|
|
|
|
|
|
|
|
|
|
|
from math import exp |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
|
|
def gaussian(window_size, sigma): |
|
gauss = torch.Tensor( |
|
[ |
|
exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2)) |
|
for x in range(window_size) |
|
] |
|
) |
|
return gauss / gauss.sum() |
|
|
|
|
|
def create_window(window_size, channel): |
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) |
|
window = Variable( |
|
_2D_window.expand(channel, 1, window_size, window_size).contiguous() |
|
) |
|
return window |
|
|
|
|
|
def _ssim( |
|
img1, img2, window, window_size, channel, mask=None, size_average=True |
|
): |
|
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) |
|
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_sq = ( |
|
F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) |
|
- mu1_sq |
|
) |
|
sigma2_sq = ( |
|
F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) |
|
- mu2_sq |
|
) |
|
sigma12 = ( |
|
F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) |
|
- mu1_mu2 |
|
) |
|
|
|
C1 = (0.01) ** 2 |
|
C2 = (0.03) ** 2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ( |
|
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) |
|
) |
|
|
|
if not (mask is None): |
|
b = mask.size(0) |
|
ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask |
|
ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum( |
|
dim=1 |
|
).clamp(min=1) |
|
return ssim_map |
|
|
|
import pdb |
|
|
|
pdb.set_trace |
|
|
|
if size_average: |
|
return ssim_map.mean() |
|
else: |
|
return ssim_map.mean(1).mean(1).mean(1) |
|
|
|
|
|
class SSIM(torch.nn.Module): |
|
def __init__(self, window_size=11, size_average=True): |
|
super(SSIM, self).__init__() |
|
self.window_size = window_size |
|
self.size_average = size_average |
|
self.channel = 1 |
|
self.window = create_window(window_size, self.channel) |
|
|
|
def forward(self, img1, img2, mask=None): |
|
(_, channel, _, _) = img1.size() |
|
|
|
if ( |
|
channel == self.channel |
|
and self.window.data.type() == img1.data.type() |
|
): |
|
window = self.window |
|
else: |
|
window = create_window(self.window_size, channel) |
|
|
|
if img1.is_cuda: |
|
window = window.cuda(img1.get_device()) |
|
window = window.type_as(img1) |
|
|
|
self.window = window |
|
self.channel = channel |
|
|
|
return _ssim( |
|
img1, |
|
img2, |
|
window, |
|
self.window_size, |
|
channel, |
|
mask, |
|
self.size_average, |
|
) |
|
|
|
|
|
def ssim(img1, img2, window_size=11, mask=None, size_average=True): |
|
(_, channel, _, _) = img1.size() |
|
window = create_window(window_size, channel) |
|
|
|
if img1.is_cuda: |
|
window = window.cuda(img1.get_device()) |
|
window = window.type_as(img1) |
|
|
|
return _ssim(img1, img2, window, window_size, channel, mask, size_average) |
|
|