#version: 0.2 | |
_ { | |
^ { | |
} \ | |
m a | |
t h | |
ma th | |
} ^{ | |
} ( | |
\ [ | |
r a | |
i g | |
} ) | |
, \ | |
i n | |
l e | |
} _{ | |
t a | |
Ġ \ | |
{ \ | |
a l | |
m e | |
f ra | |
} } | |
\ ] | |
fra c | |
\[ \ | |
math b | |
a r | |
_{ \ | |
f t | |
t i | |
( \ | |
ig h | |
d e | |
r igh | |
= \ | |
} { | |
e ta | |
p h | |
a m | |
le ft | |
righ t | |
) \ | |
} }\ | |
^{ \ | |
- \ | |
}( \ | |
c al | |
math cal | |
+ \ | |
s i | |
r i | |
} ,\ | |
. \] | |
l o | |
mathb b | |
s u | |
| \ | |
o t | |
d ot | |
}^{ \ | |
r m | |
p ri | |
pri me | |
p si | |
mathb f | |
}\ ] | |
le q | |
} , | |
ph a | |
al pha | |
t o | |
d a | |
am b | |
amb da | |
math rm | |
v ar | |
n a | |
lo n | |
l a | |
}) \ | |
b ig | |
su m | |
l ta | |
l ambda | |
}_{ \ | |
psi lon | |
am ma | |
e psilon | |
e x | |
} + | |
g a | |
me ga | |
n g | |
b o | |
ph i | |
in t | |
ti l | |
til de | |
ig ma | |
q u | |
} - | |
c dot | |
ng le | |
ex t | |
t ext | |
m u | |
a d | |
o p | |
p ar | |
qu ad | |
bo l | |
ti al | |
par tial | |
b m | |
b eta | |
ti me | |
time s | |
^{ - | |
e r | |
th eta | |
l l | |
e q | |
a t | |
g amma | |
s igma | |
} = | |
h at | |
| _{ | |
{ ( | |
} +\ | |
h o | |
} =\ | |
ft y | |
in fty | |
ta u | |
to r | |
l in | |
e ra | |
Ġ & | |
lin e | |
era tor | |
op erator | |
na me | |
operator name | |
de lta | |
var epsilon | |
r ho | |
w i | |
,\ ] | |
} {\ | |
b ar | |
n d | |
p i | |
wi de | |
) \] | |
) ^{ | |
x i | |
} .\] | |
}} { | |
s e | |
} -\ | |
b la | |
) }\ | |
na bla | |
B ig | |
e ll | |
} | | |
a p | |
d s | |
} }( | |
v er | |
e g | |
O mega | |
o mega | |
r o | |
math s | |
s q | |
Ġ 0 | |
) =\ | |
e nd | |
b eg | |
beg in | |
o ver | |
dot s | |
g eq | |
r t | |
sq rt | |
h i | |
) = | |
}) \] | |
} }^{ | |
| ^{ | |
[ \ | |
ra ngle | |
var phi | |
n u | |
over line | |
y m | |
Ġ \[ | |
la ngle | |
l i | |
D e | |
math fra | |
mathfra k | |
ym bol | |
bol ds | |
bolds ymbol | |
De lta | |
^{ * | |
Ġ 1 | |
Ġ \[\ | |
l dots | |
se t | |
{ ) | |
},\ ] | |
& \ | |
o times | |
ta r | |
c o | |
wide tilde | |
} ] | |
}^{ ( | |
Ġ { | |
\ | | |
t ri | |
maths f | |
G amma | |
lo g | |
} : | |
ra y | |
p a | |
}^{ - | |
\ |_{ | |
Ġ x | |
Ġ C | |
}^{ * | |
ma tri | |
matri x | |
Ġ 2 | |
ro w | |
) ) | |
}}\ ] | |
wide hat | |
m in | |
q quad | |
\ \ | |
}\ , | |
{( }\ | |
}} {\ | |
k ap | |
kap pa | |
} }(\ | |
Ġ i | |
}) ^{ | |
) .\] | |
; \ | |
P hi | |
cdot s | |
r c | |
\ { | |
Ġ f | |
li m | |
Ġ } | |
u s | |
o r | |
) - | |
tar row | |
\ , | |
Ġ t | |
z eta | |
} }_{ | |
c i | |
c ap | |
} }) | |
^{ ( | |
Ġ a | |
ci rc | |
Ġ }\ | |
u n | |
L ambda | |
{ | | |
) ,\ | |
}\ | | |
) + | |
c hi | |
) , | |
big g | |
si m | |
Ġ =\ | |
Ġ n | |
) } | |
righ tarrow | |
v e | |
de r | |
Ġ u | |
un der | |
}) = | |
\ |\ | |
Ġ = | |
{( } | |
n t | |
s la | |
c u | |
}\ |_{ | |
} |\ | |
ar ray | |
}) =\ | |
] \ | |
su p | |
S igma | |
p ro | |
} [ | |
Ġ d | |
) ( | |
) }{ | |
ma x | |
su b | |
cu p | |
r e | |
c a | |
Ġ _{ | |
}\ \ | |
: =\ | |
}\ ,\ | |
sub set | |
Ġ\ \ | |
sla nt | |
) +\ | |
\[ ( | |
c r | |
) -\ | |
e d | |
\ {\ | |
ca se | |
case s | |
} / | |
maths cr | |
s p | |
under line | |
) ,\] | |
Ġ L | |
{ )}\ | |
d x | |
) ^{\ | |
p matrix | |
Ġ k | |
g e | |
c k | |
Ġ ( | |
pro d | |
i j | |
li t | |
i d | |
} & | |
to p | |
Ġ A | |
Ġ B | |
< \ | |
Ġ c | |
}} ,\ | |
sp lit | |
^{ -\ | |
d i | |
p m | |
} }^{\ | |
P si | |
s s | |
Ġ s | |
i t | |
Ġ S | |
! \ | |
Ġ T | |
Ġ\ ( | |
_{ * | |
Ġ e | |
Ġ H | |
. \ | |
Ġ\[ = | |
b f | |
1 2 | |
) )\ | |
Ġ v | |
bo x | |
}} .\] | |
Ġ p | |
) }( | |
leq slant | |
ed ge | |
f o | |
}) }\ | |
w edge | |
\ ,\ | |
co lon | |
ra ll | |
fo rall | |
}) .\] | |
ex p | |
{ [ | |
n eq | |
Ġ\[ =\ | |
l us | |
_{ - | |
}) - | |
. . | |
}} +\ | |
s tar | |
) | | |
ve c | |
le ss | |
Ġ N | |
}} =\ | |
less sim | |
op lus | |
o m | |
min us | |
}} }\ | |
}| ^{ | |
su bar | |
subar ray | |
Ġ X | |
Ġ I | |
}) ,\ | |
set minus | |
m id | |
0 0 | |
_{ ( | |
}\ |\ | |
{ ] | |
Ġ M | |
u l | |
( - | |
b matrix | |
}^{ + | |
)\ , | |
Ġ y | |
}: =\ | |
d t | |
}) _{ | |
Ġ {\ | |
s in | |
b ul | |
} [\ | |
) _{ | |
/ \ | |
Ġ r | |
P i | |
\ }\] | |
Ġ m | |
Ġ V | |
}} = | |
s t | |
T h | |
Ġ j | |
} &\ | |
Ġ E | |
Ġ R | |
: \ | |
}) + | |
h line | |
Ġ D | |
\[ (\ | |
Th eta | |
Ġ F | |
\[\ | | |
}} , | |
1 1 | |
co s | |
lim it | |
] \] | |
}} + | |
}) ( | |
limit s | |
} })\ | |
Ġ - | |
}) -\ | |
1 0 | |
}) ^{\ | |
}) , | |
m box | |
) }{\ | |
Ġ P | |
_{ + | |
Ġ h | |
i f | |
}) +\ | |
\ ) | |
Ġ b | |
\| _{\ | |
) ^{- | |
{\ | | |
Ġ g | |
^{ + | |
} ; | |
Ġ K | |
\[ | | |
Ġ w | |
c c | |
Ġ ^{ | |
\ }\ | |
t frac | |
o n | |
Ġ G | |
f lo | |
flo or | |
Ġ z | |
) :=\ | |
} }_{\ | |
p t | |
}} ,\] | |
p s | |
: = | |
}) ,\] | |
Ġ 3 | |
) }\] | |
lon g | |
s h | |
}} - | |
}} | | |
ma ps | |
le t | |
maps to | |
subset eq | |
}} -\ | |
{| }\ | |
Ġa nd | |
Ġ q | |
}} }{ | |
bul let | |
}\ ) | |
\[\ |\ | |
l n | |
co ng | |
c e | |
s ta | |
re l | |
p er | |
) |\ | |
