Omartificial-Intelligence-Space
commited on
Update readme.md
Browse files
README.md
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
base_model: Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
|
3 |
datasets:
|
4 |
- Omartificial-Intelligence-Space/Arabic-stsb
|
|
|
5 |
language:
|
6 |
- ar
|
7 |
library_name: sentence-transformers
|
@@ -16,6 +17,7 @@ metrics:
|
|
16 |
- spearman_dot
|
17 |
- pearson_max
|
18 |
- spearman_max
|
|
|
19 |
pipeline_tag: sentence-similarity
|
20 |
tags:
|
21 |
- sentence-transformers
|
@@ -25,6 +27,7 @@ tags:
|
|
25 |
- dataset_size:947818
|
26 |
- loss:SoftmaxLoss
|
27 |
- loss:CosineSimilarityLoss
|
|
|
28 |
widget:
|
29 |
- source_sentence: امرأة تكتب شيئاً
|
30 |
sentences:
|
@@ -36,14 +39,14 @@ widget:
|
|
36 |
- لاعب كرة السلة على وشك تسجيل نقاط لفريقه.
|
37 |
- المقال التالي مأخوذ من نسختي من "أطلس البطريق الجديد للتاريخ الوسطى"
|
38 |
- قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
|
39 |
-
- source_sentence:
|
40 |
-
على حقل
|
|
|
41 |
sentences:
|
42 |
- امرأة تحمل كأساً
|
43 |
- طفل يحاول لمس مروحة طائرة
|
44 |
- اثنان من عازبين عن الشرب يستعدون للعشاء
|
45 |
-
- source_sentence: رجل في منتصف العمر يحلق لحيته في غرفة ذات جدران بيضاء والتي لا
|
46 |
-
تبدو كحمام
|
47 |
sentences:
|
48 |
- فتى يخطط اسمه على مكتبه
|
49 |
- رجل ينام
|
@@ -54,7 +57,9 @@ widget:
|
|
54 |
- المرأة تنظر من النافذة.
|
55 |
- لقد مات الكلب
|
56 |
model-index:
|
57 |
-
- name:
|
|
|
|
|
58 |
results:
|
59 |
- task:
|
60 |
type: semantic-similarity
|
@@ -130,11 +135,12 @@ model-index:
|
|
130 |
- type: spearman_max
|
131 |
value: 0.8172511596569861
|
132 |
name: Spearman Max
|
|
|
133 |
---
|
134 |
|
135 |
-
#
|
136 |
|
137 |
-
This is a
|
138 |
|
139 |
## Model Details
|
140 |
|
@@ -145,25 +151,10 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [O
|
|
145 |
- **Output Dimensionality:** 768 tokens
|
146 |
- **Similarity Function:** Cosine Similarity
|
147 |
- **Training Datasets:**
|
148 |
-
- all-nli
|
149 |
- [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
|
150 |
- **Language:** ar
|
151 |
-
<!-- - **License:** Unknown -->
|
152 |
|
153 |
-
### Model Sources
|
154 |
-
|
155 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
156 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
157 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
158 |
-
|
159 |
-
### Full Model Architecture
|
160 |
-
|
161 |
-
```
|
162 |
-
SentenceTransformer(
|
163 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
164 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
165 |
-
)
|
166 |
-
```
|
167 |
|
168 |
## Usage
|
169 |
|
@@ -180,7 +171,7 @@ Then you can load this model and run inference.
|
|
180 |
from sentence_transformers import SentenceTransformer
|
181 |
|
182 |
# Download from the 🤗 Hub
|
183 |
-
model = SentenceTransformer("Omartificial-Intelligence-Space/
|
184 |
# Run inference
|
185 |
sentences = [
|
186 |
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
|
@@ -197,29 +188,6 @@ print(similarities.shape)
|
|
197 |
# [3, 3]
|
198 |
```
|
199 |
|
200 |
-
<!--
|
201 |
-
### Direct Usage (Transformers)
|
202 |
-
|
203 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
204 |
-
|
205 |
-
</details>
|
206 |
-
-->
|
207 |
-
|
208 |
-
<!--
|
209 |
-
### Downstream Usage (Sentence Transformers)
|
210 |
-
|
211 |
-
You can finetune this model on your own dataset.
|
212 |
-
|
213 |
-
<details><summary>Click to expand</summary>
|
214 |
-
|
215 |
-
</details>
|
216 |
-
-->
|
217 |
-
|
218 |
-
<!--
|
219 |
-
### Out-of-Scope Use
|
220 |
-
|
221 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
222 |
-
-->
|
223 |
|
224 |
## Evaluation
|
225 |
|
@@ -259,253 +227,6 @@ You can finetune this model on your own dataset.
