Text-to-3D
image-to-3d
code / SparseNeuS_demo_v1 /tsparse /torchsparse_utils.py
Chao Xu
sparseneus and elev est
854f0d0
raw
history blame
5.25 kB
"""
Copied from:
https://github.com/mit-han-lab/spvnas/blob/b24f50379ed888d3a0e784508a809d4e92e820c0/core/models/utils.py
"""
import torch
import torchsparse.nn.functional as F
from torchsparse import PointTensor, SparseTensor
from torchsparse.nn.utils import get_kernel_offsets
import numpy as np
# __all__ = ['initial_voxelize', 'point_to_voxel', 'voxel_to_point']
# z: PointTensor
# return: SparseTensor
def initial_voxelize(z, init_res, after_res):
new_float_coord = torch.cat(
[(z.C[:, :3] * init_res) / after_res, z.C[:, -1].view(-1, 1)], 1)
pc_hash = F.sphash(torch.floor(new_float_coord).int())
sparse_hash = torch.unique(pc_hash)
idx_query = F.sphashquery(pc_hash, sparse_hash)
counts = F.spcount(idx_query.int(), len(sparse_hash))
inserted_coords = F.spvoxelize(torch.floor(new_float_coord), idx_query,
counts)
inserted_coords = torch.round(inserted_coords).int()
inserted_feat = F.spvoxelize(z.F, idx_query, counts)
new_tensor = SparseTensor(inserted_feat, inserted_coords, 1)
new_tensor.cmaps.setdefault(new_tensor.stride, new_tensor.coords)
z.additional_features['idx_query'][1] = idx_query
z.additional_features['counts'][1] = counts
z.C = new_float_coord
return new_tensor
# x: SparseTensor, z: PointTensor
# return: SparseTensor
def point_to_voxel(x, z):
if z.additional_features is None or z.additional_features.get('idx_query') is None \
or z.additional_features['idx_query'].get(x.s) is None:
# pc_hash = hash_gpu(torch.floor(z.C).int())
pc_hash = F.sphash(
torch.cat([
torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0],
z.C[:, -1].int().view(-1, 1)
], 1))
sparse_hash = F.sphash(x.C)
idx_query = F.sphashquery(pc_hash, sparse_hash)
counts = F.spcount(idx_query.int(), x.C.shape[0])
z.additional_features['idx_query'][x.s] = idx_query
z.additional_features['counts'][x.s] = counts
else:
idx_query = z.additional_features['idx_query'][x.s]
counts = z.additional_features['counts'][x.s]
inserted_feat = F.spvoxelize(z.F, idx_query, counts)
new_tensor = SparseTensor(inserted_feat, x.C, x.s)
new_tensor.cmaps = x.cmaps
new_tensor.kmaps = x.kmaps
return new_tensor
# x: SparseTensor, z: PointTensor
# return: PointTensor
def voxel_to_point(x, z, nearest=False):
if z.idx_query is None or z.weights is None or z.idx_query.get(
x.s) is None or z.weights.get(x.s) is None:
off = get_kernel_offsets(2, x.s, 1, device=z.F.device)
# old_hash = kernel_hash_gpu(torch.floor(z.C).int(), off)
old_hash = F.sphash(
torch.cat([
torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0],
z.C[:, -1].int().view(-1, 1)
], 1), off)
mm = x.C.to(z.F.device)
pc_hash = F.sphash(x.C.to(z.F.device))
idx_query = F.sphashquery(old_hash, pc_hash)
weights = F.calc_ti_weights(z.C, idx_query,
scale=x.s[0]).transpose(0, 1).contiguous()
idx_query = idx_query.transpose(0, 1).contiguous()
if nearest:
weights[:, 1:] = 0.
idx_query[:, 1:] = -1
new_feat = F.spdevoxelize(x.F, idx_query, weights)
new_tensor = PointTensor(new_feat,
z.C,
idx_query=z.idx_query,
weights=z.weights)
new_tensor.additional_features = z.additional_features
new_tensor.idx_query[x.s] = idx_query
new_tensor.weights[x.s] = weights
z.idx_query[x.s] = idx_query
z.weights[x.s] = weights
else:
new_feat = F.spdevoxelize(x.F, z.idx_query.get(x.s),
z.weights.get(x.s)) # - sparse trilinear interpoltation operation
new_tensor = PointTensor(new_feat,
z.C,
idx_query=z.idx_query,
weights=z.weights)
new_tensor.additional_features = z.additional_features
return new_tensor
def sparse_to_dense_torch_batch(locs, values, dim, default_val):
dense = torch.full([dim[0], dim[1], dim[2], dim[3]], float(default_val), device=locs.device)
dense[locs[:, 0], locs[:, 1], locs[:, 2], locs[:, 3]] = values
return dense
def sparse_to_dense_torch(locs, values, dim, default_val, device):
dense = torch.full([dim[0], dim[1], dim[2]], float(default_val), device=device)
if locs.shape[0] > 0:
dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values
return dense
def sparse_to_dense_channel(locs, values, dim, c, default_val, device):
locs = locs.to(torch.int64)
dense = torch.full([dim[0], dim[1], dim[2], c], float(default_val), device=device)
if locs.shape[0] > 0:
dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values
return dense
def sparse_to_dense_np(locs, values, dim, default_val):
dense = np.zeros([dim[0], dim[1], dim[2]], dtype=values.dtype)
dense.fill(default_val)
dense[locs[:, 0], locs[:, 1], locs[:, 2]] = values
return dense