i v | |
g g | |
{\ { | |
}: \ | |
Ġ U | |
Ġ $ | |
| _{\ | |
}= ( | |
}] \ | |
{) }\] | |
b in | |
^{* }\ | |
} ;\ | |
bin om | |
o d | |
sta ck | |
stack rel | |
) )\] | |
long rightarrow | |
}) }{ | |
per p | |
,\ \ | |
} > | |
Ġ\ (\ | |
gg er | |
da gger | |
Ġ W | |
f or | |
}\ }\] | |
{ - | |
{[ }\ | |
\[ |\ | |
Ġf or | |
a nd | |
,\ , | |
}) )\ | |
e qu | |
t r | |
i o | |
\ |^{ | |
( -\ | |
} ^ | |
equ iv | |
ve e | |
io ta | |
Ġ& \ | |
{) } | |
in f | |
Ġ (\ | |
}\ |^{ | |
}( - | |
\ }.\] | |
Ġ 4 | |
)\ |_{ | |
eq q | |
1 6 | |
colon eqq | |
var theta | |
b ra | |
) ] | |
c h | |
}_{ + | |
}) ^{- | |
}) } | |
t t | |
, - | |
1 3 | |
i l | |
.. . | |
}\| _{\ | |
) |^{ | |
d y | |
}}\ , | |
}^{* }\ | |
( ( | |
Ġ Q | |
R e | |
)\ ,\ | |
} })\] | |
di m | |
Ġ J | |
}+ ( | |
} < | |
Ġ Y | |
Big g | |
) / | |
) (\ | |
Ġ -\ | |
}{ ( | |
) }(\ | |
}} } | |
) }_{ | |
^{* } | |
}: = | |
de t | |
2 2 | |
}) | | |
var rho | |
x rightarrow | |
}) )\] | |
{) }^{ | |
+ | | |
}{ | | |
me q | |
si meq | |
)\ \ | |
^{* }( | |
* * | |
Ġ al | |
) }^{ | |
}/ \ | |
) },\ | |
] }\ | |
tri a | |
- ( | |
}^{ (\ | |
}} {( | |
{ {\ | |
+ ( | |
math ds | |
},\ \ | |
a b | |
\[\ { | |
Ġ l | |
big cup | |
Ġ in | |
Ġal l | |
Ġ }( | |
}} |\ | |
}_{ ( | |
})\ , | |
geq slant | |
}}^{ ( | |
l floor | |
Ġ o | |
Ġ Z | |
= ( | |
) }=\ | |
r floor | |
2 1 | |
T r | |
}}\ | | |
Ġ\[ +\ | |
} _ | |
] _{ | |
b le | |
n ot | |
)= ( | |
} <\ | |
v dots | |
}) }{\ | |
] ^{ | |
o l | |
) }.\] | |
> \ | |
Ġ + | |
, ( | |
2 3 | |
e t | |
}=\ { | |
}) }\] | |
] .\] | |
2 4 | |
Ġ _{\ | |
1 4 | |
& - | |
di v | |
,\ ,\ | |
}( ( | |
math tt | |
_{ [ | |
}] \] | |
ar p | |
e m | |
} .\ | |
1 5 | |
\[ [ | |
bul ar | |
ta bular | |
Ġ ^{\ | |
} |_{ | |
big r | |
b a | |
big l | |
}) (\ | |
2 0 | |
H om | |
ta ble | |
Ġ }^{ | |
{[ } | |
) }= | |
Ġi f | |
}\ }\ | |
( | | |
{ (\ | |
}}\ ,\ | |
) _{\ | |
}}^{ - | |
in g | |
}\, .\] | |
}) _{\ | |
Ġ +\ | |
{) }.\] | |
}^{* } | |
}= -\ | |
) }, | |
}( [ | |
X i | |
Ġi s | |
_{ -\ | |
) := | |
\[ =\ | |
) )^{ | |
\ !\ | |
) }+\ | |
| ^{\ | |
Ġ 5 | |
pro x | |
^{ (\ | |
\[ = | |
{ { | |
}_{ - | |
| \] | |
), ( | |
) & | |
}^{ -\ | |
\ },\] | |
tria ngle | |
}^{* }( | |
... , | |
d z | |
k er | |
de g | |
}) }^{ | |
}= (\ | |
sla sh | |
}- ( | |
}} [ | |
h bar | |
}}\ |\ | |
| }\ | |
m p | |
ba ck | |
Ġ }_{ | |
] = | |
}}^{ * | |
back slash | |
{\{ }\ | |
Ġ1 0 | |
}) ) | |
] =\ | |
{ }_{ | |
\[ {\ | |
pt y | |
_{ | | |
{| } | |
big oplus | |
e c | |
u t | |
em pty | |
Ġ |\ | |
I m | |
bra ce | |
{ |\ | |
\[ -\ | |
) }}\ | |
empty set | |
}} }{\ | |
Ġ 6 | |
}_{ * | |
ap prox | |
| | | |
) ! | |
) )= | |
bra ck | |
3 2 | |
brack et | |
}) |\ | |
Ġ O | |
x y | |
Ġ )\ | |
}}{ {\ | |
/ ( | |
}\ !\ | |
Ġo f | |
under brace | |
re f | |
i st | |
{ }^{\ | |
}} }( | |
sh arp | |
Ġ th | |
}}\ \ | |
{] }\ | |
ti on | |
}= - | |
},\ , | |
}\ { | |
Ġ }{ | |
2 5 | |
] , | |
})\ |_{ | |
ho o | |
var pi | |
) : | |
0 1 | |
ch e | |
a st | |
p re | |
over set | |
\ ! | |
{\| }\ | |
Ġ | | |
} * | |
) )=\ | |
= -\ | |
s ma | |
}} }\] | |
S p | |
) }- | |
che ck | |
) }+ | |
d u | |
] ,\] | |
e n | |
ar row | |
{\{ } | |
a s | |
})\ \ | |
sma ll | |
j k | |
{ = | |
] ,\ | |
a g | |
\[\ {\ | |
1 8 | |
}( {\ | |
ar g | |
}\, ,\] | |
}^{ [ | |
\, .\] | |
U psilon | |
}\ }_{ | |
ex ist | |
|\ , | |
i k | |
}) :=\ | |
er t | |
( [ | |
Ġ\[ + | |
}) }( | |
_{* }\ | |
d r | |
s c | |
) })\ | |
under set | |
r r | |
exist s | |
) }-\ | |
9 9 | |
) > | |
+ |\ | |
_{ (\ | |
^{* }_{ | |
| = | |
}\ ! | |
pre c | |
})\ ,\ | |
V ert | |
lim sup | |
wi th | |
) &\ | |
o th | |
ig n | |
) },\] | |
o w | |
)) .\] | |
}+\ | | |
e s | |
\ ; | |
, &\ | |
})= ( | |
m od | |
Ġ :=\ | |
i p | |
} })^{ | |
1 7 | |
)\ | | |
)= -\ | |
x x | |
{\| }_{ | |
\ },\ | |
\ }}\ | |
Ġ }}\ | |
] } | |
}\ ; | |
- | | |
= - | |
d frac | |
m n | |
rc e | |
Ġ }(\ | |
[ - | |
{) },\] | |
rce il | |
{) }^{\ | |
3 4 | |
ce il | |
2 7 | |
}) ] | |
l ceil | |
ver t | |
} $ | |
( (\ | |
Ġ 8 | |
co n | |
ow n | |
}+\ |\ | |
Ġ\ ,\ | |
}] _{ | |
! }\ | |
Ġ\ | | |
) < | |
1 9 | |
\[ [\ | |
{] }\] | |
ar e | |
Ġ [ | |
3 3 | |
i i | |
}\ ;\ | |
d own | |
^{* }(\ | |
o dot | |
R igh | |
Big r | |
ta n | |
}( | | |
Righ tarrow | |
small matrix | |
Big l | |
}) }.\] | |
{( }( | |
I d | |
er e | |
)+ ( | |
},\ ,\ | |
}] = | |
}} & | |
)\ ) | |
}}\ |_{ | |
di ag | |
text bf | |
Ġ& =\ | |
[ ( | |
6 4 | |
Ġ ** | |
i s | |
}+ | | |
wi se | |
di st | |
Ġ\ , | |
big cap | |
; \] | |
}| _{\ | |
a n | |
sup p | |
ra l | |
}}{ | | |
t in | |
le f | |
)^{ -\ | |
tin y | |
}+ (\ | |
}, ..., | |
bol d | |
not in | |
bold math | |
mu l | |
er wise | |
^{- ( | |
4 5 | |
Ġ 7 | |
}\ }.\] | |
Ġ on | |
li min | |
sq cup | |
limin f | |
) }) | |
{| }_{ | |
)^{ * | |
_{\ { | |
Ġd x | |
| } | |
k l | |
) }_{\ | |
I I | |
lef tarrow | |
s f | |
}}) =\ | |
2 8 | |
P r | |
* { | |
}{ |\ | |
}\ {\ | |
d dots | |
),\ \ | |
}, ( | |
}| }\ | |
) }}{ | |
| ( | |
d v | |
Ġ\ |\ | |
u p | |
\, ,\] | |
3 0 | |
3 6 | |
L o | |
di am | |
