OlgaVityuk commited on
Commit
b34196e
1 Parent(s): b17bc7c

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.17 +/- 0.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71f3162bb3a403c4eb44e9b45aac403bc7af1933705d174a45d8213c14a8e07d
3
+ size 107991
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f759c2b9a60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f759c2ba5c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1680940934442247329,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiCDjPk4OBD1WNxM/iCDjPk4OBD1WNxM/iCDjPk4OBD1WNxM/iCDjPk4OBD1WNxM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKXEbv62eoL94A14/gYrcP6lGqr295Io/tpnVPonhTT7DFou+QN5cP3dCvD+S67O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.44360757 0.0322402 0.5750631 ]\n [0.44360757 0.0322402 0.5750631 ]\n [0.44360757 0.0322402 0.5750631 ]\n [0.44360757 0.0322402 0.5750631 ]]",
60
+ "desired_goal": "[[-0.60719544 -1.2548424 0.8672404 ]\n [ 1.7229768 -0.08314259 1.0851055 ]\n [ 0.41718835 0.20105566 -0.27165803]\n [ 0.86276627 1.4707783 -1.4056265 ]]",
61
+ "observation": "[[0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]\n [0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]\n [0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]\n [0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJpC8PAdRFb1PTM49qBLpve5XxL12by0+t/rRPW7iez1lwEQ+nR4UPaBPFD5e4Cs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02301795 -0.03645423 0.10073148]\n [-0.11380512 -0.09587084 0.1693705 ]\n [ 0.10252898 0.06149524 0.19214018]\n [ 0.03616201 0.144835 0.16784808]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItI6qJoi6DcCUhpRSlIwBbJRLMowBdJRHQKdmGdS2php1fZQoaAZoCWgPQwi0d0ZblUT+v5SGlFKUaBVLMmgWR0CnZeBQ3xWldX2UKGgGaAloD0MI6Qq2EU9287+UhpRSlGgVSzJoFkdAp2Whwl0HQnV9lChoBmgJaA9DCE88ZwsIjRHAlIaUUpRoFUsyaBZHQKdlZm+0w8J1fZQoaAZoCWgPQwgeNLvuregDwJSGlFKUaBVLMmgWR0CnZzknLJS0dX2UKGgGaAloD0MIl5APejYrAMCUhpRSlGgVSzJoFkdAp2b/g75mAnV9lChoBmgJaA9DCH4YITzaGArAlIaUUpRoFUsyaBZHQKdmwO1fE4x1fZQoaAZoCWgPQwh32ERmLvD7v5SGlFKUaBVLMmgWR0CnZoVM23rldX2UKGgGaAloD0MIbAVNS6xM/L+UhpRSlGgVSzJoFkdAp2iVU2kzoHV9lChoBmgJaA9DCOTziqceyQjAlIaUUpRoFUsyaBZHQKdoXK9wm3R1fZQoaAZoCWgPQwgYIqev52v7v5SGlFKUaBVLMmgWR0CnaB7Qb+98dX2UKGgGaAloD0MITkF+NnIdA8CUhpRSlGgVSzJoFkdAp2fkURFqjHV9lChoBmgJaA9DCGKiQQqeIgDAlIaUUpRoFUsyaBZHQKdqjCY1He91fZQoaAZoCWgPQwgAcy1agHbxv5SGlFKUaBVLMmgWR0CnalR6Ww/xdX2UKGgGaAloD0MIZ0P+mUE8/7+UhpRSlGgVSzJoFkdAp2oW0b961XV9lChoBmgJaA9DCGH9n8N8ef+/lIaUUpRoFUsyaBZHQKdp26Zpi7V1fZQoaAZoCWgPQwiaet0iMBYCwJSGlFKUaBVLMmgWR0CnbFZuhsZYdX2UKGgGaAloD0MIvyhBf6EH87+UhpRSlGgVSzJoFkdAp2wdsDW9UXV9lChoBmgJaA9DCPcgBORLaAfAlIaUUpRoFUsyaBZHQKdr4A6uGK11fZQoaAZoCWgPQwj8471qZUL/v5SGlFKUaBVLMmgWR0Cna6T6rNnodX2UKGgGaAloD0MIyD8ziA9sBsCUhpRSlGgVSzJoFkdAp25I6CDmKnV9lChoBmgJaA9DCL5PVaGBOAjAlIaUUpRoFUsyaBZHQKduEEQoTf11fZQoaAZoCWgPQwiifhe2ZosGwJSGlFKUaBVLMmgWR0CnbdMR6F/QdX2UKGgGaAloD0MIlUkNbQBWAcCUhpRSlGgVSzJoFkdAp22YQxveg3V9lChoBmgJaA9DCPePhegQePm/lIaUUpRoFUsyaBZHQKdwakiUxEh1fZQoaAZoCWgPQwhma32R0HYMwJSGlFKUaBVLMmgWR0CncDGgJ1JUdX2UKGgGaAloD0MITS1b64sEAMCUhpRSlGgVSzJoFkdAp2/0DwH7g3V9lChoBmgJaA9DCKUtrvGZbOW/lIaUUpRoFUsyaBZHQKdvuS8rZrZ1fZQoaAZoCWgPQwjyXrUy4df3v5SGlFKUaBVLMmgWR0CnckhttQ9BdX2UKGgGaAloD0MIWAOUhhoFBcCUhpRSlGgVSzJoFkdAp3IPl2eQMnV9lChoBmgJaA9DCIVbPpKS/gXAlIaUUpRoFUsyaBZHQKdx0Pkq+al1fZQoaAZoCWgPQwgg7X+AtYoCwJSGlFKUaBVLMmgWR0CncZVnuiN9dX2UKGgGaAloD0MIumddo+WAAsCUhpRSlGgVSzJoFkdAp3NhWNm16XV9lChoBmgJaA9DCDboS29/TgPAlIaUUpRoFUsyaBZHQKdzJ6dDpkh1fZQoaAZoCWgPQwiuLTwvFRv7v5SGlFKUaBVLMmgWR0Cncuj+rELqdX2UKGgGaAloD0MIbamDvB5MD8CUhpRSlGgVSzJoFkdAp3KtTR6WxHV9lChoBmgJaA9DCFK69C9JRQDAlIaUUpRoFUsyaBZHQKd0d7wazeJ1fZQoaAZoCWgPQwh/h6JAn0gJwJSGlFKUaBVLMmgWR0CndD4I0IkadX2UKGgGaAloD0MIFEIHXcIBAsCUhpRSlGgVSzJoFkdAp3P/ai9Iw3V9lChoBmgJaA9DCBkEVg4tUgLAlIaUUpRoFUsyaBZHQKdzw8SPEKp1fZQoaAZoCWgPQwg1QGmoUYj9v5SGlFKUaBVLMmgWR0Cnda4uscQzdX2UKGgGaAloD0MIzT6PUZ758r+UhpRSlGgVSzJoFkdAp3V0l9jPOnV9lChoBmgJaA9DCFeyYyMQzwHAlIaUUpRoFUsyaBZHQKd1Nfk3juN1fZQoaAZoCWgPQwhgAyLElfPzv5SGlFKUaBVLMmgWR0CndPsHB1s+dX2UKGgGaAloD0MINSiaB7BI+L+UhpRSlGgVSzJoFkdAp3bKyjYZmHV9lChoBmgJaA9DCIEIceXsHQjAlIaUUpRoFUsyaBZHQKd2kSvC/Gl1fZQoaAZoCWgPQwjBq+XOTJAAwJSGlFKUaBVLMmgWR0CndlJ3X7LudX2UKGgGaAloD0MIey3ovTFEBsCUhpRSlGgVSzJoFkdAp3YWvhZQpHV9lChoBmgJaA9DCKSJd4AnbQ3AlIaUUpRoFUsyaBZHQKd34pbUwzt1fZQoaAZoCWgPQwg+l6lJ8Ab/v5SGlFKUaBVLMmgWR0Cnd6j5KvmpdX2UKGgGaAloD0MIeeblsPtuE8CUhpRSlGgVSzJoFkdAp3dqSs8xK3V9lChoBmgJaA9DCOeMKO0N3gDAlIaUUpRoFUsyaBZHQKd3Ln7pFCt1fZQoaAZoCWgPQwj5FWu4yJ0GwJSGlFKUaBVLMmgWR0CneSidz4lAdX2UKGgGaAloD0MIX5fhP92ACcCUhpRSlGgVSzJoFkdAp3jvWe6I33V9lChoBmgJaA9DCF4R/G8lOw7AlIaUUpRoFUsyaBZHQKd4sM1jy4F1fZQoaAZoCWgPQwi0AdiACDH3v5SGlFKUaBVLMmgWR0CneHUrkKeDdX2UKGgGaAloD0MIJLVQMjm1AsCUhpRSlGgVSzJoFkdAp3pSZUkv9XV9lChoBmgJaA9DCLKBdLFpZfy/lIaUUpRoFUsyaBZHQKd6GF/x2B91fZQoaAZoCWgPQwhEh8CRQCMJwJSGlFKUaBVLMmgWR0Cnedm5+YtydX2UKGgGaAloD0MIC9KMRdPZ9r+UhpRSlGgVSzJoFkdAp3meqNp/PXV9lChoBmgJaA9DCNnonJ/iWBPAlIaUUpRoFUsyaBZHQKd7ezVtoBd1fZQoaAZoCWgPQwjCGJEotCwFwJSGlFKUaBVLMmgWR0Cne0FNL128dX2UKGgGaAloD0MIqWkX00z3AcCUhpRSlGgVSzJoFkdAp3sCZtvXLHV9lChoBmgJaA9DCK5+bJIfcfS/lIaUUpRoFUsyaBZHQKd6xttygf51fZQoaAZoCWgPQwixMEROXw/7v5SGlFKUaBVLMmgWR0CnfHkWhysCdX2UKGgGaAloD0MIGk0uxsDaAMCUhpRSlGgVSzJoFkdAp3w/XsgMdHV9lChoBmgJaA9DCEiMnlvoigHAlIaUUpRoFUsyaBZHQKd8AIRAbAF1fZQoaAZoCWgPQwg3NdB8zl35v5SGlFKUaBVLMmgWR0Cne8SyUs4DdX2UKGgGaAloD0MIuKzCZoALA8CUhpRSlGgVSzJoFkdAp3195v99+nV9lChoBmgJaA9DCE/LD1zlyfC/lIaUUpRoFUsyaBZHQKd9RDzAeq91fZQoaAZoCWgPQwhEw2LUtZYAwJSGlFKUaBVLMmgWR0CnfQWXsw+MdX2UKGgGaAloD0MIW2CPiZQGAsCUhpRSlGgVSzJoFkdAp3zJ6hQFcXV9lChoBmgJaA9DCPmFV5I8l/q/lIaUUpRoFUsyaBZHQKd+iPCEYfp1fZQoaAZoCWgPQwhhqS7gZQb4v5SGlFKUaBVLMmgWR0Cnfk9Dx9XtdX2UKGgGaAloD0MIi4hi8gaY6r+UhpRSlGgVSzJoFkdAp34QlUp/gHV9lChoBmgJaA9DCJqTF5mAH/y/lIaUUpRoFUsyaBZHQKd91NfPX051fZQoaAZoCWgPQwj8qIb9nvgNwJSGlFKUaBVLMmgWR0Cnf4T9S/CZdX2UKGgGaAloD0MI+yDLgon//L+UhpRSlGgVSzJoFkdAp39LEpAlfXV9lChoBmgJaA9DCENZ+PpaNwXAlIaUUpRoFUsyaBZHQKd/DFWn0kJ1fZQoaAZoCWgPQwgz/KcbKDD2v5SGlFKUaBVLMmgWR0CnftCGWUr1dX2UKGgGaAloD0MIuyakNQZ9AsCUhpRSlGgVSzJoFkdAp4CHDm8ujHV9lChoBmgJaA9DCKispuuJrve/lIaUUpRoFUsyaBZHQKeATRhMJyB1fZQoaAZoCWgPQwhgAyLElfMEwJSGlFKUaBVLMmgWR0CngA5jx0+1dX2UKGgGaAloD0MIG6A01Cjk/b+UhpRSlGgVSzJoFkdAp3/SncclxHV9lChoBmgJaA9DCE0QdR+AtALAlIaUUpRoFUsyaBZHQKeBfSuyNXJ1fZQoaAZoCWgPQwh0mgXaHRL0v5SGlFKUaBVLMmgWR0CngUN1QqI8dX2UKGgGaAloD0MIW3ufqkJD/7+UhpRSlGgVSzJoFkdAp4EEiSq2jXV9lChoBmgJaA9DCNgsl43OmQTAlIaUUpRoFUsyaBZHQKeAyJ/oaDR1fZQoaAZoCWgPQwhup60RwfgCwJSGlFKUaBVLMmgWR0CngpBg3LmqdX2UKGgGaAloD0MIE3zT9NmBA8CUhpRSlGgVSzJoFkdAp4JYN3GGVXV9lChoBmgJaA9DCBNhw9MrZQPAlIaUUpRoFUsyaBZHQKeCGZCOWB11fZQoaAZoCWgPQwjgZBu4A/UBwJSGlFKUaBVLMmgWR0Cngd4vN/vwdX2UKGgGaAloD0MIaeVeYFboB8CUhpRSlGgVSzJoFkdAp4OU1CPZI3V9lChoBmgJaA9DCBrc1hae1wLAlIaUUpRoFUsyaBZHQKeDWtf5ULl1fZQoaAZoCWgPQwgOv5tu2WH3v5SGlFKUaBVLMmgWR0CngxwSamXPdX2UKGgGaAloD0MIvyfWqfIdAsCUhpRSlGgVSzJoFkdAp4LgJeE7GXV9lChoBmgJaA9DCLCMDd3sTwTAlIaUUpRoFUsyaBZHQKeEjIczZYh1fZQoaAZoCWgPQwh4QURq2mUAwJSGlFKUaBVLMmgWR0CnhFLVnVXndX2UKGgGaAloD0MIyxDHuritCMCUhpRSlGgVSzJoFkdAp4QUSGrS3XV9lChoBmgJaA9DCC2WIvlKIAHAlIaUUpRoFUsyaBZHQKeD2Ldepn91ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bda693a3b23b535d5829b04d604ea0afe2b0bd1afed3ab5c5d1f156c86981d1
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65c9e2b4698b9811c067a89e22b4b8c7e6522e319f929ebd14d7f5ab8d9b6754
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f759c2b9a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f759c2ba5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680940934442247329, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiCDjPk4OBD1WNxM/iCDjPk4OBD1WNxM/iCDjPk4OBD1WNxM/iCDjPk4OBD1WNxM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKXEbv62eoL94A14/gYrcP6lGqr295Io/tpnVPonhTT7DFou+QN5cP3dCvD+S67O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyIIOM+Tg4EPVY3Ez97aSU8JP9WO5lcBzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.44360757 0.0322402 0.5750631 ]\n [0.44360757 0.0322402 0.5750631 ]\n [0.44360757 0.0322402 0.5750631 ]\n [0.44360757 0.0322402 0.5750631 ]]", "desired_goal": "[[-0.60719544 -1.2548424 0.8672404 ]\n [ 1.7229768 -0.08314259 1.0851055 ]\n [ 0.41718835 0.20105566 -0.27165803]\n [ 0.86276627 1.4707783 -1.4056265 ]]", "observation": "[[0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]\n [0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]\n [0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]\n [0.44360757 0.0322402 0.5750631 0.01009595 0.00328059 0.00826182]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJpC8PAdRFb1PTM49qBLpve5XxL12by0+t/rRPW7iez1lwEQ+nR4UPaBPFD5e4Cs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02301795 -0.03645423 0.10073148]\n [-0.11380512 -0.09587084 0.1693705 ]\n [ 0.10252898 0.06149524 0.19214018]\n [ 0.03616201 0.144835 0.16784808]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItI6qJoi6DcCUhpRSlIwBbJRLMowBdJRHQKdmGdS2php1fZQoaAZoCWgPQwi0d0ZblUT+v5SGlFKUaBVLMmgWR0CnZeBQ3xWldX2UKGgGaAloD0MI6Qq2EU9287+UhpRSlGgVSzJoFkdAp2Whwl0HQnV9lChoBmgJaA9DCE88ZwsIjRHAlIaUUpRoFUsyaBZHQKdlZm+0w8J1fZQoaAZoCWgPQwgeNLvuregDwJSGlFKUaBVLMmgWR0CnZzknLJS0dX2UKGgGaAloD0MIl5APejYrAMCUhpRSlGgVSzJoFkdAp2b/g75mAnV9lChoBmgJaA9DCH4YITzaGArAlIaUUpRoFUsyaBZHQKdmwO1fE4x1fZQoaAZoCWgPQwh32ERmLvD7v5SGlFKUaBVLMmgWR0CnZoVM23rldX2UKGgGaAloD0MIbAVNS6xM/L+UhpRSlGgVSzJoFkdAp2iVU2kzoHV9lChoBmgJaA9DCOTziqceyQjAlIaUUpRoFUsyaBZHQKdoXK9wm3R1fZQoaAZoCWgPQwgYIqev52v7v5SGlFKUaBVLMmgWR0CnaB7Qb+98dX2UKGgGaAloD0MITkF+NnIdA8CUhpRSlGgVSzJoFkdAp2fkURFqjHV9lChoBmgJaA9DCGKiQQqeIgDAlIaUUpRoFUsyaBZHQKdqjCY1He91fZQoaAZoCWgPQwgAcy1agHbxv5SGlFKUaBVLMmgWR0CnalR6Ww/xdX2UKGgGaAloD0MIZ0P+mUE8/7+UhpRSlGgVSzJoFkdAp2oW0b961XV9lChoBmgJaA9DCGH9n8N8ef+/lIaUUpRoFUsyaBZHQKdp26Zpi7V1fZQoaAZoCWgPQwiaet0iMBYCwJSGlFKUaBVLMmgWR0CnbFZuhsZYdX2UKGgGaAloD0MIvyhBf6EH87+UhpRSlGgVSzJoFkdAp2wdsDW9UXV9lChoBmgJaA9DCPcgBORLaAfAlIaUUpRoFUsyaBZHQKdr4A6uGK11fZQoaAZoCWgPQwj8471qZUL/v5SGlFKUaBVLMmgWR0Cna6T6rNnodX2UKGgGaAloD0MIyD8ziA9sBsCUhpRSlGgVSzJoFkdAp25I6CDmKnV9lChoBmgJaA9DCL5PVaGBOAjAlIaUUpRoFUsyaBZHQKduEEQoTf11fZQoaAZoCWgPQwiifhe2ZosGwJSGlFKUaBVLMmgWR0CnbdMR6F/QdX2UKGgGaAloD0MIlUkNbQBWAcCUhpRSlGgVSzJoFkdAp22YQxveg3V9lChoBmgJaA9DCPePhegQePm/lIaUUpRoFUsyaBZHQKdwakiUxEh1fZQoaAZoCWgPQwhma32R0HYMwJSGlFKUaBVLMmgWR0CncDGgJ1JUdX2UKGgGaAloD0MITS1b64sEAMCUhpRSlGgVSzJoFkdAp2/0DwH7g3V9lChoBmgJaA9DCKUtrvGZbOW/lIaUUpRoFUsyaBZHQKdvuS8rZrZ1fZQoaAZoCWgPQwjyXrUy4df3v5SGlFKUaBVLMmgWR0CnckhttQ9BdX2UKGgGaAloD0MIWAOUhhoFBcCUhpRSlGgVSzJoFkdAp3IPl2eQMnV9lChoBmgJaA9DCIVbPpKS/gXAlIaUUpRoFUsyaBZHQKdx0Pkq+al1fZQoaAZoCWgPQwgg7X+AtYoCwJSGlFKUaBVLMmgWR0CncZVnuiN9dX2UKGgGaAloD0MIumddo+WAAsCUhpRSlGgVSzJoFkdAp3NhWNm16XV9lChoBmgJaA9DCDboS29/TgPAlIaUUpRoFUsyaBZHQKdzJ6dDpkh1fZQoaAZoCWgPQwiuLTwvFRv7v5SGlFKUaBVLMmgWR0Cncuj+rELqdX2UKGgGaAloD0MIbamDvB5MD8CUhpRSlGgVSzJoFkdAp3KtTR6WxHV9lChoBmgJaA9DCFK69C9JRQDAlIaUUpRoFUsyaBZHQKd0d7wazeJ1fZQoaAZoCWgPQwh/h6JAn0gJwJSGlFKUaBVLMmgWR0CndD4I0IkadX2UKGgGaAloD0MIFEIHXcIBAsCUhpRSlGgVSzJoFkdAp3P/ai9Iw3V9lChoBmgJaA9DCBkEVg4tUgLAlIaUUpRoFUsyaBZHQKdzw8SPEKp1fZQoaAZoCWgPQwg1QGmoUYj9v5SGlFKUaBVLMmgWR0Cnda4uscQzdX2UKGgGaAloD0MIzT6PUZ758r+UhpRSlGgVSzJoFkdAp3V0l9jPOnV9lChoBmgJaA9DCFeyYyMQzwHAlIaUUpRoFUsyaBZHQKd1Nfk3juN1fZQoaAZoCWgPQwhgAyLElfPzv5SGlFKUaBVLMmgWR0CndPsHB1s+dX2UKGgGaAloD0MINSiaB7BI+L+UhpRSlGgVSzJoFkdAp3bKyjYZmHV9lChoBmgJaA9DCIEIceXsHQjAlIaUUpRoFUsyaBZHQKd2kSvC/Gl1fZQoaAZoCWgPQwjBq+XOTJAAwJSGlFKUaBVLMmgWR0CndlJ3X7LudX2UKGgGaAloD0MIey3ovTFEBsCUhpRSlGgVSzJoFkdAp3YWvhZQpHV9lChoBmgJaA9DCKSJd4AnbQ3AlIaUUpRoFUsyaBZHQKd34pbUwzt1fZQoaAZoCWgPQwg+l6lJ8Ab/v5SGlFKUaBVLMmgWR0Cnd6j5KvmpdX2UKGgGaAloD0MIeeblsPtuE8CUhpRSlGgVSzJoFkdAp3dqSs8xK3V9lChoBmgJaA9DCOeMKO0N3gDAlIaUUpRoFUsyaBZHQKd3Ln7pFCt1fZQoaAZoCWgPQwj5FWu4yJ0GwJSGlFKUaBVLMmgWR0CneSidz4lAdX2UKGgGaAloD0MIX5fhP92ACcCUhpRSlGgVSzJoFkdAp3jvWe6I33V9lChoBmgJaA9DCF4R/G8lOw7AlIaUUpRoFUsyaBZHQKd4sM1jy4F1fZQoaAZoCWgPQwi0AdiACDH3v5SGlFKUaBVLMmgWR0CneHUrkKeDdX2UKGgGaAloD0MIJLVQMjm1AsCUhpRSlGgVSzJoFkdAp3pSZUkv9XV9lChoBmgJaA9DCLKBdLFpZfy/lIaUUpRoFUsyaBZHQKd6GF/x2B91fZQoaAZoCWgPQwhEh8CRQCMJwJSGlFKUaBVLMmgWR0Cnedm5+YtydX2UKGgGaAloD0MIC9KMRdPZ9r+UhpRSlGgVSzJoFkdAp3meqNp/PXV9lChoBmgJaA9DCNnonJ/iWBPAlIaUUpRoFUsyaBZHQKd7ezVtoBd1fZQoaAZoCWgPQwjCGJEotCwFwJSGlFKUaBVLMmgWR0Cne0FNL128dX2UKGgGaAloD0MIqWkX00z3AcCUhpRSlGgVSzJoFkdAp3sCZtvXLHV9lChoBmgJaA9DCK5+bJIfcfS/lIaUUpRoFUsyaBZHQKd6xttygf51fZQoaAZoCWgPQwixMEROXw/7v5SGlFKUaBVLMmgWR0CnfHkWhysCdX2UKGgGaAloD0MIGk0uxsDaAMCUhpRSlGgVSzJoFkdAp3w/XsgMdHV9lChoBmgJaA9DCEiMnlvoigHAlIaUUpRoFUsyaBZHQKd8AIRAbAF1fZQoaAZoCWgPQwg3NdB8zl35v5SGlFKUaBVLMmgWR0Cne8SyUs4DdX2UKGgGaAloD0MIuKzCZoALA8CUhpRSlGgVSzJoFkdAp3195v99+nV9lChoBmgJaA9DCE/LD1zlyfC/lIaUUpRoFUsyaBZHQKd9RDzAeq91fZQoaAZoCWgPQwhEw2LUtZYAwJSGlFKUaBVLMmgWR0CnfQWXsw+MdX2UKGgGaAloD0MIW2CPiZQGAsCUhpRSlGgVSzJoFkdAp3zJ6hQFcXV9lChoBmgJaA9DCPmFV5I8l/q/lIaUUpRoFUsyaBZHQKd+iPCEYfp1fZQoaAZoCWgPQwhhqS7gZQb4v5SGlFKUaBVLMmgWR0Cnfk9Dx9XtdX2UKGgGaAloD0MIi4hi8gaY6r+UhpRSlGgVSzJoFkdAp34QlUp/gHV9lChoBmgJaA9DCJqTF5mAH/y/lIaUUpRoFUsyaBZHQKd91NfPX051fZQoaAZoCWgPQwj8qIb9nvgNwJSGlFKUaBVLMmgWR0Cnf4T9S/CZdX2UKGgGaAloD0MI+yDLgon//L+UhpRSlGgVSzJoFkdAp39LEpAlfXV9lChoBmgJaA9DCENZ+PpaNwXAlIaUUpRoFUsyaBZHQKd/DFWn0kJ1fZQoaAZoCWgPQwgz/KcbKDD2v5SGlFKUaBVLMmgWR0CnftCGWUr1dX2UKGgGaAloD0MIuyakNQZ9AsCUhpRSlGgVSzJoFkdAp4CHDm8ujHV9lChoBmgJaA9DCKispuuJrve/lIaUUpRoFUsyaBZHQKeATRhMJyB1fZQoaAZoCWgPQwhgAyLElfMEwJSGlFKUaBVLMmgWR0CngA5jx0+1dX2UKGgGaAloD0MIG6A01Cjk/b+UhpRSlGgVSzJoFkdAp3/SncclxHV9lChoBmgJaA9DCE0QdR+AtALAlIaUUpRoFUsyaBZHQKeBfSuyNXJ1fZQoaAZoCWgPQwh0mgXaHRL0v5SGlFKUaBVLMmgWR0CngUN1QqI8dX2UKGgGaAloD0MIW3ufqkJD/7+UhpRSlGgVSzJoFkdAp4EEiSq2jXV9lChoBmgJaA9DCNgsl43OmQTAlIaUUpRoFUsyaBZHQKeAyJ/oaDR1fZQoaAZoCWgPQwhup60RwfgCwJSGlFKUaBVLMmgWR0CngpBg3LmqdX2UKGgGaAloD0MIE3zT9NmBA8CUhpRSlGgVSzJoFkdAp4JYN3GGVXV9lChoBmgJaA9DCBNhw9MrZQPAlIaUUpRoFUsyaBZHQKeCGZCOWB11fZQoaAZoCWgPQwjgZBu4A/UBwJSGlFKUaBVLMmgWR0Cngd4vN/vwdX2UKGgGaAloD0MIaeVeYFboB8CUhpRSlGgVSzJoFkdAp4OU1CPZI3V9lChoBmgJaA9DCBrc1hae1wLAlIaUUpRoFUsyaBZHQKeDWtf5ULl1fZQoaAZoCWgPQwgOv5tu2WH3v5SGlFKUaBVLMmgWR0CngxwSamXPdX2UKGgGaAloD0MIvyfWqfIdAsCUhpRSlGgVSzJoFkdAp4LgJeE7GXV9lChoBmgJaA9DCLCMDd3sTwTAlIaUUpRoFUsyaBZHQKeEjIczZYh1fZQoaAZoCWgPQwh4QURq2mUAwJSGlFKUaBVLMmgWR0CnhFLVnVXndX2UKGgGaAloD0MIyxDHuritCMCUhpRSlGgVSzJoFkdAp4QUSGrS3XV9lChoBmgJaA9DCC2WIvlKIAHAlIaUUpRoFUsyaBZHQKeD2Ldepn91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (784 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.1732263900805266, "std_reward": 0.5849617237460106, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-08T08:56:27.592810"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c513f84fd7a1f7f750003f69785f9b67d34ea27f81a1b29f8f5713df3bf2fd7
3
+ size 3056