Omartificial-Intelligence-Space
commited on
Commit
•
1b8ec0a
1
Parent(s):
9c4d80d
update readme.md
Browse files
README.md
CHANGED
@@ -3,6 +3,7 @@ language:
|
|
3 |
- ar
|
4 |
library_name: sentence-transformers
|
5 |
tags:
|
|
|
6 |
- sentence-transformers
|
7 |
- sentence-similarity
|
8 |
- feature-extraction
|
@@ -54,6 +55,261 @@ widget:
|
|
54 |
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
|
55 |
pipeline_tag: sentence-similarity
|
56 |
model-index:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
- name: >-
|
58 |
SentenceTransformer based on
|
59 |
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
|
|
3 |
- ar
|
4 |
library_name: sentence-transformers
|
5 |
tags:
|
6 |
+
- mteb
|
7 |
- sentence-transformers
|
8 |
- sentence-similarity
|
9 |
- feature-extraction
|
|
|
55 |
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة
|
56 |
pipeline_tag: sentence-similarity
|
57 |
model-index:
|
58 |
+
- name: Omartificial-Intelligence-Space/MiniLM-L12-v2-all-nli-triplet
|
59 |
+
results:
|
60 |
+
- dataset:
|
61 |
+
config: default
|
62 |
+
name: MTEB BIOSSES (default)
|
63 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
64 |
+
split: test
|
65 |
+
type: mteb/biosses-sts
|
66 |
+
metrics:
|
67 |
+
- type: cosine_pearson
|
68 |
+
value: 0.7250818409521711
|
69 |
+
- type: cosine_spearman
|
70 |
+
value: 0.6941362982941537
|
71 |
+
- type: euclidean_pearson
|
72 |
+
value: 0.6745121488533713
|
73 |
+
- type: euclidean_spearman
|
74 |
+
value: 0.6715273493989758
|
75 |
+
- type: main_score
|
76 |
+
value: 0.6941362982941537
|
77 |
+
- type: manhattan_pearson
|
78 |
+
value: 0.6761190163962777
|
79 |
+
- type: manhattan_spearman
|
80 |
+
value: 0.6751659865246586
|
81 |
+
task:
|
82 |
+
type: STS
|
83 |
+
- dataset:
|
84 |
+
config: default
|
85 |
+
name: MTEB SICK-R (default)
|
86 |
+
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
|
87 |
+
split: test
|
88 |
+
type: mteb/sickr-sts
|
89 |
+
metrics:
|
90 |
+
- type: cosine_pearson
|
91 |
+
value: 0.8361591257325394
|
92 |
+
- type: cosine_spearman
|
93 |
+
value: 0.7961916609254315
|
94 |
+
- type: euclidean_pearson
|
95 |
+
value: 0.8132044879728667
|
96 |
+
- type: euclidean_spearman
|
97 |
+
value: 0.7904866337741477
|
98 |
+
- type: main_score
|
99 |
+
value: 0.7961916609254315
|
100 |
+
- type: manhattan_pearson
|
101 |
+
value: 0.8109220507649304
|
102 |
+
- type: manhattan_spearman
|
103 |
+
value: 0.788759072870693
|
104 |
+
task:
|
105 |
+
type: STS
|
106 |
+
- dataset:
|
107 |
+
config: default
|
108 |
+
name: MTEB STS12 (default)
|
109 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
110 |
+
split: test
|
111 |
+
type: mteb/sts12-sts
|
112 |
+
metrics:
|
113 |
+
- type: cosine_pearson
|
114 |
+
value: 0.8459807799938677
|
115 |
+
- type: cosine_spearman
|
116 |
+
value: 0.7738693998841099
|
117 |
+
- type: euclidean_pearson
|
118 |
+
value: 0.8392034843846014
|
119 |
+
- type: euclidean_spearman
|
120 |
+
value: 0.7675885845111178
|
121 |
+
- type: main_score
|
122 |
+
value: 0.7738693998841099
|
123 |
+
- type: manhattan_pearson
|
124 |
+
value: 0.839719185297225
