Omartificial-Intelligence-Space commited on
Commit
49ebcbb
1 Parent(s): 7603529

update readme.md

Browse files
Files changed (1) hide show
  1. README.md +30 -1
README.md CHANGED
@@ -21,13 +21,18 @@ tags:
21
 
22
  ✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance.
23
 
 
 
 
 
 
24
 
25
 
26
  ## Usage
27
  ### Using sentence-transformers
28
 
29
  ```
30
- pip installsentence-transformers
31
  ```
32
  ```python
33
  from sentence_transformers import CrossEncoder
@@ -62,7 +67,31 @@ for i, (candidate, score) in enumerate(ranked_candidates, 1):
62
  print(f"Score: {score}\n")
63
  ```
64
  ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
 
 
 
 
 
 
66
 
67
 
68
 
 
21
 
22
  ✨ The output score can be transformed into a [0, 1] range using a sigmoid function, providing a clear and interpretable measure of relevance.
23
 
24
+ ## Arabic RAG Pipeline
25
+
26
+
27
+ ![Arabic RAG Pipeline](https://i.ibb.co/z4Fc3Kd/Screenshot-2024-11-28-at-10-17-39-AM.png)
28
+
29
 
30
 
31
  ## Usage
32
  ### Using sentence-transformers
33
 
34
  ```
35
+ pip install sentence-transformers
36
  ```
37
  ```python
38
  from sentence_transformers import CrossEncoder
 
67
  print(f"Score: {score}\n")
68
  ```
69
  ## Evaluation
70
+ ### Dataset
71
+
72
+ Size: 3000 samples.
73
+
74
+ ### Structure:
75
+ 🔸 Query: A string representing the user's question.
76
+
77
+ 🔸 Candidate Document: A candidate passage to answer the query.
78
+
79
+ 🔸 Relevance Label: Binary label (1 for relevant, 0 for irrelevant).
80
+
81
+ ### Evaluation Process
82
+
83
+ 🔸 Query Grouping: Queries are grouped to evaluate the model's ability to rank candidate documents correctly for each query.
84
+
85
+ 🔸 Model Prediction: Each model predicts relevance scores for all candidate documents corresponding to a query.
86
+
87
+ 🔸 Metrics Calculation: Metrics are computed to measure how well the model ranks relevant documents higher than irrelevant ones.
88
 
89
+ | Model | MRR | MAP | nDCG@10 |
90
+ |-------------------------------------------|------------------|------------------|------------------|
91
+ | cross-encoder/ms-marco-MiniLM-L-6-v2 | 0.6313333333333334 | 0.6313333333333334 | 0.725444959171438 |
92
+ | cross-encoder/ms-marco-MiniLM-L-12-v2 | 0.6643333333333332 | 0.6643333333333332 | 0.7500407855785803 |
93
+ | BAAI/bge-reranker-v2-m3 | 0.9023333333333332 | 0.9023333333333332 | 0.9274971489500038 |
94
+ | Omartificial-Intelligence-Space/ARA-Reranker-V1 | 0.9335 | 0.9335 | 0.9507001860964314 |
95
 
96
 
97