume=conditional_volume,
conditional_valid_mask_volume=conditional_valid_mask_volume,
# * 2d feature maps
feature_maps=feature_maps,
color_maps=color_maps,
w2cs=w2cs,
intrinsics=intrinsics,
img_wh=img_wh,
query_c2w=query_c2w,
if_general_rendering=if_general_rendering,
if_render_with_grad=if_render_with_grad,
# * used for blending mlp rendering network
img_index=img_index,
rays_uv=rays_uv
)
color_fine = ret_fine['color']
if self.n_outside > 0:
color_fine_mask = torch.logical_or(ret_fine['color_mask'], ret_outside['color_mask'])
else:
color_fine_mask = ret_fine['color_mask']
weights = ret_fine['weights']
weights_sum = ret_fine['weights_sum']
gradients = ret_fine['gradients']
mid_z_vals = ret_fine['mid_z_vals']
# depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True)
depth = ret_fine['depth']
depth_varaince = ((mid_z_vals - depth) ** 2 * weights[:, :n_samples]).sum(dim=-1, keepdim=True)
variance = ret_fine['variance'].reshape(N_rays, n_samples).mean(dim=-1, keepdim=True)
# - randomly sample points from the volume, and maximize the sdf
pts_random = torch.rand([1024, 3]).float().to(device) * 2 - 1 # normalized to (-1, 1)
sdf_random = sdf_network.sdf(pts_random, conditional_volume, lod=lod)['sdf_pts_scale%d' % lod]
result = {
'depth': depth,
'color_fine': color_fine,
'color_fine_mask': color_fine_mask,
'color_outside': ret_outside['color'] if ret_outside is not None else None,
'color_outside_mask': ret_outside['color_mask'] if ret_outside is not None else None,
'color_mlp': ret_fine['color_mlp'],
'color_mlp_mask': ret_fine['color_mlp_mask'],
'variance': variance.mean(),
'cdf_fine': ret_fine['cdf'],
'depth_variance': depth_varaince,
'weights_sum': weights_sum,
'weights_max': torch.max(weights, dim=-1, keepdim=True)[0],
'alpha_sum': ret_fine['alpha_sum'].mean(),
'alpha_mean': ret_fine['alpha_mean'],
'gradients': gradients,
'weights': weights,
'gradient_error_fine': ret_fine['gradient_error'],
'inside_sphere': ret_fine['inside_sphere'],
'sdf': ret_fine['sdf'],
'sdf_random': sdf_random,
'blended_color_patch': ret_fine['blended_color_patch'],
'blended_color_patch_mask': ret_fine['blended_color_patch_mask'],
'weights_sum_fg': ret_fine['weights_sum_fg']
}
return result
@torch.no_grad()
def sample_z_vals_from_sdfVolume(self, rays_o, rays_d, near, far, sdf_volume, mask_volume):
# ? based on sdf to do importance sampling, seems that too biased on pre-estimation
device = rays_o.device
N_rays = len(rays_o)
n_samples = self.n_samples * 2
z_vals = torch.linspace(0.0, 1.0, n_samples).to(device)
z_vals = near + (far - near) * z_vals[None, :]
if z_vals.shape[0] == 1:
z_vals = z_vals.repeat(N_rays, 1)
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
sdf = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), sdf_volume).reshape([N_rays, n_samples])
new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_samples,
200,
conditional_valid_mask_volume=mask_volume,
)
return new_z_vals
@torch.no_grad()
def sample_z_vals_from_maskVolume(self, rays_o, rays_d, near, far, mask_volume): # don't use
device = rays_o.device
N_rays = len(rays_o)
n_samples = self.n_samples * 2
z_vals = torch.linspace(0.0, 1.0, n_samples).to(device)
z_vals = near + (far - near) * z_vals[None, :]
if z_vals.shape[0] == 1:
z_vals = z_vals.repeat(N_rays, 1)
mid_z_vals = (z_vals[:, 1:] + z_vals[:, :-1]) * 0.5
pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None]
pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), mask_volume).reshape(