|
125 |
+
- type: manhattan_spearman
|
126 |
+
value: 0.7689817666168436
|
127 |
+
task:
|
128 |
+
type: STS
|
129 |
+
- dataset:
|
130 |
+
config: default
|
131 |
+
name: MTEB STS13 (default)
|
132 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
133 |
+
split: test
|
134 |
+
type: mteb/sts13-sts
|
135 |
+
metrics:
|
136 |
+
- type: cosine_pearson
|
137 |
+
value: 0.7818664261660525
|
138 |
+
- type: cosine_spearman
|
139 |
+
value: 0.7958983823792369
|
140 |
+
- type: euclidean_pearson
|
141 |
+
value: 0.7925259705344635
|
142 |
+
- type: euclidean_spearman
|
143 |
+
value: 0.8017005740384345
|
144 |
+
- type: main_score
|
145 |
+
value: 0.7958983823792369
|
146 |
+
- type: manhattan_pearson
|
147 |
+
value: 0.7912601460543303
|
148 |
+
- type: manhattan_spearman
|
149 |
+
value: 0.7998999436073664
|
150 |
+
task:
|
151 |
+
type: STS
|
152 |
+
- dataset:
|
153 |
+
config: default
|
154 |
+
name: MTEB STS14 (default)
|
155 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
156 |
+
split: test
|
157 |
+
type: mteb/sts14-sts
|
158 |
+
metrics:
|
159 |
+
- type: cosine_pearson
|
160 |
+
value: 0.8097541864884892
|
161 |
+
- type: cosine_spearman
|
162 |
+
value: 0.7978614318208406
|
163 |
+
- type: euclidean_pearson
|
164 |
+
value: 0.8101514510666364
|
165 |
+
- type: euclidean_spearman
|
166 |
+
value: 0.8073664902232889
|
167 |
+
- type: main_score
|
168 |
+
value: 0.7978614318208406
|
169 |
+
- type: manhattan_pearson
|
170 |
+
value: 0.8087465598516294
|
171 |
+
- type: manhattan_spearman
|
172 |
+
value: 0.8067025764710201
|
173 |
+
task:
|
174 |
+
type: STS
|
175 |
+
- dataset:
|
176 |
+
config: default
|
177 |
+
name: MTEB STS15 (default)
|
178 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
179 |
+
split: test
|
180 |
+
type: mteb/sts15-sts
|
181 |
+
metrics:
|
182 |
+
- type: cosine_pearson
|
183 |
+
value: 0.8523661146717714
|
184 |
+
- type: cosine_spearman
|
185 |
+
value: 0.8621134676636548
|
186 |
+
- type: euclidean_pearson
|
187 |
+
value: 0.8582518696321332
|
188 |
+
- type: euclidean_spearman
|
189 |
+
value: 0.8643600579765282
|
190 |
+
- type: main_score
|
191 |
+
value: 0.8621134676636548
|
192 |
+
- type: manhattan_pearson
|
193 |
+
value: 0.8583101157321226
|
194 |
+
- type: manhattan_spearman
|
195 |
+
value: 0.8642228913708263
|
196 |
+
task:
|
197 |
+
type: STS
|
198 |
+
- dataset:
|
199 |
+
config: default
|
200 |
+
name: MTEB STS16 (default)
|
201 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
202 |
+
split: test
|
203 |
+
type: mteb/sts16-sts
|
204 |
+
metrics:
|
205 |
+
- type: cosine_pearson
|
206 |
+
value: 0.7920106671969702
|
207 |
+
- type: cosine_spearman
|
208 |
+
value: 0.8139570893867826
|
209 |
+
- type: euclidean_pearson
|
210 |
+
value: 0.8039578867280891
|
211 |
+
- type: euclidean_spearman
|
212 |
+
value: 0.8119950443340411
|
213 |
+
- type: main_score
|
214 |
+
value: 0.8139570893867826
|
215 |
+
- type: manhattan_pearson
|
216 |
+
value: 0.8022266789441443
|
217 |
+
- type: manhattan_spearman
|
218 |
+
value: 0.8099142422593824
|
219 |
+
task:
|
220 |
+
type: STS
|