left rightarrow | |
\ {( | |
p r | |
i int | |
G L | |
}} [\ | |
_{* }( | |
}^{+ }\ | |
}} &\ | |
s qu | |
C o | |
down arrow | |
t e | |
}) / | |
)\ |_{\ | |
( |\ | |
c d | |
5 6 | |
\[ - | |
)\ }\] | |
Ġ 9 | |
f f | |
Ġ\[ -\ | |
}^{* }(\ | |
}} :=\ | |
r l | |
!\ !\ | |
}_{ [ | |
) }| | |
hoo k | |
Ġ$ \ | |
tria ng | |
00 0 | |
)}\ , | |
}}) = | |
|\ ,\ | |
hook rightarrow | |
( {\ | |
triang leq | |
^{ [ | |
}> \ | |
] ( | |
4 8 | |
h ere | |
}^{+ }( | |
}} }(\ | |
}( -\ | |
}| = | |
| }{ | |
4 0 | |
{) }=\ | |
) <\ | |
i m | |
x t | |
)\ |\ | |
] + | |
{ }^{ | |
3 5 | |
(\ | | |
lo r | |
)\, .\] | |
n k | |
_{ |\ | |
a c | |
mul ti | |
var sigma | |
cc cc | |
bigg r | |
ll bracket | |
)= - | |
Ġ de | |
if f | |
| + | |
) }} | |
{) }= | |
}) |^{ | |
ign ed | |
$ \ | |
lo c | |
. }\ | |
, | | |
i c | |
int er | |
squ are | |
pa n | |
V ar | |
}| | | |
al igned | |
}] =\ | |
\ } | |
bigg l | |
}=\ {\ | |
}^{ +\ | |
A B | |
h box | |
] _{\ | |
Ġ= -\ | |
)= (\ | |
s k | |
)}{ ( | |
sin h | |
) ]\ | |
rr bracket | |
L e | |
}| \] | |
0 2 | |
^{* }, | |
cos h | |
) :\ | |
}, &\ | |
0 5 | |
_{* } | |
, & | |
Ġth e | |
{\ }}\] | |
v ol | |
] +\ | |
* \ | |
{\ }}.\] | |
Ġ }^{\ | |
) })\] | |
= (\ | |
}}}{ {\ | |
\ ;\ | |
}}) .\] | |
da sh | |
{\| } | |
) )}\ | |
3 1 | |
| ^{- | |
, [ | |
3 7 | |
oth erwise | |
] ^{\ | |
}) : | |
par row | |
}, - | |
box times | |
)) - | |
, * | |
u parrow | |
}) & | |
| - | |
)) ,\] | |
}} }^{ | |
{)}\ , | |
eq ref | |
# \ | |
) .\ | |
Ġ with | |
n i | |
1 00 | |
la t | |
| +\ | |
] }( | |
{( - | |
{) }+\ | |
+ }\ | |
Sp ec | |
})\ |^{ | |
}) )^{ | |
) }^{\ | |
2 6 | |
}) )= | |
) [ | |
inter cal | |
&\ \ | |
\ }} | |
_{ {}_{ | |
\ % | |
{] } | |
) /\ | |
Ġa n | |
}( (\ | |
{\ }}\ | |
7 5 | |
)=\ { | |
}) }(\ | |
}\, ,\ | |
{| }^{ | |
0 4 | |
{= }}\ | |
}_{\ { | |
Ġ co | |
)- ( | |
}}( - | |
s g | |
}) ).\] | |
Ġ= ( | |
}| ^{\ | |
Ġ{ - | |
}] ^{ | |
}) )=\ | |
le l | |
cu rl | |
}+ |\ | |
ral lel | |
=\ { | |
9 6 | |
pa rallel | |
& & | |
Lo ng | |
^{* })\ | |
, -\ | |
D u | |
sup set | |
) ; | |
}} }.\] | |
Ġ or | |
\[ +\ | |
su cc | |
}), ( | |
Ġ to | |
}) }=\ | |
Ġ }{\ | |
c t | |
i x | |
f lat | |
math op | |
c l | |
r ing | |
(\ |\ | |
pm od | |
ra d | |
| |\ | |
}- (\ | |
Ġ := | |
}} : | |
p q | |
)) ,\ | |
, + | |
- (\ | |
\ }^{ | |
+\ | | |
0 3 | |
l Vert | |
)\ |^{ | |
Ġ },\ | |
Le ft | |
l y | |
] )\ | |
_{+ }( | |
Left rightarrow | |
r Vert | |
Ġ\ { | |
}:=\ { | |
)\, ,\] | |
^{* }}\ | |
Ġ ) | |
^{+ }( | |
5 0 | |
Ġ\ |_{ | |
}, {\ | |
_{ {\ | |
2 9 | |
}) > | |
i mp | |
u psilon | |
+ (\ | |
}{ }^{ | |
, (\ | |
d dot | |
math ring | |
o nd | |
}_{ (\ | |
, ..., | |
B o | |
: \, | |
E xt | |
li es | |
) |_{ | |
| .\] | |
^{ {}^{\ | |
arp o | |
hoo se | |
u v | |
)) -\ | |
c hoose | |
}& = | |
b re | |
l u | |
}}) ^{\ | |
n o | |
A d | |
}= [ | |
}) },\] | |
}}) _{ | |
}| |_{ | |
. }\] | |
s pan | |
| =\ | |
n e | |
)) + | |
4 4 | |
}} :\ | |
3 8 | |
o ut | |
ve n | |
Ġ ^{- | |
{( }-\ | |
9 8 | |
sk ip | |
}] .\] | |
}) &\ | |
}) < | |
S ym | |
m o | |
Ġ })\ | |
{) }+ | |
od d | |
}} ] | |
{) }_{ | |
imp lies | |
{\ |\ | |
ra nk | |
ker n | |
o me | |
_{* }^{ | |
\, ,\ | |
})= (\ | |
| |_{ | |
M od | |
}] }\ | |
\ }_{ | |
Bo x | |
A ut | |
sg n | |
}, & | |
^{* }_{\ | |
] { | |
l vert | |
}| |\ | |
)) +\ | |
})+ ( | |
j i | |
G r | |
}) := | |
}(\ { | |
6 0 | |
[ -\ | |
}_{+ }^{ | |
bre ve | |
] -\ | |
, {\ | |
}{ (\ | |
t u | |
}( |\ | |
r vert | |
Ġ }_{\ | |
- |\ | |
* }\ | |
or d | |
& -\ | |
Ġ }, | |
}^{* },\ | |
}; \] | |
)) ^{\ | |
{( }(\ | |
)\ ; | |
}] ( | |
}\ },\ | |
}^{- }( | |
}& =\ | |
})\ }\] | |
i r | |
}) ]\ | |
] \\ | |
}}^{ + | |
big wedge | |
h skip | |
}^{- }\ | |
}}\, .\] | |
o int | |
b c | |
) ^ | |
_{+ }\ | |
) }}{\ | |
{ -\ | |
}* \ | |
w here | |
}) :\ | |
h e | |
Ġ }} | |
=\ ,\ | |
{ $ | |
{) }( | |
var kappa | |
b b | |
g r | |
K L | |
Ġ\[= -\ | |
Ġ }+\ | |
S L | |
0 6 | |
(\ { | |
})\ | | |
Ġ }- | |
} . | |
over rightarrow | |
{] }.\] | |
re s | |
z e | |
Re s | |
}} <\ | |
de f | |
}^{* }, | |
_{* }(\ | |
)^{ ( | |
7 8 | |
}/ ( | |
Ġa s | |
7 9 | |
)| \] | |
}) }= | |
0 8 | |
7 6 | |
}{ }_{ | |
)}\ \ | |
ec t | |
Ġ {( | |
Ġ\( ( | |
)) ( | |
}} / | |
)) _{ | |
+\ |\ | |
dx dt | |
}\ },\] | |
{| }_{\ | |
}\, ( | |
prec eq | |
lu mn | |
^{* }- | |
Ġs ome | |
e v | |
E nd | |
)} |\ | |
}}) ( | |
v dash | |
;\ ;\ | |
}} |^{ | |
Ġ\[ - | |
Ġ }+ | |
d V | |
}) }+\ | |
5 5 | |
{) }-\ | |
^{+ }_{ | |
| < | |
Ġth at | |
{ }_{\ | |
! } | |
}}{ (\ | |
n eg | |
math it | |
t s | |
! [ | |
Ġ& +\ | |
in d | |
r u | |
})\ |\ | |
diam ond | |
co lumn | |
}} },\ | |
\ }=\ | |
^{+ }\ | |
] - | |
r times | |
multi column | |
] ; | |
}) /\ | |
T V | |
4 9 | |
) ;\ | |
}^{* })\ | |
long mapsto | |
I nd | |
^{- }( | |
l g | |
}) <\ | |
}) },\ | |
{) },\ | |
Ġ& = | |
e l | |
}| + | |
... ,\ | |
k j | |
_{- }( | |
}& - | |
}| +| | |
) ]\] | |
\| \] | |
}] , | |
}}) }\ | |
}, (\ | |
text tt | |
3 9 | |
Ġ / | |
}} < | |
p th | |
| (\ | |
ar c | |
e ss | |
))\ , | |
)}\ ,\ | |