[N_rays, n_samples - 1])
# empty voxel set to 0.1, non-empty voxel set to 1
weights = torch.where(pts_mask > 0, torch.ones_like(pts_mask).to(device),
0.1 * torch.ones_like(pts_mask).to(device))
# sample more pts in non-empty voxels
z_samples = sample_pdf(z_vals, weights, self.n_samples, det=True).detach()
return z_samples
@torch.no_grad()
def filter_pts_by_depthmaps(self, coords, pred_depth_maps, proj_matrices,
partial_vol_origin, voxel_size,
near, far, depth_interval, d_plane_nums):
"""
Use the pred_depthmaps to remove redundant pts (pruned by sdf, sdf always have two sides, the back side is useless)
:param coords: [n, 3] int coords
:param pred_depth_maps: [N_views, 1, h, w]
:param proj_matrices: [N_views, 4, 4]
:param partial_vol_origin: [3]
:param voxel_size: 1
:param near: 1
:param far: 1
:param depth_interval: 1
:param d_plane_nums: 1
:return:
"""
device = pred_depth_maps.device
n_views, _, sizeH, sizeW = pred_depth_maps.shape
if len(partial_vol_origin.shape) == 1:
partial_vol_origin = partial_vol_origin[None, :]
pts = coords * voxel_size + partial_vol_origin
rs_grid = pts.unsqueeze(0).expand(n_views, -1, -1)
rs_grid = rs_grid.permute(0, 2, 1).contiguous() # [n_views, 3, n_pts]
nV = rs_grid.shape[-1]
rs_grid = torch.cat([rs_grid, torch.ones([n_views, 1, nV]).to(device)], dim=1) # [n_views, 4, n_pts]
# Project grid
im_p = proj_matrices @ rs_grid # - transform world pts to image UV space # [n_views, 4, n_pts]
im_x, im_y, im_z = im_p[:, 0], im_p[:, 1], im_p[:, 2]
im_x = im_x / im_z
im_y = im_y / im_z
im_grid = torch.stack([2 * im_x / (sizeW - 1) - 1, 2 * im_y / (sizeH - 1) - 1], dim=-1)
im_grid = im_grid.view(n_views, 1, -1, 2)
sampled_depths = torch.nn.functional.grid_sample(pred_depth_maps, im_grid, mode='bilinear',
padding_mode='zeros',
align_corners=True)[:, 0, 0, :] # [n_views, n_pts]
sampled_depths_valid = (sampled_depths > 0.5 * near).float()
valid_d_min = (sampled_depths - d_plane_nums * depth_interval).clamp(near.item(),
far.item()) * sampled_depths_valid
valid_d_max = (sampled_depths + d_plane_nums * depth_interval).clamp(near.item(),
far.item()) * sampled_depths_valid
mask = im_grid.abs() <= 1
mask = mask[:, 0] # [n_views, n_pts, 2]
mask = (mask.sum(dim=-1) == 2) & (im_z > valid_d_min) & (im_z < valid_d_max)
mask = mask.view(n_views, -1)
mask = mask.permute(1, 0).contiguous() # [num_pts, nviews]
mask_final = torch.sum(mask.float(), dim=1, keepdim=False) > 0
return mask_final
@torch.no_grad()
def get_valid_sparse_coords_by_sdf_depthfilter(self, sdf_volume, coords_volume, mask_volume, feature_volume,
pred_depth_maps, proj_matrices,
partial_vol_origin, voxel_size,
near, far, depth_interval, d_plane_nums,
threshold=0.02, maximum_pts=110000):
"""
assume batch size == 1, from the first lod to get sparse voxels
:param sdf_volume: [1, X, Y, Z]
:param coords_volume: [3, X, Y, Z]
:param mask_volume: [1, X, Y, Z]
:param feature_volume: [C, X, Y, Z]
:param threshold:
:return:
"""
device = coords_volume.device
_, dX, dY, dZ = coords_volume.shape
def prune(sdf_pts, coords_pts, mask_volume, threshold):
occupancy_mask = (torch.abs(sdf_pts) < threshold).squeeze(1) # [num_pts]
valid_coords = coords_pts[occupancy_mask]
# - filter backside surface by depth maps
mask_filtered = self.filter_pts_by_depthmaps(valid_coords, pred_depth_maps, proj_matrices,
partial_vol_origin, voxel_size,
near, far, depth_interval, d_plane_nums)
valid_coords = valid_coords[mask_filtered]
