|
import os |
|
import json |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
|
|
|
|
def image_preprocess_nosave(input_image, lower_contrast=True, rescale=True): |
|
|
|
image_arr = np.array(input_image) |
|
in_w, in_h = image_arr.shape[:2] |
|
|
|
if lower_contrast: |
|
alpha = 0.8 |
|
beta = 0 |
|
|
|
image_arr = cv2.convertScaleAbs(image_arr, alpha=alpha, beta=beta) |
|
image_arr[image_arr[...,-1]>200, -1] = 255 |
|
|
|
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) |
|
x, y, w, h = cv2.boundingRect(mask) |
|
max_size = max(w, h) |
|
ratio = 0.75 |
|
if rescale: |
|
side_len = int(max_size / ratio) |
|
else: |
|
side_len = in_w |
|
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) |
|
center = side_len//2 |
|
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w] |
|
rgba = Image.fromarray(padded_image).resize((256, 256), Image.LANCZOS) |
|
|
|
rgba_arr = np.array(rgba) / 255.0 |
|
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:]) |
|
return Image.fromarray((rgb * 255).astype(np.uint8)) |
|
|
|
|
|
def calc_pose(phis, thetas, size, radius = 1.2, device='cuda'): |
|
import torch |
|
def normalize(vectors): |
|
return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10) |
|
thetas = torch.FloatTensor(thetas).to(device) |
|
phis = torch.FloatTensor(phis).to(device) |
|
|
|
centers = torch.stack([ |
|
radius * torch.sin(thetas) * torch.sin(phis), |
|
-radius * torch.cos(thetas) * torch.sin(phis), |
|
radius * torch.cos(phis), |
|
], dim=-1) |
|
|
|
|
|
forward_vector = normalize(centers).squeeze(0) |
|
up_vector = torch.FloatTensor([0, 0, 1]).to(device).unsqueeze(0).repeat(size, 1) |
|
right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1)) |
|
if right_vector.pow(2).sum() < 0.01: |
|
right_vector = torch.FloatTensor([0, 1, 0]).to(device).unsqueeze(0).repeat(size, 1) |
|
up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1)) |
|
|
|
poses = torch.eye(4, dtype=torch.float, device=device)[:3].unsqueeze(0).repeat(size, 1, 1) |
|
poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1) |
|
poses[:, :3, 3] = centers |
|
return poses |
|
|
|
def get_poses(init_elev): |
|
mid = init_elev |
|
deg = 10 |
|
if init_elev <= 75: |
|
low = init_elev + 30 |
|
|
|
|
|
elevations = np.radians([mid]*4 + [low]*4 + [mid-deg,mid+deg,mid,mid]*4 + [low-deg,low+deg,low,low]*4) |
|
img_ids = [f"{num}.png" for num in range(8)] + [f"{num}_{view_num}.png" for num in range(8) for view_num in range(4)] |
|
else: |
|
|
|
high = init_elev - 30 |
|
elevations = np.radians([mid]*4 + [high]*4 + [mid-deg,mid+deg,mid,mid]*4 + [high-deg,high+deg,high,high]*4) |
|
img_ids = [f"{num}.png" for num in list(range(4)) + list(range(8,12))] + \ |
|
[f"{num}_{view_num}.png" for num in list(range(4)) + list(range(8,12)) for view_num in range(4)] |
|
overlook_theta = [30+x*90 for x in range(4)] |
|
eyelevel_theta = [60+x*90 for x in range(4)] |
|
source_theta_delta = [0, 0, -deg, deg] |
|
azimuths = np.radians(overlook_theta + eyelevel_theta + \ |
|
[view_theta + source for view_theta in overlook_theta for source in source_theta_delta] + \ |
|
[view_theta + source for view_theta in eyelevel_theta for source in source_theta_delta]) |
|
return img_ids, calc_pose(elevations, azimuths, len(azimuths)).cpu().numpy() |
|
|
|
|
|
def gen_poses(shape_dir, pose_est): |
|
img_ids, input_poses = get_poses(pose_est) |
|
|
|
out_dict = {} |
|
focal = 560/2; h = w = 256 |
|
out_dict['intrinsics'] = [[focal, 0, w / 2], [0, focal, h / 2], [0, 0, 1]] |
|
out_dict['near_far'] = [1.2-0.7, 1.2+0.7] |
|
out_dict['c2ws'] = {} |
|
for view_id, img_id in enumerate(img_ids): |
|
pose = input_poses[view_id] |
|
pose = pose.tolist() |
|
pose = [pose[0], pose[1], pose[2], [0, 0, 0, 1]] |
|
out_dict['c2ws'][img_id] = pose |
|
json_path = os.path.join(shape_dir, 'pose.json') |
|
with open(json_path, 'w') as f: |
|
json.dump(out_dict, f, indent=4) |
|
|