.. .\ | |
}) ^{* | |
Ġ= - | |
| )\ | |
Ġ :\ | |
Ġ }| | |
d W | |
})= -\ | |
Ġan y | |
oth ing | |
g cd | |
{\ }},\] | |
\, ( | |
] }\] | |
}}) ,\] | |
4 6 | |
}^{+ } | |
var n | |
varn othing | |
Ġ con | |
8 8 | |
})\, .\] | |
}] + | |
}=\ {( | |
Ġ )^{ | |
_{+ }^{ | |
^{+ }}\ | |
{) }^{- | |
) })^{ | |
, |\ | |
r k | |
]\ ! | |
n p | |
}] ,\ | |
Ġ * | |
}}+\ | | |
}\ .\] | |
{| }\] | |
dx dy | |
}),\ \ | |
Ġd t | |
Ġ\[= ( | |
}}) ,\ | |
{= }} | |
}[ ( | |
!\ ! | |
a x | |
ge n | |
}} > | |
tan h | |
^{* }) | |
] }{ | |
}} }=\ | |
\| ( | |
,\ ; | |
ij k | |
}} }^{\ | |
}}\ }\] | |
}}\ ) | |
0 7 | |
)) }{ | |
{)}\ \ | |
pro j | |
^{* },\ | |
Ġ su | |
{)}\ ,\ | |
| +| | |
V ol | |
}^{* }\] | |
)| = | |
ym p | |
S O | |
}} ^ | |
}}^{ (\ | |
[ (\ | |
A x | |
d w | |
bb k | |
B bbk | |
\ }, | |
)}\ |_{ | |
\[\ {( | |
: \,\ | |
ho m | |
triangle right | |
| }{\ | |
L ip | |
L i | |
Ġ }-\ | |
}] _{\ | |
)}{ | | |
8 0 | |
}}= ( | |
}}{ |\ | |
4 2 | |
\[ + | |
r eg | |
}} ]\ | |
ver y | |
| )^{ | |
r s | |
}, -\ | |
}) ),\] | |
) >\ | |
Ġ re | |
)}\ | | |
)^{ | | |
), & | |
| > | |
R ic | |
] )\] | |
text sc | |
})\ ) | |
Ġ{ * | |
})=\ { | |
Ġ\[ ( | |
cc c | |
mathb in | |
}:= ( | |
7 2 | |
_{- }\ | |
g tr | |
i math | |
_{ [\ | |
}}^{* }\ | |
d m | |
Ġe very | |
})\ |_{\ | |
9 5 | |
Ġ odd | |
4 3 | |
}} },\] | |
}) [ | |
})- ( | |
}_{+ }\ | |
p e | |
}^{* }}\ | |
}| }{ | |
de l | |
as ymp | |
th arpo | |
, +\ | |
}} }+\ | |
\},\ { | |
-\ ! | |
}^{ {}^{\ | |
}) ]\] | |
gtr sim | |
h d | |
})}{ ( | |
}| - | |
{- }\ | |
}) }+ | |
=\ , | |
4 1 | |
\ }= | |
s ign | |
)\ }\ | |
big vee | |
}] ^{\ | |
{) }- | |
}}) - | |
}}) ^{- | |
Ġe ven | |
K er | |
h en | |
d f | |
}^{* }=\ | |
) }}\] | |
n m | |
}}}{ {=}}\ | |
}}) +\ | |
}{\ | | |
}- | | |
w p | |
^{* }} | |
}}) -\ | |
d R | |
e igh | |
}{ }^{\ | |
)& = | |
q ed | |
bm od | |
r n | |
_{+ } | |
i se | |
v box | |
)] ^{ | |
D i | |
}, [ | |
}}) + | |
}\ }}\ | |
)\ ! | |
no limits | |
4 7 | |
y y | |
}}+\ |\ | |
t w | |
}\| \] | |
), &\ | |
Ġ )}\ | |
s ym | |
o nu | |
Long rightarrow | |
6 6 | |
}} ;\ | |
tharpo onu | |
tharpoonu p | |
}] ,\] | |
n n | |
)\ }.\] | |
)) , | |
; \\ | |
0 9 | |
{( }| | |
\{ | | |
Co v | |
\, |\, | |
}) .\ | |
H S | |
}\ ,\] | |
s o | |
X Y | |
}}\, ,\] | |
w t | |
| <\ | |
{\| }_{\ | |
ti ve | |
}] +\ | |
Ġ ds | |
5 8 | |
big otimes | |
)! }\ | |
] }(\ | |
}) )}\ | |
^{* }}( | |
S h | |
)_{ + | |
{ , | |
}| .\] | |
d p | |
re d | |
}(\ | | |
d om | |
},\ ; | |
{( }- | |
)& =\ | |
^{ | | |
}| =\ | |
}}{\ | | |
Ġ1 2 | |
})= - | |
v al | |
}} := | |
})^{ -\ | |
}} }_{ | |
g rad | |
c line | |
}) }^{\ | |
c tion | |
Ġ= (\ | |
12 3 | |
Long leftrightarrow | |
Ġde f | |
righ tharpoonup | |
}^{* }_{ | |
}= [\ | |
\{ - | |
}^{+ }(\ | |
m k | |
}{ * | |
s m | |
] (\ | |
C S | |
} ! | |
;\ ; | |
\ .\] | |
\ })\ | |
7 7 | |
Ġ\( - | |
}& -\ | |
}| +\ | |
d g | |
Ġ â | |
})\, ,\] | |
P ro | |
Ġ }}{ | |
)) }{\ | |
d S | |
)} [ | |
multi row | |
m b | |
Ġw here | |
a v | |
t y | |
}} .\ | |
}| ( | |
}\ } | |
+\ ! | |
S E | |
t x | |
& ( | |
ru le | |
: ( | |
i a | |
Ġ1 6 | |
( [\ | |
t ra | |
}\, |\, | |
^{+ } | |
\[| | | |
k i | |
g h | |
) }}( | |
O p | |
eigh t | |
}}\ |_{\ | |
e nt | |
{] },\] | |
}) |_{ | |
5 4 | |
)) ^{- | |
}}{ { | |
}) )_{ | |
Ġsu ch | |
6 8 | |
,\ { | |
e a | |
}_{ > | |
e ff | |
|^{ -\ | |
}] )\ | |
)} & | |
5 7 | |
B C | |
00 00 | |
= [ | |
{(}\ | | |
Ġ }) | |
}} }= | |
{- } | |
{ {( | |
\ (\ | |
})| \] | |
succ eq | |
lo w | |
)/ ( | |
}^{* }- | |
}}( ( | |
arg min | |
op t | |
supset eq | |
}}= -\ | |
) }:=\ | |
}) }_{ | |
_{\ {\ | |
A lg | |
Ġ ^{( | |
}) ^{*}\ | |
}| } | |
big sqcup | |
}] - | |
}} ; | |
| -\ | |
9 7 | |
p o | |
}}+ ( | |
)}\ |\ | |
}=\ | | |
}} /\ | |
)^{ + | |
})\ }_{ | |
k n | |
}( [\ | |
\[\| ( | |
}) )- | |
j j | |
^{\ # | |
wi d | |
re e | |
^{* }+ | |
pr op | |
d d | |
$ , | |
i b | |
d A | |
^{- }\ | |
\[( - | |
)} &\ | |
})^{ ( | |
\| (\ | |
)+ (\ | |
}: ( | |
C on | |
triangle left | |
}} }}\ | |
Ġ }\, | |
{| }\,\ | |
Pi c | |
mo del | |
}= {\ | |
wid th | |
c y | |
}} ]\] | |
}, ...,\ | |
}}\ { | |
C P | |
6 7 | |
}_{\ {\ | |
}), (\ | |
u b | |
[\ ![ | |
& = | |
)^{* }\ | |
),\ , | |
}^{* }-\ | |
5 9 | |
{(}\ |\ | |
Ġ( - | |
d X | |
}}\ !\ | |
na tu | |
|\ ! | |
_{- } | |
ra ise | |
i z | |
) {\ | |
}:=\ {\ | |
| ,\] | |
{] }^{ | |
^{- (\ | |
& &\ | |
^{* }=\ | |
y z | |
! ( | |
B M | |
Co h | |
)) )\ | |
[ [ | |
Ġ [\ | |
}}= (\ | |
Ġ1 1 | |
}= (- | |
}| +|\ | |
natu ral | |
Ġde pth | |
}) }}\ | |
Ġ |^{ | |
\{ -\ | |
)) )\] | |
5 2 | |
}} }+ | |
S t | |
))\ ,\ | |
C h | |
}\, (\ | |
e rm | |
{\| }^{ | |
)) } | |
b y | |
}) )+ | |
Ġd y | |
}} |_{ | |
Ġ1 4 | |
\| _ | |
}) ),\ | |
- $ | |
S S | |
T M | |
}^{ | | |
\ ( | |
):=\ { | |
model s | |
_{- }^{ | |
con v | |
}}_{ ( | |
; .\] | |
}^{( - | |
}},\ \ | |
}}}{ ( | |
ĠR e | |
{[ }( | |
{(} |\ | |
)\, ,\ | |
Ġ }}( | |
ge ts | |
)=\ {\ | |
v rule | |
Ġ2 0 | |
^{- }_{ | |
}^{* }= | |
) [\ | |
|\ !\ | |
M ap | |
}] } | |
{| }\, | |
^{ |\ | |
}) ^ | |
