Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1533.59 +/- 80.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb1f5cfeb916b8b728a0202d71fc8138c5bd7d6c7be230724bed92c58f55eaad
|
3 |
+
size 129065
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd21b825c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd21b825ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd21b825d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd21b825dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd21b825e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd21b825ee0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd21b825f70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd21b82b040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd21b82b0d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd21b82b160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd21b82b1f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd21b806d50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1670751907522848189,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK0bfj///Im/TVIjv04KA77WUY+/UYd5v4MClj54ZKS8rUGyP/pIpL9alPw+FI/zv7Wu3b7x/eS/skZVvyYuZj9rCya/cbvZv2WrIr7nGz0/FFngvr+zYj44i52/8PgjP3urub8gdLc+YygEP9YTfr+XxHi/hySJv2GxH7+QfCm+w5anvluzgz/voCG/KFAxP6+CCzwHiSg+OdaLv1zS+DubMoY+9uy0vd2KDz+CcsY/PD6nv3CZSL4/qZc+29WtPwKBWz/5JiQ/dqWOvrRXlT89fDA/IHS3PmMoBD/x94A/9MkKP95jjb+IVzK/cCjgPwgvBcBhUrc/ILbivUnvkL+qB04/oizLPw0jWD+tp4S+nhWVP2slhr7ajRc/P9gQPYtXmT9TQGe/PTaZvpSLrr6xB20/T+SXv5WxST51/OW+PXwwPyB0tz5jKAQ/1hN+vxGVLr5UBXS/7ZnJvniwcb7ZY7w+08UKP/1JSL6eJQu/1iBWv0N0LD/EYho/ECF0PiXEjT9XV0w/4jsXPwBBBj0DBD0/wStYvbgVhT0JdW+71qmHPxnmsrvr85A/1Bh0Pz18MD8gdLc+YygEP/H3gD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACLQlG0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGp6TPQAAAAAIJvq/AAAAAPxGwD0AAAAAbZvkPwAAAACC/w++AAAAAHMO6D8AAAAAfw7wvQAAAABq6Pu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZdIZtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHhzmbwAAAAAyiXjvwAAAABYvC09AAAAAPwQ9z8AAAAA1RjovQAAAABeOOk/AAAAAIbwLj0AAAAAXGrnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJE/FjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA169O9AAAAAOaf8b8AAAAAxsStPAAAAADH/wBAAAAAAM5H6b0AAAAAGh/6PwAAAABmYLO9AAAAAFqc8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUYsi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAY+wIPgAAAAAYi+q/AAAAAL4q570AAAAAHJT4PwAAAABlX9U9AAAAADid8D8AAAAA40aUvQAAAAAXdey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMlvZxrBTKMAWyUTegDjAF0lEdAps+ECJXQt3V9lChoBkdAkg4i8J2MbWgHTegDaAhHQKbPwWcBltl1fZQoaAZHQJX679xZMcpoB03oA2gIR0Cm14CkwevIdX2UKGgGR0CWtPWVeKKpaAdN6ANoCEdAptkgLNOdoXV9lChoBkdAlQQrmMfigmgHTegDaAhHQKbbgpBomHB1fZQoaAZHQJZmZLeyiVVoB03oA2gIR0Cm28I1cdHUdX2UKGgGR0CWzIuoP07KaAdN6ANoCEdApuOXXXiBG3V9lChoBkdAlfvc6JZW72gHTegDaAhHQKblOCiAUcp1fZQoaAZHQJgOQRjBl+VoB03oA2gIR0Cm56mecx0udX2UKGgGR0CXoVYNAkcCaAdN6ANoCEdApufnV5KODXV9lChoBkdAlcwqMWGh3GgHTegDaAhHQKbvuRZEDyR1fZQoaAZHQJhiKl41P31oB03oA2gIR0Cm8WXt8eCDdX2UKGgGR0CWdTJfYzzmaAdN6ANoCEdApvPcfRu0kXV9lChoBkdAlV4TV6NVBGgHTegDaAhHQKb0Gjlgc951fZQoaAZHQJaR3PX05ENoB03oA2gIR0Cm+79mg8KYdX2UKGgGR0CTr1OCoS+QaAdN6ANoCEdApv1loL5RCXV9lChoBkdAmho90ihWYGgHTegDaAhHQKb/urBj4Hp1fZQoaAZHQJhQMGwA2htoB03oA2gIR0Cm//vWYnfEdX2UKGgGR0CYEQwB5ooNaAdN6ANoCEdApweskGA09HV9lChoBkdAl6EqJl8PWmgHTegDaAhHQKcJT70Fr2x1fZQoaAZHQJdSqYmb9ZRoB03oA2gIR0CnC6bGecx1dX2UKGgGR0CU/hTfzjFRaAdN6ANoCEdApwvolWwNb3V9lChoBkdAlmmThtLteGgHTegDaAhHQKcTs+4b0e51fZQoaAZHQJce5+b3Gn5oB03oA2gIR0CnFVBkZrHmdX2UKGgGR0CWEQIMjNY9aAdN6ANoCEdApxeik0rK/3V9lChoBkdAmJOUjTrmhmgHTegDaAhHQKcX44H5aeR1fZQoaAZHQJX6gQCjk+5oB03oA2gIR0CnH7xe9i+ddX2UKGgGR0CXZKikfs/qaAdN6ANoCEdApyFbawljVnV9lChoBkdAl+yJMDfWMGgHTegDaAhHQKcjrpudf9h1fZQoaAZHQJjIlLi++M9oB03oA2gIR0CnI+3hfjS5dX2UKGgGR0CWrfzuF6AwaAdN6ANoCEdApyu7LfUF0XV9lChoBkdAlYDt0zTF2mgHTegDaAhHQKctXHvttyh1fZQoaAZHQJeApjlPrOZoB03oA2gIR0CnL9NtIkJKdX2UKGgGR0CWzo3EyckMaAdN6ANoCEdApzATzZpSJnV9lChoBkdAlkIeaa1CxGgHTegDaAhHQKc3yj9n9Nx1fZQoaAZHQJajhAmiQDFoB03oA2gIR0CnOWzHjp9rdX2UKGgGR0CV4t1YQrc1aAdN6ANoCEdApzvFOwgTy3V9lChoBkdAl7yXdweeWmgHTegDaAhHQKc8ATW5H3F1fZQoaAZHQJSHGGVRk3FoB03oA2gIR0CnQ68cMmWudX2UKGgGR0CX+oeBg/keaAdN6ANoCEdAp0VF7jT8YXV9lChoBkdAl4mnSWqtHWgHTegDaAhHQKdHmJfpljF1fZQoaAZHQJUjCMo+fRNoB03oA2gIR0CnR9WBSUC8dX2UKGgGR0CT2iKDkELZaAdN6ANoCEdAp0+XU6PsA3V9lChoBkdAlcQtnTRYzWgHTegDaAhHQKdRN6w+t8x1fZQoaAZHQJfMEkxASnNoB03oA2gIR0CnU4LfUF0QdX2UKGgGR0CYyC4X40uUaAdN6ANoCEdAp1PEfHPu5XV9lChoBkdAlzXXRw6ySmgHTegDaAhHQKdbggdOqNp1fZQoaAZHQJm7ngIhQnBoB03oA2gIR0CnXSgk1MufdX2UKGgGR0CayXuMMqjKaAdN6ANoCEdAp1+iaJAMUnV9lChoBkdAmb+5fD1oQGgHTegDaAhHQKdf59c8klh1fZQoaAZHQJk2Gn0kGA1oB03oA2gIR0CnZ7IpH7P6dX2UKGgGR0CXtpMoMKCyaAdN6ANoCEdAp2lYlruYyHV9lChoBkdAl1zy5VfeDWgHTegDaAhHQKdr0vVVghN1fZQoaAZHQJje8lJHy3FoB03oA2gIR0CnbBY8lolEdX2UKGgGR0CZv8O+7Dl6aAdN6ANoCEdAp3PYi/wiJXV9lChoBkdAmSG1wDNhVmgHTegDaAhHQKd1fdLQHA11fZQoaAZHQJqiXGWD6FdoB03oA2gIR0Cnd9tm16VudX2UKGgGR0CWFitUGVzIaAdN6ANoCEdAp3geBz3h43V9lChoBkdAc8FKGtZFHGgHTYUBaAhHQKd6ODSPU8V1fZQoaAZHQJmhKsU7CBRoB03oA2gIR0Cnf+7U5MlDdX2UKGgGR0CZ1CEaVD8caAdN6ANoCEdAp4PodbPhQ3V9lChoBkdAma4tVFQVK2gHTegDaAhHQKeEKEBbOeJ1fZQoaAZHQJlGubVjI7xoB03oA2gIR0CnhkV3dKukdX2UKGgGR0CYbFyJ9AooaAdN6ANoCEdAp4wGzOX3QHV9lChoBkdAmYKRgqmTDGgHTegDaAhHQKeP9vc8DCB1fZQoaAZHQJeDxGiHqNZoB03oA2gIR0CnkDHhsImgdX2UKGgGR0CTFwnvlU6xaAdN6ANoCEdAp5JAZVGTcXV9lChoBkdAl0/VsLv1DmgHTegDaAhHQKeYAzfJmul1fZQoaAZHQJPUMwevIOpoB03oA2gIR0CnnBMsxwhodX2UKGgGR0CV2e48lolEaAdN6ANoCEdAp5xTp9qk/XV9lChoBkdAlFa82aUiZGgHTegDaAhHQKeebTfBN211fZQoaAZHQJdMrz/ZM+NoB03oA2gIR0CnpfbHp8nedX2UKGgGR0CULAVuJk5IaAdN6ANoCEdAp6oCY9gWrXV9lChoBkdAlf5V36hxpGgHTegDaAhHQKeqP6By0a91fZQoaAZHQJZTtj/dZaFoB03oA2gIR0CnrFE3CKrJdX2UKGgGR0CWm2PPszEaaAdN6ANoCEdAp7HqOq//N3V9lChoBkdAlTxJGFzuGGgHTegDaAhHQKe15bWVeKN1fZQoaAZHQJV7/9tMwlBoB03oA2gIR0CntiVFx4pudX2UKGgGR0CTQTosI3R5aAdN6ANoCEdAp7gzhzeXRnV9lChoBkdAmNPrItDlYGgHTegDaAhHQKe9xylvZRN1fZQoaAZHQJdUBtqHoHNoB03oA2gIR0CnwcgAyVOcdX2UKGgGR0CZGi3Sa3I/aAdN6ANoCEdAp8IFV94NZ3V9lChoBkdAmYR6aPS2IGgHTegDaAhHQKfECQ/5ckd1fZQoaAZHQJO6scKgIyFoB03oA2gIR0CnyanK4hECdX2UKGgGR0CWC9FDfFaTaAdN6ANoCEdAp82ghOgxrXV9lChoBkdAkoD5u2qkumgHTegDaAhHQKfN4bm2b5N1fZQoaAZHQJSIV88cMmZoB03oA2gIR0Cnz+7A+IM0dX2UKGgGR0CSlFFAVwglaAdN6ANoCEdAp9WahUR3/3V9lChoBkdAk89bnHNorWgHTegDaAhHQKfZpHXmNip1fZQoaAZHQJMPNp0wJw9oB03oA2gIR0Cn2eKKYRdydX2UKGgGR0CT9qQoTfzjaAdN6ANoCEdAp9vtBSk0rXV9lChoBkdAlLUihi9ZimgHTegDaAhHQKfhjU+9rXV1fZQoaAZHQJLu8qmTC+FoB03oA2gIR0Cn5aYWDYh/dX2UKGgGR0CVKTKgZjx1aAdN6ANoCEdAp+Xnb9If83V9lChoBkdAk49F2NedCmgHTegDaAhHQKfn/urIYFd1fZQoaAZHQIOQp13dKuloB03oA2gIR0Cn7cRqO939dX2UKGgGR0CT9PdKNAC5aAdN6ANoCEdAp/Gy+xnnMnV9lChoBkdAlE8APNFBp2gHTegDaAhHQKfx8UJOWSl1fZQoaAZHQJFh1VuJk5JoB03oA2gIR0Cn9AZLIxQBdX2UKGgGR0CXmyIPK+zuaAdN6ANoCEdAp/m6gVXV9XVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2af8d16781c6d60db52ece1d45bbb8f9e89eb03095fd7ef5bb4d465dce771f8
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68fc1d0706e537ce608792393df504c88e2cf6baa2416fcd4a2768e5c546880a
