Omaratef3221
commited on
Commit
•
b396537
1
Parent(s):
fbb0afe
Upload folder using huggingface_hub
Browse files- CustomRBFQwen.py +28 -0
- RBFLayer.py +101 -0
- added_tokens.json +5 -0
- config.json +28 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
- vocab.json +0 -0
CustomRBFQwen.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
from RBFLayer import RBFLayer
|
5 |
+
|
6 |
+
def l_norm(x, p=2):
|
7 |
+
return torch.norm(x, p=p, dim=-1)
|
8 |
+
|
9 |
+
|
10 |
+
# Gaussian RBF
|
11 |
+
def rbf_gaussian(x):
|
12 |
+
return (-x.pow(2)).exp()
|
13 |
+
|
14 |
+
class CustomRBFFeedForward(nn.Module):
|
15 |
+
def __init__(self, in_features, out_features, num_kernels):
|
16 |
+
super(CustomRBFFeedForward, self).__init__()
|
17 |
+
# RBFLayer from the given implementation
|
18 |
+
self.rbf_layer = RBFLayer(
|
19 |
+
in_features_dim=in_features, # Input size (e.g., 896)
|
20 |
+
num_kernels=num_kernels, # Number of kernels in the RBF layer (can be tuned)
|
21 |
+
out_features_dim=out_features, # Output size (e.g., 4864)
|
22 |
+
radial_function=rbf_gaussian, # Use the Gaussian RBF
|
23 |
+
norm_function=l_norm # Use Euclidean norm
|
24 |
+
)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
# Apply the RBF layer to the input x
|
28 |
+
return self.rbf_layer(x)
|
RBFLayer.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from typing import Callable
|
4 |
+
|
5 |
+
|
6 |
+
class RBFLayer(nn.Module):
|
7 |
+
def __init__(self,
|
8 |
+
in_features_dim: int,
|
9 |
+
num_kernels: int,
|
10 |
+
out_features_dim: int,
|
11 |
+
radial_function: Callable[[torch.Tensor], torch.Tensor],
|
12 |
+
norm_function: Callable[[torch.Tensor], torch.Tensor],
|
13 |
+
normalization: bool = True,
|
14 |
+
initial_shape_parameter: torch.Tensor = None,
|
15 |
+
initial_centers_parameter: torch.Tensor = None,
|
16 |
+
initial_weights_parameters: torch.Tensor = None,
|
17 |
+
constant_shape_parameter: bool = False,
|
18 |
+
constant_centers_parameter: bool = False,
|
19 |
+
constant_weights_parameters: bool = False):
|
20 |
+
super(RBFLayer, self).__init__()
|
21 |
+
|
22 |
+
self.in_features_dim = in_features_dim
|
23 |
+
self.num_kernels = num_kernels
|
24 |
+
self.out_features_dim = out_features_dim
|
25 |
+
self.radial_function = radial_function
|
26 |
+
self.norm_function = norm_function
|
27 |
+
self.normalization = normalization
|
28 |
+
|
29 |
+
self.initial_shape_parameter = initial_shape_parameter
|
30 |
+
self.constant_shape_parameter = constant_shape_parameter
|
31 |
+
|
32 |
+
self.initial_centers_parameter = initial_centers_parameter
|
33 |
+
self.constant_centers_parameter = constant_centers_parameter
|
34 |
+
|
35 |
+
self.initial_weights_parameters = initial_weights_parameters
|
36 |
+
self.constant_weights_parameters = constant_weights_parameters
|
37 |
+
|
38 |
+
self._make_parameters()
|
39 |
+
|
40 |
+
def _make_parameters(self) -> None:
|
41 |
+
# Initialize linear combination weights
|
42 |
+
if self.constant_weights_parameters:
|
43 |
+
self.weights = nn.Parameter(self.initial_weights_parameters, requires_grad=False)
|
44 |
+
else:
|
45 |
+
self.weights = nn.Parameter(torch.zeros(self.out_features_dim, self.num_kernels, dtype=torch.float32))
|
46 |
+
|
47 |
+
# Initialize kernels' centers
|
48 |
+
if self.constant_centers_parameter:
|
49 |
+
self.kernels_centers = nn.Parameter(self.initial_centers_parameter, requires_grad=False)
|
50 |
+
else:
|
51 |
+
self.kernels_centers = nn.Parameter(torch.zeros(self.num_kernels, self.in_features_dim, dtype=torch.float32))
|
52 |
+
|
53 |
+
# Initialize shape parameter
|
54 |
+
if self.constant_shape_parameter:
|
55 |
+
self.log_shapes = nn.Parameter(self.initial_shape_parameter, requires_grad=False)
|
56 |
+
else:
|
57 |
+
self.log_shapes = nn.Parameter(torch.zeros(self.num_kernels, dtype=torch.float32))
|
58 |
+
|
59 |
+
self.reset()
|
60 |
+
|
61 |
+
def reset(self, upper_bound_kernels: float = 1.0, std_shapes: float = 0.1, gain_weights: float = 1.0) -> None:
|
62 |
+
if self.initial_centers_parameter is None:
|
63 |
+
nn.init.uniform_(self.kernels_centers, a=-upper_bound_kernels, b=upper_bound_kernels)
|
64 |
+
|
65 |
+
if self.initial_shape_parameter is None:
|
66 |
+
nn.init.normal_(self.log_shapes, mean=0.0, std=std_shapes)
|
67 |
+
|
68 |
+
if self.initial_weights_parameters is None:
|
69 |
+
nn.init.xavier_uniform_(self.weights, gain=gain_weights)
|
70 |
+
|
71 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
72 |
+
"""
|
73 |
+
Computes the output of the RBF layer given an input tensor.
|
74 |
+
Input has size [batch_size, sequence_length, in_features].
|
75 |
+
"""
|
76 |
+
|
77 |
+
batch_size = input.size(0)
|
78 |
+
sequence_length = input.size(1)
|
79 |
+
|
80 |
+
# Expand centers to match the batch and sequence length
|
81 |
+
c = self.kernels_centers.expand(batch_size, sequence_length, self.num_kernels, self.in_features_dim)
|
82 |
+
|
83 |
+
# Compute differences between input and centers
|
84 |
+
diff = input.unsqueeze(2) - c # Shape: [batch_size, sequence_length, num_kernels, in_features_dim]
|
85 |
+
|
86 |
+
# Apply norm function to get distances
|
87 |
+
r = self.norm_function(diff) # Shape: [batch_size, sequence_length, num_kernels]
|
88 |
+
|
89 |
+
# Apply shape parameters (log_shapes) to the distances
|
90 |
+
eps_r = self.log_shapes.exp().unsqueeze(0).unsqueeze(0) * r
|
91 |
+
|
92 |
+
# Apply radial basis function (e.g., Gaussian)
|
93 |
+
rbfs = self.radial_function(eps_r)
|
94 |
+
|
95 |
+
if self.normalization:
|
96 |
+
rbfs = rbfs / (1e-9 + rbfs.sum(dim=-1, keepdim=True))
|
97 |
+
|
98 |
+
# Combine RBF outputs using the weights
|
99 |
+
out = (self.weights.unsqueeze(0).unsqueeze(0) * rbfs.unsqueeze(2)).sum(dim=-1)
|
100 |
+
|
101 |
+
return out
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 896,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4864,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 24,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 14,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.1",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.41.1"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:460b1ce33a4a54d698e65d82f5bc3a4def3941de5b5775b0f96182a54ae2a359
|
3 |
+
size 729331576
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|im_end|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|