import tqdm | |
import imageio | |
import json | |
import os.path as osp | |
import os | |
from oee.utils import plt_utils | |
from oee.utils.elev_est_api import elev_est_api | |
def visualize(img_paths, elev): | |
imgs = [imageio.imread_v2(img_path) for img_path in img_paths] | |
plt_utils.image_grid(imgs, 2, 2, label=f"elev={elev}") | |
def estimate_elev(root_dir): | |
# root_dir = "/home/linghao/Datasets/objaverse-processed/zero12345_img/wild" | |
# dataset = "supp_fail" | |
# root_dir = "/home/chao/chao/OpenComplete/zero123/zero123/gradio_tmp/" | |
# obj_names = sorted(os.listdir(root_dir)) | |
# results = {} | |
# for obj_name in tqdm.tqdm(obj_names): | |
img_dir = osp.join(root_dir, "stage2_8") | |
img_paths = [] | |
for i in range(4): | |
img_paths.append(f"{img_dir}/0_{i}.png") | |
elev = elev_est_api(img_paths) | |
# visualize(img_paths, elev) | |
# results[obj_name] = elev | |
# json.dump(results, open(osp.join(root_dir, f"../{dataset}_elev.json"), "w"), indent=4) | |
return elev | |
# if __name__ == '__main__': | |
# main() | |