}{ }{ | |
], [ | |
}(\ |\ | |
u e | |
| ,\ | |
A C | |
\ # | |
l k | |
a u | |
}:= (\ | |
Ġo th | |
}) }\| | |
= | | |
}_{ {\ | |
12 8 | |
)| _{\ | |
rc l | |
6 3 | |
}) )+\ | |
})+ (\ | |
Ġ\ {\ | |
6 5 | |
}) )^{\ | |
}) )-\ | |
/ (\ | |
) * | |
Ġ width | |
9 0 | |
}}) _{\ | |
_{* }, | |
{\ }} | |
Ġh eight | |
)\ ;\ | |
}] )\] | |
small setminus | |
,\ ;\ | |
Ġ at | |
}) }-\ | |
d n | |
), (\ | |
Ġ se | |
}}{ {=}}\ | |
{$ -$ | |
}) }- | |
}] -\ | |
}}{\ |\ | |
}\| ( | |
d B | |
prop to | |
5 1 | |
^{* }\] | |
}) )( | |
Ġ2 8 | |
n s | |
k k | |
}}) , | |
}[\ |\ | |
i y | |
b s | |
] ,\\ | |
| ) | |
}, | | |
^{+ }_{\ | |
u r | |
}- {\ | |
) $ | |
}= | | |
ĠC h | |
-\ !\ | |
\{ (\ | |
}^{- } | |
6 9 | |
] \, | |
Ġd i | |
+ } | |
x z | |
{] }=\ | |
\ })\] | |
)- (\ | |
t er | |
,\ | | |
I n | |
{\{ }( | |
},\ { | |
\ ,\] | |
\ }\\ | |
}\, {\ | |
] ;\ | |
^{* })\] | |
N R | |
8 4 | |
Ġt r | |
}) ;\ | |
}+ {\ | |
s l | |
}}) )\] | |
) }^{( | |
}} }-\ | |
7 0 | |
=\ {\ | |
c op | |
ol y | |
}^{* })^{ | |
H H | |
; ( | |
Ġ= &\ | |
Ġ} |\ | |
}\,\ ,\ | |
}| < | |
ca le | |
\, (\ | |
}{ }_{\ | |
u u | |
_{* }^{\ | |
C H | |
er f | |
}}) )\ | |
8 1 | |
& =\ | |
\[( ( | |
}| ^{- | |
}[\ | | |
}} }, | |
}{* }{ | |
G al | |
}^{* }+ | |
u ph | |
on right | |
arpo onright | |
uph arpoonright | |
d k | |
5 3 | |
8 9 | |
)= (- | |
}| > | |
Ġoth erwise | |
{ } | |
}^{* })\] | |
j l | |
$ }\ | |
)) }\] | |
in it | |
}\;\ ; | |
F ro | |
}[ | | |
}}=\ { | |
+\ !\ | |
Ġ=\ { | |
8 6 | |
) })=\ | |
k m | |
| +|\ | |
}[ (\ | |
}=\ |\ | |
u nd | |
] }{\ | |
rn er | |
k h | |
},\ ;\ | |
)] = | |
}\, | | |
}) >\ | |
b ot | |
Ġd iv | |
E x | |
^{* * | |
}_{+ }( | |
raise box | |
co rner | |
] ^{- | |
Ġ < | |
}_{ -\ | |
)] =\ | |
}[ - | |
Re p | |
& * | |
2 00 | |
\[| |\ | |
& &\\ | |
}}\ |^{ | |
}} }- | |
\ }}\] | |
. \\ | |
a ch | |
) })_{ | |
in v | |
| }\] | |
)\ .\] | |
}_{ | | |
N N | |
Bigg r | |
}}^{* } | |
$ }.\] | |
}; \\ | |
pa ce | |
w hen | |
Ġ& -\ | |
}] (\ | |
\ _ | |
c ot | |
),\ ,\ | |
)= [ | |
}}\ ! | |
P S | |
d h | |
f g | |
) })= | |
m i | |
})- (\ | |
R S | |
}}) (\ | |
}) [\ | |
Ġ\[= (\ | |
a ngle | |
}\!\ !\ | |
b d | |
)) (\ | |
)| =\ | |
^{* })^{ | |
}]\ ! | |
ĠC e | |
Ġ un | |
Ġ\[= - | |
_{+ }(\ | |
7 4 | |
a cu | |
ta b | |
)| }\ | |
8 5 | |
}^{+ }}\ | |
Ġi j | |
{] }= | |
\| =\ | |
=\ !\ | |
r hd | |
# \{ | |
[\ |\ | |
+ (- | |
}^{+ },\ | |
}}^{* }( | |
acu te | |
}^{* }) | |
Bigg l | |
g l | |
^{* }-\ | |
d q | |
d le | |
}\, |\,\ | |
}} })\ | |
arc tan | |
bla ck | |
F un | |
) ;\] | |
\ }}( | |
Ġ ma | |
\[ {}_{ | |
Ġ} [ | |
}- |\ | |
^{* }= | |
me nt | |
he ad | |
$ }_{ | |
}+ (- | |
II I | |
r d | |
s cale | |
}^{ |\ | |
}}}{ {=}} | |
ro d | |
}^{* }+\ | |
})\ }\ | |
Ġb y | |
)] _{ | |
tw o | |
* } | |
] }^{ | |
\, {\ | |
ĠT r | |
Ġ1 3 | |
) })^{\ | |
D f | |
_{* }}\ | |
}) }+\| | |
] {\ | |
- }\ | |
8 7 | |
Ġ me | |
Ġ}\ ,\ | |
}^{+ }_{ | |
gen frac | |
Ġ\[ (\ | |
Ġ ra | |
co lim | |
\[\| (\ | |
f in | |
Ġ1 00 | |
ro r | |
}| }{\ | |
y x | |
Ġ& + | |
) }}{{\ | |
cop rod | |
D iff | |
)( - | |
a y | |
Ġ }}^{ | |
{] }+\ | |
):= ( | |
] : | |
)| }{ | |
S A | |
\| .\] | |
si ze | |
Ġ }=\ | |
}_{* }\ | |
mid dle | |
] }| | |
S T | |
| >\ | |
F il | |
C A | |
{ $\ | |
+\ ,\ | |
S U | |
}-\ | | |
two head | |
twohead rightarrow | |
\, , | |
{(} [ | |
subset neq | |
}) }, | |
_{+ }^{\ | |
}) ; | |
[\ | | |
)}+\ | | |
}) }\\ | |
ar d | |
_{+ }, | |
^{( - | |
)| ^{\ | |
}= |\ | |
mb er | |
A A | |
6 1 | |
)\ }_{ | |
=\ ! | |
^{*}\ |^{ | |
a le | |
b i | |
Ġ <\ | |
A v | |
si on | |
scale box | |
_{\ | | |
) }}.\] | |
ma l | |
7 3 | |
}\ })\] | |
$ - | |
}} _ | |
}) }| | |
}^{+ }, | |
))\ \ | |
a top | |
in j | |
M L | |
) }).\] | |
}| )\ | |
al g | |
^{* }\|_{ | |
^{+ }} | |
}^{\ # | |
}) ^{*} | |
Ġ\ |_{\ | |
co mp | |
}\ }=\ | |
9 4 | |
)|\ , | |
L S | |
)) }^{ | |
Ġ }}{\ | |
ti c | |
}\,\ , | |
_{ < | |
ra n | |
I J | |
Ġe ach | |
}+ \] | |
C C | |
P T | |
}^{- }(\ | |
^{+ }(\ | |
}}\ }\ | |
}}\ ; | |
}\ }, | |
Ġ& & | |
}\, :\, | |
up p | |
s n | |
[ | | |
4 99 | |
Ġ }^{( | |
Ġ1 5 | |
:=\ { | |
_{* })\ | |
})}\ |\ | |
}_{+ }}\ | |
B K | |
]= [ | |
I nt | |
}\| (\ | |
}}) }{ | |
_{\ # | |
l m | |
}}( [ | |
Ġ\ |^{ | |
}}) } | |
}^{ [\ | |
}\ }} | |
Ġ )- | |
}\ }= | |
Ġi d | |
)} <\ | |
! [\ | |
b e | |
y s | |
}) }}{ | |
\ }^{\ | |
)\ },\] | |
{)}\, .\] | |
9 2 | |
=\ {( | |
Ġ }= | |
dot eq | |
C l | |
\| = | |
}: | | |
se arrow | |
}}= - | |
Li e | |
] }=\ | |
}\;\ ;\ | |
)^{ |\ | |
l times | |
: , | |
n h | |
}^{* }} | |
Ġm od | |
= |\ | |
\{ |\ | |
}\; .\] | |
d P | |
45 27 | |
p p | |
}})\ , | |
}(\ {\ | |
\! -\! | |
i h | |
}} })\] | |
}{ $\ | |
a a | |
\| +\ | |
! }{ | |
{) }_{\ | |
)| .\] | |
37 8 | |
Ġ are | |
)) |\ | |
})\ ; | |
^{* }}{ | |
j ect | |
}^{+ }\] | |
C F | |
}| <\ | |
S tab | |
\ }+\ | |
}}) }{\ | |
_{ {}_{\ | |
Ġ ad | |
) !\ | |
Ġn o | |
sin g | |
a tion | |
Ġ )-\ | |
}}( {\ | |
Ġ op | |
6 2 | |
}\| =\ | |
| |^{ | |
}\ })\ | |
Ġ min | |
7 1 | |
C at | |
}|= | | |
=\ ;\ | |
de pth | |
}}\ {\ | |
+\ , | |