|
|
259 |
| pearson_max | 0.813 |
|
260 |
| spearman_max | 0.8173 |
|
261 |
|
262 |
-
<!--
|
263 |
-
## Bias, Risks and Limitations
|
264 |
-
|
265 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
266 |
-
-->
|
267 |
-
|
268 |
-
<!--
|
269 |
-
### Recommendations
|
270 |
-
|
271 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
272 |
-
-->
|
273 |
-
|
274 |
-
## Training Details
|
275 |
-
|
276 |
-
### Training Datasets
|
277 |
-
|
278 |
-
#### all-nli
|
279 |
-
|
280 |
-
* Dataset: all-nli
|
281 |
-
* Size: 942,069 training samples
|
282 |
-
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
283 |
-
* Approximate statistics based on the first 1000 samples:
|
284 |
-
| | premise | hypothesis | label |
|
285 |
-
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
286 |
-
| type | string | string | int |
|
287 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 14.09 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.28 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
|
288 |
-
* Samples:
|
289 |
-
| premise | hypothesis | label |
|
290 |
-
|:-----------------------------------------------|:--------------------------------------------|:---------------|
|
291 |
-
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص يقوم بتدريب حصانه للمنافسة</code> | <code>1</code> |
|
292 |
-
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في مطعم، يطلب عجة.</code> | <code>2</code> |
|
293 |
-
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>0</code> |
|
294 |
-
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
295 |
-
|
296 |
-
#### sts
|
297 |
-
|
298 |
-
* Dataset: [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [f5a6f89](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/f5a6f89da460d307eff3acbbfcb62d0705cdbbb5)
|
299 |
-
* Size: 5,749 training samples
|
300 |
-
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
301 |
-
* Approximate statistics based on the first 1000 samples:
|
302 |
-
| | sentence1 | sentence2 | score |
|
303 |
-
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
304 |
-
| type | string | string | float |
|
305 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 7.46 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.36 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
306 |
-
* Samples:
|
307 |
-
| sentence1 | sentence2 | score |
|
308 |
-
|:-----------------------------------------------|:--------------------------------------------------------|:------------------|
|
309 |
-
| <code>طائرة ستقلع</code> | <code>طائرة جوية ستقلع</code> | <code>1.0</code> |
|
310 |
-
| <code>رجل يعزف على ناي كبير</code> | <code>رجل يعزف على الناي.</code> | <code>0.76</code> |
|
311 |
-
| <code>رجل ينشر الجبن الممزق على البيتزا</code> | <code>رجل ينشر الجبن الممزق على بيتزا غير مطبوخة</code> | <code>0.76</code> |
|
312 |
-
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
313 |
-
```json
|
314 |
-
{
|
315 |
-
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
316 |
-
}
|
317 |
-
```
|
318 |
-
|
319 |
-
### Evaluation Datasets
|
320 |
-
|
321 |
-
#### all-nli
|
322 |
-
|
323 |
-
* Dataset: all-nli
|
324 |
-
* Size: 1,000 evaluation samples
|
325 |
-
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
326 |
-
* Approximate statistics based on the first 1000 samples:
|
327 |
-
| | premise | hypothesis | label |
|
328 |
-
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
329 |
-
| type | string | string | int |
|
330 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.11 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
|
331 |
-
* Samples:
|
332 |
-
| premise | hypothesis | label |
|
333 |
-
|:------------------------------------------------|:------------------------------------------------------------------------------|:---------------|
|
334 |
-