221 |
+
- dataset:
|
222 |
+
config: ar-ar
|
223 |
+
name: MTEB STS17 (ar-ar)
|
224 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
225 |
+
split: test
|
226 |
+
type: mteb/sts17-crosslingual-sts
|
227 |
+
metrics:
|
228 |
+
- type: cosine_pearson
|
229 |
+
value: 0.810529486499453
|
230 |
+
- type: cosine_spearman
|
231 |
+
value: 0.8110570655134113
|
232 |
+
- type: euclidean_pearson
|
233 |
+
value: 0.7922292797849199
|
234 |
+
- type: euclidean_spearman
|
235 |
+
value: 0.7884204232638424
|
236 |
+
- type: main_score
|
237 |
+
value: 0.8110570655134113
|
238 |
+
- type: manhattan_pearson
|
239 |
+
value: 0.794375048304064
|
240 |
+
- type: manhattan_spearman
|
241 |
+
value: 0.7933713593557482
|
242 |
+
task:
|
243 |
+
type: STS
|
244 |
+
- dataset:
|
245 |
+
config: ar
|
246 |
+
name: MTEB STS22 (ar)
|
247 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
248 |
+
split: test
|
249 |
+
type: mteb/sts22-crosslingual-sts
|
250 |
+
metrics:
|
251 |
+
- type: cosine_pearson
|
252 |
+
value: 0.4596875498680092
|
253 |
+
- type: cosine_spearman
|
254 |
+
value: 0.5240550911714991
|
255 |
+
- type: euclidean_pearson
|
256 |
+
value: 0.4209745089672823
|
257 |
+
- type: euclidean_spearman
|
258 |
+
value: 0.5089022884113708
|
259 |
+
- type: main_score
|
260 |
+
value: 0.5240550911714991
|
261 |
+
- type: manhattan_pearson
|
262 |
+
value: 0.42228277270755343
|
263 |
+
- type: manhattan_spearman
|
264 |
+
value: 0.5091284105544264
|
265 |
+
task:
|
266 |
+
type: STS
|
267 |
+
- dataset:
|
268 |
+
config: default
|
269 |
+
name: MTEB STSBenchmark (default)
|
270 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
271 |
+
split: test
|
272 |
+
type: mteb/stsbenchmark-sts
|
273 |
+
metrics:
|
274 |
+
- type: cosine_pearson
|
275 |
+
value: 0.8313261561415963
|
276 |
+
- type: cosine_spearman
|
277 |
+
value: 0.8434925272214979
|
278 |
+
- type: euclidean_pearson
|
279 |
+
value: 0.8269160336719744
|
280 |
+
- type: euclidean_spearman
|
281 |
+
value: 0.830499566200785
|
282 |
+
- type: main_score
|
283 |
+
value: 0.8434925272214979
|
284 |
+
- type: manhattan_pearson
|
285 |
+
value: 0.8268307451129593
|
286 |
+
- type: manhattan_spearman
|
287 |
+
value: 0.8301315217242468
|
288 |
+
task:
|
289 |
+
type: STS
|
290 |
+
- dataset:
|
291 |
+
config: default
|
292 |
+
name: MTEB SummEval (default)
|
293 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
294 |
+
split: test
|
295 |
+
type: mteb/summeval
|
296 |
+
metrics:
|
297 |
+
- type: cosine_pearson
|
298 |
+
value: 0.3114922991233836
|
299 |
+
- type: cosine_spearman
|
300 |
+
value: 0.30685504130606256
|
301 |
+
- type: dot_pearson
|
302 |
+
value: 0.27466309476290485
|
303 |
+
- type: dot_spearman
|
304 |
+
value: 0.2893064261485915
|
305 |
+
- type: main_score
|
306 |
+
value: 0.30685504130606256
|
307 |
+
- type: pearson
|
308 |
+
value: 0.31149233329283954
|
309 |
+
- type: spearman
|
310 |
+
value: 0.30685504130606256
|
311 |
+
task:
|
312 |
+
type: Summarization
|
313 |
- name: >-
|
314 |
SentenceTransformer based on
|
315 |
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|