A P | |
| }{| | |
] },\ | |
}} }| | |
= }\ | |
\, |\,\ | |
c n | |
}\ # | |
{) }(\ | |
Ġ pa | |
C R | |
}{\ |\ | |
Ġ}\ \ | |
}_{* }( | |
S D | |
}| |^{ | |
c s | |
)] .\] | |
^{* }+\ | |
}}}{ { | |
) }=( | |
_{ , | |
| ^ | |
9 3 | |
}) }\,\ | |
] [ | |
)^{* } | |
)= | | |
}^{* }_{\ | |
22 6 | |
} ... | |
}_{ [\ | |
Ġ int | |
c m | |
]\ ) | |
Ġ{ + | |
) })- | |
})^{ + | |
}& ( | |
Ġâ Ģ | |
< +\ | |
M N | |
^{* }}^{ | |
T or | |
})\ }.\] | |
})_{ + | |
D R | |
| / | |
}}) }\] | |
\[( -\ | |
u ll | |
}^{* }\|_{ | |
}|\ , | |
\{\ | | |
_{+ }- | |
)\ ,\] | |
_{+ }}\ | |
{ / | |
a q | |
\ }&\ | |
] }_{ | |
. , | |
l r | |
) }}^{ | |
{) }}{\ | |
Ġ : | |
to m | |
i e | |
}\| _ | |
12 0 | |
00 1 | |
) . | |
) )=( | |
}) _{( | |
^{- } | |
proj lim | |
)}{ (\ | |
^{+ }, | |
var projlim | |
* {\ | |
< | | |
25 6 | |
8 3 | |
M C | |
})=\ {\ | |
k t | |
|\ \ | |
en s | |
Ġ ),\ | |
v matrix | |
}) ]^{ | |
)}\, .\] | |
$ }\\ | |
) }}(\ | |
Ġ bo | |
Ġ time | |
{) }}{ | |
s r | |
$ },\\ | |
)} [\ | |
C N | |
S pan | |
)| |_{ | |
;\ , | |
)! } | |
* _{ | |
o minus | |
}}( -\ | |
}\,\ | | |
P D | |
)| | | |
y pe | |
}}^{ [ | |
)\ !\ | |
* }( | |
) }: | |
p n | |
}}, &\ | |
init e | |
}| }{| | |
Ġd z | |
}^{\ , | |
Ġ1 8 | |
,\, - | |
triangle down | |
}\, |\ | |
ab c | |
},\ {\ | |
}^{- ( | |
n r | |
}| ,\] | |
B B | |
H F | |
Ġ& && | |
curl y | |
S upp | |
k x | |
Ġ > | |
,\ |\ | |
z z | |
}) })\] | |
D G | |
Ġâ ľ | |
p le | |
\[ {}^{ | |
}}- ( | |
D F | |
n x | |
}| }\] | |
|\ { | |
}| ,\ | |
m m | |
Ġ )+\ | |
\!\ ! | |
Ġ De | |
}]= [ | |
}\, , | |
re a | |
| |_{\ | |
I S | |
M M | |
11 1 | |
b j | |
p lus | |
]\ ,\ | |
Ġ }\] | |
d F | |
_{- }(\ | |
l d | |
}}( | | |
B S | |
] ) | |
T x | |
A u | |
op y | |
}} }_{\ | |
}:=\ {( | |
{ : | |
Ġ loc | |
curly eq | |
}\, =\,\ | |
Ġ le | |
:= ( | |
}\},\ { | |
e ven | |
)| }{| | |
)) _{\ | |
Ġ ;\ | |
i ze | |
}) })\ | |
) })-\ | |
k r | |
tion s | |
R T | |
)| +| | |
e p | |
Ġs t | |
) }] | |
c x | |
it y | |
Ġn ot | |
t v | |
Ġ }^{- | |
j math | |
\[\ # | |
9 1 | |
}) }_{\ | |
}) ]_{ | |
}, [\ | |
a ve | |
_{ { | |
Ġ pro | |
ca n | |
}| (\ | |
]\ }\] | |
cccc c | |
Ġ })^{ | |
)}{ |\ | |
fo rm | |
\, | | |
long leftrightarrow | |
c b | |
}} }\| | |
{] }\\ | |
}\ }_{\ | |
}}\ ;\ | |
}/ (\ | |
i u | |
}\!\ ! | |
}[ |\ | |
}] }( | |
4527 56 | |
] )=\ | |
}] \\ | |
}}\, ,\ | |
C D | |
}), &\ | |
Ġ{ -\ | |
}_{ {}_{ | |
A D | |
C B | |
ac t | |
I C | |
{ }\ | |
| , | |
] }, | |
| }.\] | |
\[| ( | |
S P | |
Ġ }}(\ | |
T C | |
}) ), | |
sub ject | |
t A | |
. } | |
)}+\ |\ | |
Ġ\[ +( | |
a k | |
) }),\ | |
H ess | |
\| ^{\ | |
}\| .\] | |
}} }} | |
ng e | |
}^{+ }} | |
D v | |
B V | |
}) }|\ | |
) _{( | |
ne w | |
\ ), | |
}) {\ | |
n c | |
}| ,| | |
))\ |_{ | |
BM O | |
m s | |
_{ > | |
S et | |
}) }\, | |
^{- | | |
over leftarrow | |
)} > | |
,\,\ ,\ | |
R eg | |
Ġ\( [ | |
, [\ | |
Di am | |
k p | |
M at | |
^{* }}(\ | |
})& = | |
}+ [ | |
mul t | |
] }\| | |
de d | |
Ġ\ # | |
}| |_{\ | |
(\ {\ | |
b x | |
C T | |
}) ))\] | |
s d | |
ng th | |
box plus | |
lit y | |
p k | |
! }( | |
}}| | | |
c ri | |
Ġ )^{\ | |
Ġ\ !\ | |
-\ | | |
Ġ}\ | | |
v i | |
}-\ |\ | |
}: (\ | |
}) }+\|\ | |
)} / | |
8 2 | |
| -| | |
}} }\, | |
] .\ | |
}] }\] | |
{) }}\ | |
_{\ |\ | |
1 000 | |
}) )}\] | |
ĠC o | |
] )= | |
{ [\ | |
}} }\,\ | |
}) |_{\ | |
ti t | |
}[ [ | |
}^{- }, | |
. +\ | |
r b | |
al l | |
B r | |
}}( (\ | |
0 10 | |
j n | |
\[\ #\ | |
}}{ {=}} | |
Ġw hen | |
\; .\] | |
e st | |
}_{* }^{ | |
},\ |\ | |
}] ,[ | |
Ġc h | |
)= \] | |
Ġ- ( | |
R F | |
ce s | |
S H | |
Ġ max | |
Ġ ^{-\ | |
co v | |
Ġ )=\ | |
: | | |
Di ag | |
cu r | |
Ġ )= | |
Ġ ho | |
su it | |
b u | |
k s | |
N S | |
226 378 | |
t ex | |
ta l | |
er r | |
L M | |
X X | |
G D | |
Ġ )+ | |
t ot | |
var Phi | |
}^{* }.\] | |
tex tit | |
ne arrow | |
] }= | |
Ġ& &\ | |
se d | |
F ix | |
t z | |
}\| +\ | |
inj lim | |
}),\ , | |
var injlim | |
d b | |
a e | |
12 5 | |
\| }\ | |
C M | |
ap p | |
S q | |
Ġo ut | |
kl y | |
I rr | |
)! ( | |
ro m | |
Ġ nu | |
ea kly | |
, }\\ | |
{] }_{ | |
Ġ )( | |
\[\{ (\ | |
Ġd ist | |
Ġ set | |
}) /( | |
| {\ | |
^{* })=\ | |
0 75 | |
il b | |
- (- | |
Sp in | |
i q | |
th e | |
)! }{ | |
S M | |
) }|^{ | |
+ [ | |
\, :\, | |
pha n | |
}+ ... | |
) })( | |
}} >\ | |
}\, :\,\ | |
}: \, | |
B D | |
}^{+ }- | |
phan tom | |
}&\ \ | |
Ġ2 4 | |
{] }^{\ | |
11 0 | |
ar t | |
}},\ ,\ | |
] :\ | |
| }( | |
Ġn on | |
) }^{- | |
\ }\,.\] | |
})| = | |
B A | |
ĠH om | |
g x | |
)= {\ | |
}\ ), | |
] }.\] | |
(\ ,\ | |
er ror | |
{] }+ | |
Ġ\ }\ | |
}| -\ | |
A X | |
ĠS p | |
Ġd u | |
\ }+ | |
- } | |
im ize | |
}_{* }(\ | |
)}( - | |
}^{\ { | |
)| <\ | |
hom ot | |
_{- }^{\ | |
h t | |
[ |\ | |
Ġ )}{ | |
_{* },\ | |
)) | | |
y p | |
)} < | |
}}\ }_{ | |
}}\ .\] | |
}_{ < | |
_{- }, | |
: (\ | |
\}\ }\] | |
tra ce | |
}^{- },\ | |
Pro j | |
F S | |
Ġ1 7 | |
}^{+ })\ | |
}= \] | |
ale ph | |
\ )) | |
}} ]_{ | |
)\, =\,\ | |
homot opy | |
_{+ },\ | |
b r | |
P er | |
L T | |
! }\] | |
de s | |
}_{+ }(\ | |
Ġ}\ |\ | |