# - dilate
occupancy_mask = sparse_to_dense_channel(valid_coords, 1, [dX, dY, dZ], 1, 0, device) # [dX, dY, dZ, 1]
# - dilate
occupancy_mask = occupancy_mask.float()
occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
occupancy_mask = occupancy_mask.view(-1, 1) > 0
final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts]
return final_mask, torch.sum(final_mask.float())
C, dX, dY, dZ = feature_volume.shape
sdf_volume = sdf_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3)
mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C)
# - for check
# sdf_volume = torch.rand_like(sdf_volume).float().to(sdf_volume.device) * 0.02
final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold)
while (valid_num > maximum_pts) and (threshold > 0.003):
threshold = threshold - 0.002
final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold)
valid_coords = coords_volume[final_mask] # [N, 3]
valid_feature = feature_volume[final_mask] # [N, C]
valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0,
valid_coords], dim=1) # [N, 4], append batch idx
# ! if the valid_num is still larger than maximum_pts, sample part of pts
if valid_num > maximum_pts:
valid_num = valid_num.long()
occupancy = torch.ones([valid_num]).to(device) > 0
choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts,
replace=False)
ind = torch.nonzero(occupancy).to(device)
occupancy[ind[choice]] = False
valid_coords = valid_coords[occupancy]
valid_feature = valid_feature[occupancy]
print(threshold, "randomly sample to save memory")
return valid_coords, valid_feature
@torch.no_grad()
def get_valid_sparse_coords_by_sdf(self, sdf_volume, coords_volume, mask_volume, feature_volume, threshold=0.02,
maximum_pts=110000):
"""
assume batch size == 1, from the first lod to get sparse voxels
:param sdf_volume: [num_pts, 1]
:param coords_volume: [3, X, Y, Z]
:param mask_volume: [1, X, Y, Z]
:param feature_volume: [C, X, Y, Z]
:param threshold:
:return:
"""
def prune(sdf_volume, mask_volume, threshold):
occupancy_mask = torch.abs(sdf_volume) < threshold # [num_pts, 1]
# - dilate
occupancy_mask = occupancy_mask.float()
occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
occupancy_mask = occupancy_mask.view(-1, 1) > 0
final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts]
return final_mask, torch.sum(final_mask.float())
C, dX, dY, dZ = feature_volume.shape
coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3)
mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C)
final_mask, valid_num = prune(sdf_volume, mask_volume, threshold)
while (valid_num > maximum_pts) and (threshold > 0.003):
threshold = threshold - 0.002
final_mask, valid_num = prune(sdf_volume, mask_volume, threshold)
valid_coords = coords_volume[final_mask] # [N, 3]
valid_feature = feature_volume[final_mask] # [N, C]
valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0,
valid_coords], dim=1) # [N, 4], append batch idx
# ! if the valid_num is still larger than maximum_pts, sample part of pts
if valid_num > maximum_pts:
device = sdf_volume.device
valid_num = valid_num.long()
occupancy = torch.ones([valid_num]).to(device) > 0
choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts,
replace=False)
ind = torch.nonzero(occupancy).to(device)
occupancy[ind[choice]] = False
valid_coords = valid_coords[occupancy]
valid_feature = valid_feature[occupancy]
print(threshold, "randomly sample to save memory")
return valid_coords, valid_feature
@torch.no_grad()
def extract_fields(self, bound_min, bound_max, resolution, query_func, device,