| <code>امرأتان يتعانقان بينما يحملان طرود</code> | <code>الأخوات يعانقون بعضهم لوداعاً بينما يحملون حزمة بعد تناول الغداء</code> | <code>1</code> |
|
335 |
-
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>0</code> |
|
336 |
-
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | <code>2</code> |
|
337 |
-
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
338 |
-
|
339 |
-
#### sts
|
340 |
-
|
341 |
-
* Dataset: [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb) at [f5a6f89](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb/tree/f5a6f89da460d307eff3acbbfcb62d0705cdbbb5)
|
342 |
-
* Size: 1,500 evaluation samples
|
343 |
-
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
344 |
-
* Approximate statistics based on the first 1000 samples:
|
345 |
-
| | sentence1 | sentence2 | score |
|
346 |
-
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
347 |
-
| type | string | string | float |
|
348 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 12.55 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.49 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
349 |
-
* Samples:
|
350 |
-
| sentence1 | sentence2 | score |
|
351 |
-
|:--------------------------------------|:---------------------------------------|:------------------|
|
352 |
-
| <code>رجل يرتدي قبعة صلبة يرقص</code> | <code>رجل يرتدي قبعة صلبة يرقص.</code> | <code>1.0</code> |
|
353 |
-
| <code>طفل صغير يركب حصاناً.</code> | <code>طفل يركب حصاناً.</code> | <code>0.95</code> |
|
354 |
-
| <code>رجل يطعم فأراً لأفعى</code> | <code>الرجل يطعم الفأر للثعبان.</code> | <code>1.0</code> |
|
355 |
-
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
356 |
-
```json
|
357 |
-
{
|
358 |
-
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
359 |
-
}
|
360 |
-
```
|
361 |
-
|
362 |
-
### Training Hyperparameters
|
363 |
-
#### Non-Default Hyperparameters
|
364 |
-
|
365 |
-
- `eval_strategy`: steps
|
366 |
-
- `per_device_train_batch_size`: 16
|
367 |
-
- `per_device_eval_batch_size`: 16
|
368 |
-
- `num_train_epochs`: 1
|
369 |
-
- `warmup_ratio`: 0.1
|
370 |
-
- `fp16`: True
|
371 |
-
- `multi_dataset_batch_sampler`: round_robin
|
372 |
-
|
373 |
-
#### All Hyperparameters
|
374 |
-
<details><summary>Click to expand</summary>
|
375 |
-
|
376 |
-
- `overwrite_output_dir`: False
|
377 |
-
- `do_predict`: False
|
378 |
-
- `eval_strategy`: steps
|
379 |
-
- `prediction_loss_only`: True
|
380 |
-
- `per_device_train_batch_size`: 16
|
381 |
-
- `per_device_eval_batch_size`: 16
|
382 |
-
- `per_gpu_train_batch_size`: None
|
383 |
-
- `per_gpu_eval_batch_size`: None
|
384 |
-
- `gradient_accumulation_steps`: 1
|
385 |
-
- `eval_accumulation_steps`: None
|
386 |
-
- `learning_rate`: 5e-05
|
387 |
-
- `weight_decay`: 0.0
|
388 |
-
- `adam_beta1`: 0.9
|
389 |
-
- `adam_beta2`: 0.999
|
390 |
-
- `adam_epsilon`: 1e-08
|
391 |
-
- `max_grad_norm`: 1.0
|
392 |
-
- `num_train_epochs`: 1
|
393 |
-
- `max_steps`: -1
|
394 |
-
- `lr_scheduler_type`: linear
|
395 |
-
- `lr_scheduler_kwargs`: {}
|
396 |
-
- `warmup_ratio`: 0.1
|
397 |
-
- `warmup_steps`: 0
|
398 |
-
- `log_level`: passive
|
399 |
-
- `log_level_replica`: warning
|
400 |
-
- `log_on_each_node`: True
|
401 |
-
- `logging_nan_inf_filter`: True
|
402 |
-
- `save_safetensors`: True
|
403 |
-
- `save_on_each_node`: False
|
404 |
-
- `save_only_model`: False
|
405 |
-
- `restore_callback_states_from_checkpoint`: False
|
406 |
-
- `no_cuda`: False
|
407 |
-
- `use_cpu`: False
|
408 |
-
- `use_mps_device`: False
|
409 |
-
- `seed`: 42
|
410 |
-
- `data_seed`: None
|
411 |
-
- `jit_mode_eval`: False
|
412 |
-
- `use_ipex`: False
|
413 |
-
- `bf16`: False
|
414 |
-
- `fp16`: True
|
415 |
-
- `fp16_opt_level`: O1
|
416 |
-
- `half_precision_backend`: auto
|
417 |
-
- `bf16_full_eval`: False
|
418 |
-
- `fp16_full_eval`: False