! )^{ | |
}] }{ | |
1 12 | |
n j | |
{[ }(\ | |
Ġon ly | |
})\ ! | |
)) }.\] | |
t d | |
s a | |
^{ [\ | |
},\ | | |
Ġ\ ! | |
Ex p | |
)| +\ | |
ra ph | |
] ).\] | |
, : | |
k e | |
^{- }}\ | |
)| |\ | |
}_{ |\ | |
] /( | |
\ },\\ | |
me ter | |
Ġ3 2 | |
co l | |
}}| _{\ | |
_{( - | |
}) ]=\ | |
}| -| | |
over brace | |
})\, ,\ | |
)] ^{\ | |
S C | |
Ġ\[ < | |
Ġi t | |
}) ]= | |
le ment | |
79 4 | |
{[ }{ | |
}_{+ }} | |
}},\ , | |
=\ ; | |
}_{- }\ | |
\,\ ,\ | |
}}+ (\ | |
{)} .\ | |
}^{+ }_{\ | |
]+ [ | |
r ot | |
p l | |
{) }, | |
av g | |
_{- }}\ | |
} !\ | |
Ġ2 1 | |
5 12 | |
^{* }.\] | |
a w | |
l t | |
),\ ; | |
;\ ,\ | |
un ction | |
j m | |
sc ri | |
\[ { | |
}}^{ -\ | |
var Gamma | |
con st | |
) }}=\ | |
d c | |
ĠI I | |
})= (- | |
}\! +\! | |
L R | |
Ġ ; | |
= : | |
A R | |
B P | |
|= | | |
}})\ \ | |
box ed | |
\ }-\ | |
)}\ |_{\ | |
}^{* }}( | |
L P | |
}\,\ |\ | |
}| )^{ | |
$ },\] | |
^{- }(\ | |
}}}{ | | |
Ġco mp | |
Ġa b | |
Ġ\( -\ | |
prec curlyeq | |
}) )^{- | |
Ġ}\ |_{ | |
\ }=\{ | |
a i | |
) }:\ | |
}, |\ | |
ad j | |
r g | |
{)}\, ,\] | |
n l | |
ĠT he | |
) }),\] | |
V ect | |
ch ar | |
M SE | |
â Ģ | |
\[= -\ | |
{[}{ ]}{ | |
l hd | |
} !}\ | |
M F | |
f d | |
}) )} | |
}),\ ,\ | |
o si | |
Ġ1 9 | |
}_{- }( | |
}}^{* }(\ | |
}^{+ }=\ | |
Diam ond | |
}} }|\ | |
B L | |
)| + | |
\[ =( | |
}) )}{ | |
] })\ | |
t f | |
i ce | |
}\; ,\] | |
: [ | |
- [ | |
o s | |
Ġ\[\ |\ | |
C e | |
e e | |
Ġs a | |
}\| = | |
a su | |
n mid | |
})\ .\] | |
$, }\\ | |
ens pace | |
Ġ sp | |
Lo g | |
D P | |
Ġ ))\ | |
F r | |
| ,| | |
o sc | |
}}+ | | |
D E | |
] / | |
d L | |
n q | |
| )\] | |
ĠM e | |
ij kl | |
in e | |
] \,.\] | |
p d | |
Ġ lo | |
M P | |
| )^{\ | |
C E | |
S I | |
d N | |
p oly | |
lr corner | |
Ġ\[\ | | |
Ġ= [ | |
}}=\ {\ | |
Ġt erm | |
i me | |
a se | |
Ġ=\ {\ | |
ĠI m | |
})}{ | | |
}\! -\! | |
H ilb | |
}|\ ,\ | |
i tion | |
5 00 | |
)}\ ) | |
\{\ |\ | |
xx x | |
G W | |
}}^{ +}\ | |
row n | |
+ {\ | |
+ }( | |
t X | |
\ )} | |
^{\ { | |
})} <\ | |
] }|\ | |
}) ))\ | |
^{* })= | |
Ġ3 0 | |
}< +\ | |
}&= & | |
)) ) | |
\, |\ | |
B u | |
t n | |
ro ng | |
ra meter | |
14 4 | |
}\|\ |\ | |
}}\ !\!\ | |
}) }} | |
-\ ,\ | |
$ }} | |
}), & | |
ab le | |
) })+\ | |
r x | |
_{* }- | |
Ġ5 0 | |
] }}\ | |
c ho | |
d l | |
}: [ | |
( { | |
Ġf rom | |
f rown | |
)}_{ ( | |
C om | |
499 794 | |
- {\ | |
)|\ ,\ | |
l j | |
o b | |
$ .}\] | |
] }\|\ | |
)\; .\] | |
g o | |
}}, & | |
}) _{*}\ | |
}\| ^{\ | |
\! +\! | |
Ġ& - | |
* }^{ | |
)}\ }\] | |
}_{+ },\ | |
r op | |
)= |\ | |
)}\ |^{ | |
{| }.\] | |
T f | |
})\ ;\ | |
f i | |
Ġ} }_{ | |
co th | |
el se | |
v w | |
Ġ\ ;\ | |
}= -( | |
)+ | | |
F F | |
\,\ , | |
b ab | |
A T | |
D iv | |
P a | |
se c | |
c le | |
Ġâľ ĵ | |
Q u | |
m ix | |
\,\ | | |
_{* , | |
}) )}{\ | |
)=\ {( | |
R R | |
)] ,\] | |
Ġ times | |
ĠN o | |
T X | |
}\| }\ | |
{] }-\ | |
^{+ },\ | |
}))\ \ | |
}} }\\ | |
re sp | |
,* }( | |
}}}{ {= | |
}\| + | |
. & | |
-\ , | |
m d | |
\[ {}^{\ | |
] )}\ | |
( (- | |
da ta | |
^{- }_{\ | |
sta nt | |
) }},\] | |
! }{( | |
F P | |
d Y | |
di sc | |
S ub | |
Ġ ), | |
Ġ )} | |
; - | |
B G | |
C t | |
a f | |
}} *\ | |
Ġ exists | |
) _{- | |
arc cos | |
v v | |
}] }{\ | |
^{- }, | |
min imize | |
{| }+\ | |
\ }_{\ | |
S R | |
)}\, ,\] | |
i T | |
, }\ | |
}\|\ | | |
}) }}{\ | |
_{+ , | |
ĠG L | |
] :=\ | |
)| +|\ | |
})& =\ | |
] }^{\ | |
}}( |\ | |
Ġx y | |
\[( (\ | |
t p | |
):=\ {\ | |
)} ; | |
10 1 | |
$ }}\ | |
}} * | |
_{+ }+ | |
}}, ( | |
T u | |
... & | |
\[| (\ | |
i lity | |
Ġh as | |
ĠC r | |
Ġp oint | |
}| >\ | |
)) / | |
}}}\ |\ | |
S w | |
Ġ2 3 | |
up lus | |
o us | |
\[( {\ | |
en ce | |
\;\ ;\ | |
}) ;\] | |
s w | |
u m | |
}^{* }}{ | |
Ġ= (- | |
a z | |
) }]\ | |
D er | |
m r | |
| }}\ | |
x leftarrow | |
Ġ2 5 | |
}\, .\ | |
}\,\ ,\, | |
Ġf unction | |
\| + | |
S W | |
math rel | |
M A | |
}) ].\] | |
}\, =\, | |
R E | |
th er | |
) })^{- | |
) }},\ | |
}^{- }}\ | |
})}{ }_{\ | |
q t | |
)] ( | |
le m | |
{$-$ }}\ | |
V dash | |
}) ^{*}( | |
C V | |
p w | |
,* }\ | |
_{* }^{- | |
ti sf | |
)! }{( | |
Ġ ex | |
A i | |
Ġ}\ { | |
)( ( | |
)) > | |
):= (\ | |
u w | |
cho ice | |
Q Coh | |
}| )\] | |
P U | |
ar y | |
)}= -\ | |
^{ {\ | |
)} ;\ | |
Ġun i | |
\, ,\\ | |
Ġ sub | |
^{* })^{\ | |
b t | |
}\ }=\{ | |
{[ }-\ | |
e ri | |
_{* }) | |
Ġd r | |
{[ }| | |
m l | |
mo st | |
)\, |\, | |
math choice | |
}= : | |
I P | |
}_{* ,\ | |
{\ # | |
de n | |
}}) |\ | |
ĠâĢ ĵ | |
se ch | |
}|= |\ | |
{[ }\|\ | |
/ | | |
= } | |
) }:= | |
li p | |
Ġ2 2 | |
)| > | |
D a | |
a R | |
] \|_{ | |
_{[ - | |
J ac | |
e u | |
e w | |
}] ) | |
s y | |
c f | |
Ġ\ ; | |
! |\! | |
{\ }},\ | |
}] ^{- | |
Ġm o | |
}_{* } | |
dash rightarrow | |
^{* })- | |
\ #\ | |
ĠC N | |
ar ge | |
)\ |\] | |
N T | |
le x | |
ta tion | |
)| }{\ | |
r f | |
B R | |
12 4 | |
):= -\ | |
Ġ ]\ | |
Ġ +( | |
_{- , | |
f ree | |
}}\ ,\] | |
Ġt ra | |
}([ - | |
Ġdi ag | |
{/ }\ | |
}} }}{ | |
D D | |
)= [\ | |
L L | |
}] [ | |
_{- },\ | |
Ġ\[= : | |
=\ | | |
{] }( | |
^{+ }- | |
