update model card README.md
Browse files
README.md
CHANGED
@@ -20,12 +20,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Ratio: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -54,24 +54,19 @@ The following hyperparameters were used during training:
|
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_ratio: 0.06
|
56 |
- lr_scheduler_warmup_steps: 3
|
57 |
-
- num_epochs:
|
58 |
- label_smoothing_factor: 0.01
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
|
63 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.116 | 3.01 | 2800 | 0.2515 | 0.9555 | 0.6374 | 0.6372 | 0.6372 | 0.4997 |
|
71 |
-
| 0.077 | 3.44 | 3200 | 0.2511 | 0.9580 | 0.9580 | 0.9583 | 0.9580 | 0.4966 |
|
72 |
-
| 0.0622 | 3.86 | 3600 | 0.2355 | 0.9643 | 0.9644 | 0.9642 | 0.9643 | 0.4828 |
|
73 |
-
| 0.0524 | 4.29 | 4000 | 0.2289 | 0.9637 | 0.9636 | 0.9637 | 0.9637 | 0.4884 |
|
74 |
-
| 0.0498 | 4.72 | 4400 | 0.2336 | 0.9643 | 0.9644 | 0.9642 | 0.9643 | 0.4840 |
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2358
|
24 |
+
- Accuracy: 0.9580
|
25 |
+
- Precision: 0.9583
|
26 |
+
- Recall: 0.9578
|
27 |
+
- F1: 0.9580
|
28 |
+
- Ratio: 0.4803
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_ratio: 0.06
|
56 |
- lr_scheduler_warmup_steps: 3
|
57 |
+
- num_epochs: 3
|
58 |
- label_smoothing_factor: 0.01
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
|
63 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
64 |
+
| 0.5219 | 0.43 | 400 | 0.3524 | 0.8954 | 0.8972 | 0.8946 | 0.8951 | 0.4577 |
|
65 |
+
| 0.4069 | 0.86 | 800 | 0.3178 | 0.9249 | 0.9250 | 0.9246 | 0.9248 | 0.4809 |
|
66 |
+
| 0.2326 | 1.29 | 1200 | 0.3055 | 0.9355 | 0.9360 | 0.9351 | 0.9354 | 0.4740 |
|
67 |
+
| 0.2045 | 1.72 | 1600 | 0.2847 | 0.9455 | 0.9457 | 0.9453 | 0.9455 | 0.4803 |
|
68 |
+
| 0.1423 | 2.15 | 2000 | 0.2477 | 0.9555 | 0.9555 | 0.9556 | 0.9555 | 0.4903 |
|
69 |
+
| 0.0935 | 2.58 | 2400 | 0.2367 | 0.9599 | 0.9598 | 0.9600 | 0.9599 | 0.4922 |
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
### Framework versions
|