|
419 |
-
- `tf32`: None
|
420 |
-
- `local_rank`: 0
|
421 |
-
- `ddp_backend`: None
|
422 |
-
- `tpu_num_cores`: None
|
423 |
-
- `tpu_metrics_debug`: False
|
424 |
-
- `debug`: []
|
425 |
-
- `dataloader_drop_last`: False
|
426 |
-
- `dataloader_num_workers`: 0
|
427 |
-
- `dataloader_prefetch_factor`: None
|
428 |
-
- `past_index`: -1
|
429 |
-
- `disable_tqdm`: False
|
430 |
-
- `remove_unused_columns`: True
|
431 |
-
- `label_names`: None
|
432 |
-
- `load_best_model_at_end`: False
|
433 |
-
- `ignore_data_skip`: False
|
434 |
-
- `fsdp`: []
|
435 |
-
- `fsdp_min_num_params`: 0
|
436 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
437 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
438 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
439 |
-
- `deepspeed`: None
|
440 |
-
- `label_smoothing_factor`: 0.0
|
441 |
-
- `optim`: adamw_torch
|
442 |
-
- `optim_args`: None
|
443 |
-
- `adafactor`: False
|
444 |
-
- `group_by_length`: False
|
445 |
-
- `length_column_name`: length
|
446 |
-
- `ddp_find_unused_parameters`: None
|
447 |
-
- `ddp_bucket_cap_mb`: None
|
448 |
-
- `ddp_broadcast_buffers`: False
|
449 |
-
- `dataloader_pin_memory`: True
|
450 |
-
- `dataloader_persistent_workers`: False
|
451 |
-
- `skip_memory_metrics`: True
|
452 |
-
- `use_legacy_prediction_loop`: False
|
453 |
-
- `push_to_hub`: False
|
454 |
-
- `resume_from_checkpoint`: None
|
455 |
-
- `hub_model_id`: None
|
456 |
-
- `hub_strategy`: every_save
|
457 |
-
- `hub_private_repo`: False
|
458 |
-
- `hub_always_push`: False
|
459 |
-
- `gradient_checkpointing`: False
|
460 |
-
- `gradient_checkpointing_kwargs`: None
|
461 |
-
- `include_inputs_for_metrics`: False
|
462 |
-
- `eval_do_concat_batches`: True
|
463 |
-
- `fp16_backend`: auto
|
464 |
-
- `push_to_hub_model_id`: None
|
465 |
-
- `push_to_hub_organization`: None
|
466 |
-
- `mp_parameters`:
|
467 |
-
- `auto_find_batch_size`: False
|
468 |
-
- `full_determinism`: False
|
469 |
-
- `torchdynamo`: None
|
470 |
-
- `ray_scope`: last
|
471 |
-
- `ddp_timeout`: 1800
|
472 |
-
- `torch_compile`: False
|
473 |
-
- `torch_compile_backend`: None
|
474 |
-
- `torch_compile_mode`: None
|
475 |
-
- `dispatch_batches`: None
|
476 |
-
- `split_batches`: None
|
477 |
-
- `include_tokens_per_second`: False
|
478 |
-
- `include_num_input_tokens_seen`: False
|
479 |
-
- `neftune_noise_alpha`: None
|
480 |
-
- `optim_target_modules`: None
|
481 |
-
- `batch_eval_metrics`: False
|
482 |
-
- `eval_on_start`: False
|
483 |
-
- `batch_sampler`: batch_sampler
|
484 |
-
- `multi_dataset_batch_sampler`: round_robin
|
485 |
-
|
486 |
-
</details>
|
487 |
-
|
488 |
-
### Training Logs
|
489 |
-
| Epoch | Step | Training Loss | sts loss | all-nli loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
490 |
-
|:------:|:----:|:-------------:|:--------:|:------------:|:-----------------------:|:------------------------:|
|
491 |
-
| 0.1389 | 100 | 0.5684 | 0.0279 | 1.0702 | 0.8484 | - |
|
492 |
-
| 0.2778 | 200 | 0.5085 | 0.0289 | 0.9511 | 0.8446 | - |
|
493 |
-
| 0.4167 | 300 | 0.4974 | 0.0283 | 0.9229 | 0.8430 | - |
|
494 |
-
| 0.5556 | 400 | 0.4672 | 0.0293 | 0.9221 | 0.8378 | - |
|
495 |
-
| 0.6944 | 500 | 0.4889 | 0.0300 | 0.8995 | 0.8360 | - |
|
496 |
-
| 0.8333 | 600 | 0.4711 | 0.0303 | 0.8683 | 0.8330 | - |
|
497 |
-
| 0.9722 | 700 | 0.4497 | 0.0291 | 0.8657 | 0.8410 | - |
|
498 |
-
| 1.0 | 720 | - | - | - | - | 0.8173 |
|
499 |
-
|
500 |
-
|
501 |
-
### Framework Versions
|
502 |
-
- Python: 3.9.18
|
503 |
-
- Sentence Transformers: 3.0.1
|
504 |
-
- Transformers: 4.42.4
|
505 |
-
- PyTorch: 2.2.2+cu121
|
506 |
-
- Accelerate: 0.26.1
|
507 |
-
- Datasets: 2.19.0
|
508 |
-
- Tokenizers: 0.19.1
|
509 |
|
510 |
## Citation
|
511 |
|
@@ -524,20 +245,3 @@ You can finetune this model on your own dataset.