# * related to conditional feature
**kwargs
):
N = 64
X = torch.linspace(bound_min[0], bound_max[0], resolution).to(device).split(N)
Y = torch.linspace(bound_min[1], bound_max[1], resolution).to(device).split(N)
Z = torch.linspace(bound_min[2], bound_max[2], resolution).to(device).split(N)
u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
with torch.no_grad():
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs, indexing="ij")
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1)
# ! attention, the query function is different for extract geometry and fields
output = query_func(pts, **kwargs)
sdf = output['sdf_pts_scale%d' % kwargs['lod']].reshape(len(xs), len(ys),
len(zs)).detach().cpu().numpy()
u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = -1 * sdf
return u
@torch.no_grad()
def extract_geometry(self, sdf_network, bound_min, bound_max, resolution, threshold, device, occupancy_mask=None,
# * 3d feature volume
**kwargs
):
# logging.info('threshold: {}'.format(threshold))
u = self.extract_fields(bound_min, bound_max, resolution,
lambda pts, **kwargs: sdf_network.sdf(pts, **kwargs),
# - sdf need to be multiplied by -1
device,
# * 3d feature volume
**kwargs
)
if occupancy_mask is not None:
dX, dY, dZ = occupancy_mask.shape
empty_mask = 1 - occupancy_mask
empty_mask = empty_mask.view(1, 1, dX, dY, dZ)
# - dilation
# empty_mask = F.avg_pool3d(empty_mask, kernel_size=7, stride=1, padding=3)
empty_mask = F.interpolate(empty_mask, [resolution, resolution, resolution], mode='nearest')
empty_mask = empty_mask.view(resolution, resolution, resolution).cpu().numpy() > 0
u[empty_mask] = -100
del empty_mask
vertices, triangles = mcubes.marching_cubes(u, threshold)
b_max_np = bound_max.detach().cpu().numpy()
b_min_np = bound_min.detach().cpu().numpy()
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
return vertices, triangles, u
@torch.no_grad()
def extract_depth_maps(self, sdf_network, con_volume, intrinsics, c2ws, H, W, near, far):
"""
extract depth maps from the density volume
:param con_volume: [1, 1+C, dX, dY, dZ] can by con_volume or sdf_volume
:param c2ws: [B, 4, 4]
:param H:
:param W:
:param near:
:param far:
:return:
"""
device = con_volume.device
batch_size = intrinsics.shape[0]
with torch.no_grad():
ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij'
p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1) # H, W, 3
intrinsics_inv = torch.inverse(intrinsics)
p = p.view(-1, 3).float().to(device) # N_rays, 3
p = torch.matmul(intrinsics_inv[:, None, :3, :3], p[:, :, None]).squeeze() # Batch, N_rays, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # Batch, N_rays, 3
rays_v = torch.matmul(c2ws[:, None, :3, :3], rays_v[:, :, :, None]).squeeze() # Batch, N_rays, 3
rays_o = c2ws[:, None, :3, 3].expand(rays_v.shape) # Batch, N_rays, 3
rays_d = rays_v
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
################## - sphere tracer to extract depth maps ######################
depth_masks_sphere, depth_maps_sphere = self.ray_tracer.extract_depth_maps(
rays_o, rays_d,
near[None, :].repeat(rays_o.shape[0], 1),
far[None, :].repeat(rays_o.shape[0], 1),
sdf_network, con_volume
)
depth_maps = depth_maps_sphere.view(batch_size, 1, H, W)
depth_masks = depth_masks_sphere.view(batch_size, 1, H, W)
depth_maps = torch.where(depth_masks, depth_maps,
torch.zeros_like(depth_masks.float()).to(device)) # fill invalid pixels by 0
return depth_maps, depth_masks