Text-to-3D
image-to-3d
code / ldm /guidance.py
Chao Xu
init code
1fae98d
raw
history blame
3.32 kB
from typing import List, Tuple
from scipy import interpolate
import numpy as np
import torch
import matplotlib.pyplot as plt
from IPython.display import clear_output
import abc
class GuideModel(torch.nn.Module, abc.ABC):
def __init__(self) -> None:
super().__init__()
@abc.abstractmethod
def preprocess(self, x_img):
pass
@abc.abstractmethod
def compute_loss(self, inp):
pass
class Guider(torch.nn.Module):
def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
"""Apply classifier guidance
Specify a guidance scale as either a scalar
Or a schedule as a list of tuples t = 0->1 and scale, e.g.
[(0, 10), (0.5, 20), (1, 50)]
"""
super().__init__()
self.sampler = sampler
self.index = 0
self.show = verbose
self.guide_model = guide_model
self.history = []
if isinstance(scale, (Tuple, List)):
times = np.array([x[0] for x in scale])
values = np.array([x[1] for x in scale])
self.scale_schedule = {"times": times, "values": values}
else:
self.scale_schedule = float(scale)
self.ddim_timesteps = sampler.ddim_timesteps
self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
def get_scales(self):
if isinstance(self.scale_schedule, float):
return len(self.ddim_timesteps)*[self.scale_schedule]
interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
return interpolater(fractional_steps)
def modify_score(self, model, e_t, x, t, c):
# TODO look up index by t
scale = self.get_scales()[self.index]
if (scale == 0):
return e_t
sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
inp = self.guide_model.preprocess(x_img)
loss = self.guide_model.compute_loss(inp)
grads = torch.autograd.grad(loss.sum(), x_in)[0]
correction = grads * scale
if self.show:
clear_output(wait=True)
print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
plt.axis('off')
plt.show()
plt.imshow(correction[0][0].detach().cpu())
plt.axis('off')
plt.show()
e_t_mod = e_t - sqrt_1ma*correction
if self.show:
fig, axs = plt.subplots(1, 3)
axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
plt.show()
self.index += 1
return e_t_mod