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd21b825c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd21b825ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd21b825d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd21b825dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fd21b825e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fd21b825ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd21b825f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd21b82b040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd21b82b0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd21b82b160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd21b82b1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd21b806d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670751907522848189, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK0bfj///Im/TVIjv04KA77WUY+/UYd5v4MClj54ZKS8rUGyP/pIpL9alPw+FI/zv7Wu3b7x/eS/skZVvyYuZj9rCya/cbvZv2WrIr7nGz0/FFngvr+zYj44i52/8PgjP3urub8gdLc+YygEP9YTfr+XxHi/hySJv2GxH7+QfCm+w5anvluzgz/voCG/KFAxP6+CCzwHiSg+OdaLv1zS+DubMoY+9uy0vd2KDz+CcsY/PD6nv3CZSL4/qZc+29WtPwKBWz/5JiQ/dqWOvrRXlT89fDA/IHS3PmMoBD/x94A/9MkKP95jjb+IVzK/cCjgPwgvBcBhUrc/ILbivUnvkL+qB04/oizLPw0jWD+tp4S+nhWVP2slhr7ajRc/P9gQPYtXmT9TQGe/PTaZvpSLrr6xB20/T+SXv5WxST51/OW+PXwwPyB0tz5jKAQ/1hN+vxGVLr5UBXS/7ZnJvniwcb7ZY7w+08UKP/1JSL6eJQu/1iBWv0N0LD/EYho/ECF0PiXEjT9XV0w/4jsXPwBBBj0DBD0/wStYvbgVhT0JdW+71qmHPxnmsrvr85A/1Bh0Pz18MD8gdLc+YygEP/H3gD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACLQlG0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGp6TPQAAAAAIJvq/AAAAAPxGwD0AAAAAbZvkPwAAAACC/w++AAAAAHMO6D8AAAAAfw7wvQAAAABq6Pu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZdIZtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHhzmbwAAAAAyiXjvwAAAABYvC09AAAAAPwQ9z8AAAAA1RjovQAAAABeOOk/AAAAAIbwLj0AAAAAXGrnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJE/FjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA169O9AAAAAOaf8b8AAAAAxsStPAAAAADH/wBAAAAAAM5H6b0AAAAAGh/6PwAAAABmYLO9AAAAAFqc8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUYsi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAY+wIPgAAAAAYi+q/AAAAAL4q570AAAAAHJT4PwAAAABlX9U9AAAAADid8D8AAAAA40aUvQAAAAAXdey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMlvZxrBTKMAWyUTegDjAF0lEdAps+ECJXQt3V9lChoBkdAkg4i8J2MbWgHTegDaAhHQKbPwWcBltl1fZQoaAZHQJX679xZMcpoB03oA2gIR0Cm14CkwevIdX2UKGgGR0CWtPWVeKKpaAdN6ANoCEdAptkgLNOdoXV9lChoBkdAlQQrmMfigmgHTegDaAhHQKbbgpBomHB1fZQoaAZHQJZmZLeyiVVoB03oA2gIR0Cm28I1cdHUdX2UKGgGR0CWzIuoP07KaAdN6ANoCEdApuOXXXiBG3V9lChoBkdAlfvc6JZW72gHTegDaAhHQKblOCiAUcp1fZQoaAZHQJgOQRjBl+VoB03oA2gIR0Cm56mecx0udX2UKGgGR0CXoVYNAkcCaAdN6ANoCEdApufnV5KODXV9lChoBkdAlcwqMWGh3GgHTegDaAhHQKbvuRZEDyR1fZQoaAZHQJhiKl41P31oB03oA2gIR0Cm8WXt8eCDdX2UKGgGR0CWdTJfYzzmaAdN6ANoCEdApvPcfRu0kXV9lChoBkdAlV4TV6NVBGgHTegDaAhHQKb0Gjlgc951fZQoaAZHQJaR3PX05ENoB03oA2gIR0Cm+79mg8KYdX2UKGgGR0CTr1OCoS+QaAdN6ANoCEdApv1loL5RCXV9lChoBkdAmho90ihWYGgHTegDaAhHQKb/urBj4Hp1fZQoaAZHQJhQMGwA2htoB03oA2gIR0Cm//vWYnfEdX2UKGgGR0CYEQwB5ooNaAdN6ANoCEdApweskGA09HV9lChoBkdAl6EqJl8PWmgHTegDaAhHQKcJT70Fr2x1fZQoaAZHQJdSqYmb9ZRoB03oA2gIR0CnC6bGecx1dX2UKGgGR0CU/hTfzjFRaAdN6ANoCEdApwvolWwNb3V9lChoBkdAlmmThtLteGgHTegDaAhHQKcTs+4b0e51fZQoaAZHQJce5+b3Gn5oB03oA2gIR0CnFVBkZrHmdX2UKGgGR0CWEQIMjNY9aAdN6ANoCEdApxeik0rK/3V9lChoBkdAmJOUjTrmhmgHTegDaAhHQKcX44H5aeR1fZQoaAZHQJX6gQCjk+5oB03oA2gIR0CnH7xe9i+ddX2UKGgGR0CXZKikfs/qaAdN6ANoCEdApyFbawljVnV9lChoBkdAl+yJMDfWMGgHTegDaAhHQKcjrpudf9h1fZQoaAZHQJjIlLi++M9oB03oA2gIR0CnI+3hfjS5dX2UKGgGR0CWrfzuF6AwaAdN6ANoCEdApyu7LfUF0XV9lChoBkdAlYDt0zTF2mgHTegDaAhHQKctXHvttyh1fZQoaAZHQJeApjlPrOZoB03oA2gIR0CnL9NtIkJKdX2UKGgGR0CWzo3EyckMaAdN6ANoCEdApzATzZpSJnV9lChoBkdAlkIeaa1CxGgHTegDaAhHQKc3yj9n9Nx1fZQoaAZHQJajhAmiQDFoB03oA2gIR0CnOWzHjp9rdX2UKGgGR0CV4t1YQrc1aAdN6ANoCEdApzvFOwgTy3V9lChoBkdAl7yXdweeWmgHTegDaAhHQKc8ATW5H3F1fZQoaAZHQJSHGGVRk3FoB03oA2gIR0CnQ68cMmWudX2UKGgGR0CX+oeBg/keaAdN6ANoCEdAp0VF7jT8YXV9lChoBkdAl4mnSWqtHWgHTegDaAhHQKdHmJfpljF1fZQoaAZHQJUjCMo+fRNoB03oA2gIR0CnR9WBSUC8dX2UKGgGR0CT2iKDkELZaAdN6ANoCEdAp0+XU6PsA3V9lChoBkdAlcQtnTRYzWgHTegDaAhHQKdRN6w+t8x1fZQoaAZHQJfMEkxASnNoB03oA2gIR0CnU4LfUF0QdX2UKGgGR0CYyC4X40uUaAdN6ANoCEdAp1PEfHPu5XV9lChoBkdAlzXXRw6ySmgHTegDaAhHQKdbggdOqNp1fZQoaAZHQJm7ngIhQnBoB03oA2gIR0CnXSgk1MufdX2UKGgGR0CayXuMMqjKaAdN6ANoCEdAp1+iaJAMUnV9lChoBkdAmb+5fD1oQGgHTegDaAhHQKdf59c8klh1fZQoaAZHQJk2Gn0kGA1oB03oA2gIR0CnZ7IpH7P6dX2UKGgGR0CXtpMoMKCyaAdN6ANoCEdAp2lYlruYyHV9lChoBkdAl1zy5VfeDWgHTegDaAhHQKdr0vVVghN1fZQoaAZHQJje8lJHy3FoB03oA2gIR0CnbBY8lolEdX2UKGgGR0CZv8O+7Dl6aAdN6ANoCEdAp3PYi/wiJXV9lChoBkdAmSG1wDNhVmgHTegDaAhHQKd1fdLQHA11fZQoaAZHQJqiXGWD6FdoB03oA2gIR0Cnd9tm16VudX2UKGgGR0CWFitUGVzIaAdN6ANoCEdAp3geBz3h43V9lChoBkdAc8FKGtZFHGgHTYUBaAhHQKd6ODSPU8V1fZQoaAZHQJmhKsU7CBRoB03oA2gIR0Cnf+7U5MlDdX2UKGgGR0CZ1CEaVD8caAdN6ANoCEdAp4PodbPhQ3V9lChoBkdAma4tVFQVK2gHTegDaAhHQKeEKEBbOeJ1fZQoaAZHQJlGubVjI7xoB03oA2gIR0CnhkV3dKukdX2UKGgGR0CYbFyJ9AooaAdN6ANoCEdAp4wGzOX3QHV9lChoBkdAmYKRgqmTDGgHTegDaAhHQKeP9vc8DCB1fZQoaAZHQJeDxGiHqNZoB03oA2gIR0CnkDHhsImgdX2UKGgGR0CTFwnvlU6xaAdN6ANoCEdAp5JAZVGTcXV9lChoBkdAl0/VsLv1DmgHTegDaAhHQKeYAzfJmul1fZQoaAZHQJPUMwevIOpoB03oA2gIR0CnnBMsxwhodX2UKGgGR0CV2e48lolEaAdN6ANoCEdAp5xTp9qk/XV9lChoBkdAlFa82aUiZGgHTegDaAhHQKeebTfBN211fZQoaAZHQJdMrz/ZM+NoB03oA2gIR0CnpfbHp8nedX2UKGgGR0CULAVuJk5IaAdN6ANoCEdAp6oCY9gWrXV9lChoBkdAlf5V36hxpGgHTegDaAhHQKeqP6By0a91fZQoaAZHQJZTtj/dZaFoB03oA2gIR0CnrFE3CKrJdX2UKGgGR0CWm2PPszEaaAdN6ANoCEdAp7HqOq//N3V9lChoBkdAlTxJGFzuGGgHTegDaAhHQKe15bWVeKN1fZQoaAZHQJV7/9tMwlBoB03oA2gIR0CntiVFx4pudX2UKGgGR0CTQTosI3R5aAdN6ANoCEdAp7gzhzeXRnV9lChoBkdAmNPrItDlYGgHTegDaAhHQKe9xylvZRN1fZQoaAZHQJdUBtqHoHNoB03oA2gIR0CnwcgAyVOcdX2UKGgGR0CZGi3Sa3I/aAdN6ANoCEdAp8IFV94NZ3V9lChoBkdAmYR6aPS2IGgHTegDaAhHQKfECQ/5ckd1fZQoaAZHQJO6scKgIyFoB03oA2gIR0CnyanK4hECdX2UKGgGR0CWC9FDfFaTaAdN6ANoCEdAp82ghOgxrXV9lChoBkdAkoD5u2qkumgHTegDaAhHQKfN4bm2b5N1fZQoaAZHQJSIV88cMmZoB03oA2gIR0Cnz+7A+IM0dX2UKGgGR0CSlFFAVwglaAdN6ANoCEdAp9WahUR3/3V9lChoBkdAk89bnHNorWgHTegDaAhHQKfZpHXmNip1fZQoaAZHQJMPNp0wJw9oB03oA2gIR0Cn2eKKYRdydX2UKGgGR0CT9qQoTfzjaAdN6ANoCEdAp9vtBSk0rXV9lChoBkdAlLUihi9ZimgHTegDaAhHQKfhjU+9rXV1fZQoaAZHQJLu8qmTC+FoB03oA2gIR0Cn5aYWDYh/dX2UKGgGR0CVKTKgZjx1aAdN6ANoCEdAp+Xnb9If83V9lChoBkdAk49F2NedCmgHTegDaAhHQKfn/urIYFd1fZQoaAZHQIOQp13dKuloB03oA2gIR0Cn7cRqO939dX2UKGgGR0CT9PdKNAC5aAdN6ANoCEdAp/Gy+xnnMnV9lChoBkdAlE8APNFBp2gHTegDaAhHQKfx8UJOWSl1fZQoaAZHQJFh1VuJk5JoB03oA2gIR0Cn9AZLIxQBdX2UKGgGR0CXmyIPK+zuaAdN6ANoCEdAp/m6gVXV9XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cf6f72735953173b137bbda8dd5021d66ed3e1ddc570febff8d2d22d32059c9
|
3 |
+
size 1163091
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1533.5929139262473, "std_reward": 80.44822331450943, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-11T10:57:09.672648"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44a93ffe337c127c1714e352bbfa1e2cd5e7184d511d2df1a3cfe6e441ef97c6
|
3 |
+
size 2521
|