|
|
524 |
}
|
525 |
```
|
526 |
|
527 |
-
<!--
|
528 |
-
## Glossary
|
529 |
-
|
530 |
-
*Clearly define terms in order to be accessible across audiences.*
|
531 |
-
-->
|
532 |
-
|
533 |
-
<!--
|
534 |
-
## Model Card Authors
|
535 |
-
|
536 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
537 |
-
-->
|
538 |
-
|
539 |
-
<!--
|
540 |
-
## Model Card Contact
|
541 |
-
|
542 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
543 |
-
-->
|
|
|
2 |
base_model: Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
|
3 |
datasets:
|
4 |
- Omartificial-Intelligence-Space/Arabic-stsb
|
5 |
+
- Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class
|
6 |
language:
|
7 |
- ar
|
8 |
library_name: sentence-transformers
|
|
|
17 |
- spearman_dot
|
18 |
- pearson_max
|
19 |
- spearman_max
|
20 |
+
- mteb
|
21 |
pipeline_tag: sentence-similarity
|
22 |
tags:
|
23 |
- sentence-transformers
|
|
|
27 |
- dataset_size:947818
|
28 |
- loss:SoftmaxLoss
|
29 |
- loss:CosineSimilarityLoss
|
30 |
+
- transformers
|
31 |
widget:
|
32 |
- source_sentence: امرأة تكتب شيئاً
|
33 |
sentences:
|
|
|
39 |
- لاعب كرة السلة على وشك تسجيل نقاط لفريقه.
|
40 |
- المقال التالي مأخوذ من نسختي من "أطلس البطريق الجديد للتاريخ الوسطى"
|
41 |
- قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
|
42 |
+
- source_sentence: >-
|
43 |
+
تحت السماء الزرقاء مع الغيوم البيضاء، يصل طفل لمس مروحة طائرة واقفة على حقل
|
44 |
+
من العشب.
|
45 |
sentences:
|
46 |
- امرأة تحمل كأساً
|
47 |
- طفل يحاول لمس مروحة طائرة
|
48 |
- اثنان من عازبين عن الشرب يستعدون للعشاء
|
49 |
+
- source_sentence: رجل في منتصف العمر يحلق لحيته في غرفة ذات جدران بيضاء والتي لا تبدو كحمام
|
|
|
50 |
sentences:
|
51 |
- فتى يخطط اسمه على مكتبه
|
52 |
- رجل ينام
|
|
|
57 |
- المرأة تنظر من النافذة.
|
58 |
- لقد مات الكلب
|
59 |
model-index:
|
60 |
+
- name: >-
|
61 |
+
SentenceTransformer based on
|
62 |
+
Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
|
63 |
results:
|
64 |
- task:
|
65 |
type: semantic-similarity
|
|
|
135 |
- type: spearman_max
|
136 |
value: 0.8172511596569861
|
137 |
name: Spearman Max
|
138 |
+
license: apache-2.0
|
139 |
---
|
140 |
|
141 |
+
# GATE-AraBert-v1
|
142 |
|
143 |
+
This is a General Arabic Text Embedding trained using SentenceTransformers in a multi-task setup. The system trains on the AllNLI and on the STS dataset.
|
144 |
|
145 |
## Model Details
|
146 |
|
|
|
151 |
- **Output Dimensionality:** 768 tokens
|
152 |
- **Similarity Function:** Cosine Similarity
|
153 |
- **Training Datasets:**
|
154 |
+
- [all-nli](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class)
|
155 |
- [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
|
156 |
- **Language:** ar
|
|
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
## Usage
|
160 |
|
|
|
171 |
from sentence_transformers import SentenceTransformer
|
172 |
|
173 |
# Download from the 🤗 Hub
|
174 |
+
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v1")
|
175 |
# Run inference
|
176 |
sentences = [
|
177 |
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
|
|
|
188 |
# [3, 3]
|
189 |
```
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
## Evaluation
|
193 |
|
|
|
227 |
| pearson_max | 0.813 |
|
228 |
| spearman_max | 0.8173 |
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
## Citation
|
232 |
|
|
|
245 |
}
|
246 |
```
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|