|
import os |
|
import torch |
|
import pytorch_lightning as pl |
|
from omegaconf import OmegaConf |
|
from torch.nn import functional as F |
|
from torch.optim import AdamW |
|
from torch.optim.lr_scheduler import LambdaLR |
|
from copy import deepcopy |
|
from einops import rearrange |
|
from glob import glob |
|
from natsort import natsorted |
|
|
|
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel |
|
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config |
|
|
|
__models__ = { |
|
'class_label': EncoderUNetModel, |
|
'segmentation': UNetModel |
|
} |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class NoisyLatentImageClassifier(pl.LightningModule): |
|
|
|
def __init__(self, |
|
diffusion_path, |
|
num_classes, |
|
ckpt_path=None, |
|
pool='attention', |
|
label_key=None, |
|
diffusion_ckpt_path=None, |
|
scheduler_config=None, |
|
weight_decay=1.e-2, |
|
log_steps=10, |
|
monitor='val/loss', |
|
*args, |
|
**kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.num_classes = num_classes |
|
|
|
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1] |
|
self.diffusion_config = OmegaConf.load(diffusion_config).model |
|
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path |
|
self.load_diffusion() |
|
|
|
self.monitor = monitor |
|
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 |
|
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps |
|
self.log_steps = log_steps |
|
|
|
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \ |
|
else self.diffusion_model.cond_stage_key |
|
|
|
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params' |
|
|
|
if self.label_key not in __models__: |
|
raise NotImplementedError() |
|
|
|
self.load_classifier(ckpt_path, pool) |
|
|
|
self.scheduler_config = scheduler_config |
|
self.use_scheduler = self.scheduler_config is not None |
|
self.weight_decay = weight_decay |
|
|
|
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): |
|
sd = torch.load(path, map_location="cpu") |
|
if "state_dict" in list(sd.keys()): |
|
sd = sd["state_dict"] |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
print("Deleting key {} from state_dict.".format(k)) |
|
del sd[k] |
|
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( |
|
sd, strict=False) |
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") |
|
if len(missing) > 0: |
|
print(f"Missing Keys: {missing}") |
|
if len(unexpected) > 0: |
|
print(f"Unexpected Keys: {unexpected}") |
|
|
|
def load_diffusion(self): |
|
model = instantiate_from_config(self.diffusion_config) |
|
self.diffusion_model = model.eval() |
|
self.diffusion_model.train = disabled_train |
|
for param in self.diffusion_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def load_classifier(self, ckpt_path, pool): |
|
model_config = deepcopy(self.diffusion_config.params.unet_config.params) |
|
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels |
|
model_config.out_channels = self.num_classes |
|
if self.label_key == 'class_label': |
|
model_config.pool = pool |
|
|
|
self.model = __models__[self.label_key](**model_config) |
|
if ckpt_path is not None: |
|
print('#####################################################################') |
|
print(f'load from ckpt "{ckpt_path}"') |
|
print('#####################################################################') |
|
self.init_from_ckpt(ckpt_path) |
|
|
|
@torch.no_grad() |
|
def get_x_noisy(self, x, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x)) |
|
continuous_sqrt_alpha_cumprod = None |
|
if self.diffusion_model.use_continuous_noise: |
|
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) |
|
|
|
|
|
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise, |
|
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod) |
|
|
|
def forward(self, x_noisy, t, *args, **kwargs): |
|
return self.model(x_noisy, t) |
|
|
|
@torch.no_grad() |
|
def get_input(self, batch, k): |
|
x = batch[k] |
|
if len(x.shape) == 3: |
|
x = x[..., None] |
|
x = rearrange(x, 'b h w c -> b c h w') |
|
x = x.to(memory_format=torch.contiguous_format).float() |
|
return x |
|
|
|
@torch.no_grad() |
|
def get_conditioning(self, batch, k=None): |
|
if k is None: |
|
k = self.label_key |
|
assert k is not None, 'Needs to provide label key' |
|
|
|
targets = batch[k].to(self.device) |
|
|
|
if self.label_key == 'segmentation': |
|
targets = rearrange(targets, 'b h w c -> b c h w') |
|
for down in range(self.numd): |
|
h, w = targets.shape[-2:] |
|
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest') |
|
|
|
|
|
|
|
return targets |
|
|
|
def compute_top_k(self, logits, labels, k, reduction="mean"): |
|
_, top_ks = torch.topk(logits, k, dim=1) |
|
if reduction == "mean": |
|
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() |
|
elif reduction == "none": |
|
return (top_ks == labels[:, None]).float().sum(dim=-1) |
|
|
|
def on_train_epoch_start(self): |
|
|
|
self.diffusion_model.model.to('cpu') |
|
|
|
@torch.no_grad() |
|
def write_logs(self, loss, logits, targets): |
|
log_prefix = 'train' if self.training else 'val' |
|
log = {} |
|
log[f"{log_prefix}/loss"] = loss.mean() |
|
log[f"{log_prefix}/acc@1"] = self.compute_top_k( |
|
logits, targets, k=1, reduction="mean" |
|
) |
|
log[f"{log_prefix}/acc@5"] = self.compute_top_k( |
|
logits, targets, k=5, reduction="mean" |
|
) |
|
|
|
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True) |
|
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False) |
|
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True) |
|
lr = self.optimizers().param_groups[0]['lr'] |
|
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True) |
|
|
|
def shared_step(self, batch, t=None): |
|
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key) |
|
targets = self.get_conditioning(batch) |
|
if targets.dim() == 4: |
|
targets = targets.argmax(dim=1) |
|
if t is None: |
|
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long() |
|
else: |
|
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() |
|
x_noisy = self.get_x_noisy(x, t) |
|
logits = self(x_noisy, t) |
|
|
|
loss = F.cross_entropy(logits, targets, reduction='none') |
|
|
|
self.write_logs(loss.detach(), logits.detach(), targets.detach()) |
|
|
|
loss = loss.mean() |
|
return loss, logits, x_noisy, targets |
|
|
|
def training_step(self, batch, batch_idx): |
|
loss, *_ = self.shared_step(batch) |
|
return loss |
|
|
|
def reset_noise_accs(self): |
|
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in |
|
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)} |
|
|
|
def on_validation_start(self): |
|
self.reset_noise_accs() |
|
|
|
@torch.no_grad() |
|
def validation_step(self, batch, batch_idx): |
|
loss, *_ = self.shared_step(batch) |
|
|
|
for t in self.noisy_acc: |
|
_, logits, _, targets = self.shared_step(batch, t) |
|
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean')) |
|
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean')) |
|
|
|
return loss |
|
|
|
def configure_optimizers(self): |
|
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) |
|
|
|
if self.use_scheduler: |
|
scheduler = instantiate_from_config(self.scheduler_config) |
|
|
|
print("Setting up LambdaLR scheduler...") |
|
scheduler = [ |
|
{ |
|
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), |
|
'interval': 'step', |
|
'frequency': 1 |
|
}] |
|
return [optimizer], scheduler |
|
|
|
return optimizer |
|
|
|
@torch.no_grad() |
|
def log_images(self, batch, N=8, *args, **kwargs): |
|
log = dict() |
|
x = self.get_input(batch, self.diffusion_model.first_stage_key) |
|
log['inputs'] = x |
|
|
|
y = self.get_conditioning(batch) |
|
|
|
if self.label_key == 'class_label': |
|
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) |
|
log['labels'] = y |
|
|
|
if ismap(y): |
|
log['labels'] = self.diffusion_model.to_rgb(y) |
|
|
|
for step in range(self.log_steps): |
|
current_time = step * self.log_time_interval |
|
|
|
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time) |
|
|
|
log[f'inputs@t{current_time}'] = x_noisy |
|
|
|
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) |
|
pred = rearrange(pred, 'b h w c -> b c h w') |
|
|
|
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred) |
|
|
|
for key in log: |
|
log[key] = log[key][:N] |
|
|
|
return log |
|
|