Sh v | |
e f | |
de c | |
co nt | |
}^{- }_{ | |
se p | |
ig arrow | |
right squ | |
rightsqu igarrow | |
H P | |
Ġe t | |
ec tive | |
m j | |
Ġ )_{ | |
)}\ }_{ | |
_{* }} | |
}^{+ }+ | |
}[\ ![ | |
L E | |
:\ ; | |
w r | |
},\ ,- | |
dv ol | |
}):=\ { | |
:=\ ,\ | |
* }(\ | |
Ġr eg | |
k N | |
Ġ la | |
}^{+ }-\ | |
& (\ | |
}(\ ,\ | |
T T | |
}} }[ | |
em ma | |
[\ ,\ | |
Ġ(\ ( | |
co nd | |
}} ]= | |
})\ |\] | |
H C | |
a ff | |
}\, ,\\ | |
q x | |
}\ {( | |
}{ - | |
}}| \] | |
< - | |
m c | |
xy z | |
) })}\ | |
W F | |
arg max | |
Ġnu mber | |
Ġb e | |
)^{ +}\ | |
}| ) | |
j p | |
* ( | |
Ġ& =-\ | |
)} .\ | |
}= &\ | |
z I | |
rong ly | |
}| ^{-\ | |
^{+ })\ | |
Ġ supp | |
Ġ })}\ | |
}) (- | |
}=\{ (\ | |
Ġ6 4 | |
ĠC t | |
L U | |
}}=\ | | |
\[|\ { | |
u x | |
Ġ ] | |
Ġ{ (\ | |
ul ar | |
te st | |
{)}\ | | |
\ }}| | |
dash v | |
\}&\ { | |
line ar | |
low er | |
}-\ { | |
per f | |
D M | |
}}) }^{ | |
,\ {\ | |
] })\] | |
{| }( | |
\}\ ) | |
Ġco nt | |
- }( | |
R m | |
d o | |
A S | |
A nn | |
s x | |
}$ }.\] | |
B l | |
Ġ )}{\ | |
Ġor der | |
- }^{ | |
Ġ4 0 | |
\|\ | | |
Ġ\[ | | |
^{* }}\] | |
] <\ | |
}& &\\ | |
}})\ |_{ | |
n or | |
}{* }{\ | |
{ }^{( | |
Ġ /\ | |
g y | |
o ri | |
16 0 | |
] }_{\ | |
\| ,\] | |
S NR | |
; ,\] | |
D L | |
P o | |
})^{* }\] | |
\|_{ ( | |
Ġi k | |
S ing | |
c z | |
ĠC on | |
_{+ })\ | |
Ġ(\ (\ | |
A t | |
}}_{ + | |
in c | |
q p | |
I V | |
}\| +\| | |
}_{+ } | |
D A | |
Ġe qu | |
)) |^{ | |
}^{+ }+\ | |
C r | |
T P | |
\ }}(\ | |
Ġ} }^{\ | |
}}) | | |
19 2 | |
Ġ\( (\ | |
}| ^ | |
})\ ,\] | |
Ġ\[ |\ | |
}^{* * | |
}^{* })=\ | |
C ap | |
)) <\ | |
= (- | |
Ġco m | |
R M | |
) }}= | |
}\ )) | |
$ }\] | |
P f | |
g n | |
m t | |
N L | |
E rr | |
ta in | |
13 2 | |
}} ;\] | |
{] },\ | |
{\{ }-\ | |
; }\\ | |
) }}{( | |
n y | |
R P | |
q r | |
\, =\, | |
G F | |
}- [ | |
)},\ \ | |
I N | |
Ġ[ ]{ | |
_{+ }} | |
E M | |
}} ]=\ | |
co dim | |
Pro b | |
it H | |
}})\ ,\ | |
:= (\ | |
}- (- | |
}^{- })\ | |
Ġ\(\ { | |
})= [ | |
)|= | | |
}) )\, | |
\, .\ | |
ĠI d | |
bab ility | |
_{ ,\ | |
d M | |
\!\ !\!\ | |
}( (- | |
_{* }+ | |
E nt | |
) }), | |
t q | |
Ġ\[ [ | |
})| =\ | |
}] \|_{ | |
p x | |
\, :\,\ | |
)^{- ( | |
k a | |
sp t | |
^{- |\ | |
re v | |
d H | |
h k | |
o bs | |
}}\ }.\] | |
A rea | |
x e | |
:\ ! | |
) })+ | |
}) )) | |
tor s | |
}}| |\ | |
_{- })\ | |
})] ( | |
cur ve | |
Ġ par | |
Ġ )) | |
_{\ , | |
am ple | |
scri pt | |
P C | |
T S | |
^{* })-\ | |
ii i | |
] \,,\] | |
(- ( | |
}_{+ }, | |
. .\] | |
Ġ }}}\ | |
}^{- }\] | |
dx d | |
Ġe ff | |
{| }=\ | |
}) }:=\ | |
Ġa c | |
}}= [ | |
v ir | |
Ġ error | |
4 00 | |
}\ }}\] | |
}) . | |
})| }\ | |
N C | |
}^{* },\] | |
un ded | |
)] + | |
\[[ ( | |
N p | |
D om | |
u le | |
_{\ {| | |
Ġd o | |
{] }\, | |
})| .\] | |
\; ,\] | |
}) )(\ | |
Ġ= |\ | |
ol u | |
M T | |
Ġt ype | |
}}{ }^{ | |
Ġ= & | |
R L | |
Ġ }|^{ | |
al ue | |
^{ ! | |
] }+\ | |
th od | |
su ch | |
}, + | |
})= {\ | |
)] -\ | |
}:= -\ | |
\ }.\ | |
Ġ2 7 | |
)\, ( | |
}} }) | |
)] +\ | |
}^{* }}{\ | |
k d | |
{] }\,\ | |
C or | |
}] }(\ | |
)] _{\ | |
< ( | |
Ġ{ *}\ | |
}}^{+ }( | |
\ }|\ | |
0 11 | |
^{* })+\ | |
~ {} | |
Ġ\[ <\ | |
})| +| | |
or b | |
p f | |
,\,\ ,\,\ | |
= \] | |
] ]\] | |
z w | |
ce nt | |
P I | |
big m | |
}_{+ }\] | |
{[ }\| | |
}+... + | |
T HH | |
co h | |
.. .\] | |
)| ,\] | |
x p | |
var Omega | |
13 4 | |
M o | |
)) }( | |
_{+ }+\ | |
)=\ | | |
}^{* })^{\ | |
Ġ\[= (- | |
&* \\ | |
Ġ var | |
)}= (\ | |
con e | |
in u | |
^{* }).\] | |
}}_{ - | |
\,\ |\ | |
s ti | |
{(}\ { | |
_{+ }-\ | |
})}{ (\ | |
C L | |
A e | |
}| / | |
}]= [\ | |
}]+ [ | |
s v | |
A b | |
g s | |
Ġra te | |
P Q | |
di s | |
Ġ }},\ | |
\[ -( | |
j s | |
): ( | |
) *\ | |
Ġ exp | |
}}) =( | |
}^{+ })\] | |
n f | |
| )}\ | |
r ig | |
)}}{ {=}}\ | |
0 12 | |
\ }}{ | |
D T | |
Ġ )}( | |
long leftarrow | |
23 4 | |
# }\ | |
c at | |
{ * | |
Ġ$ ( | |
n b | |
})\ },\] | |
{\{ }(\ | |
) }+( | |
{| }= | |
\ }) | |
}) }\|_{ | |
Ġ\[ > | |
S el | |
th ere | |
{[ }|\ | |
Sw ap | |
Ġs ym | |
Ġth en | |
)\ } | |
}^{* }\|^{ | |
)| < | |
tr n | |
O T | |
}) }[ | |
}):= ( | |
d dagger | |
m x | |
)| ( | |
}) }}\] | |
)_{ +}\ | |
R an | |
B x | |
)} }^{\ | |
n T | |
h g | |
G H | |
!\!\ !\!\ | |
Ġsa tisf | |
)- | | |
is o | |
j h | |
}| , | |
= [\ | |
] )^{ | |
Ġ\ {( | |
}+ [\ | |
Ġ }}+\ | |
24 0 | |
P A | |
$ },\ | |
}], [\ | |
] &\ | |
er s | |
\| ,\ | |
st r | |
T N | |
\ }- | |
] ,\, | |
}) )_{\ | |
{\ }}_{ | |
re p | |
+ \] | |
Ġs ta | |
\!\ !\ | |
Le b | |
H K | |
)| - | |
th m | |
Ġth ere | |
black square | |
G M | |
_{ ! | |
Ġd is | |
}| }.\] | |
}\, _{ | |
}\| +\|\ | |
Ġ= | | |
form ly | |
}) })^{ | |
P L | |
) }]\] | |
{( }{\ | |
\ }}.\] | |
] |\ | |
p en | |
}: \,\ | |
) }}+\ | |
-\ |\ | |
_{- }- | |
^{- })\ | |
}}{ [ | |
}^{+ }= | |
e ver | |
circ le | |
] }-\ | |
13 5 | |
})] -\ | |
c p | |
}^{+ })^{ | |
}= :\ | |
{) }| | |
] },\] | |
), - | |
Ġ deg | |
. -\ | |
,+ }( | |
Ġ >\ | |
}( { | |
}\! -\!\ | |
! }{\ | |
i ci | |
\, ,\, | |
}&= &\ | |
script size | |
3 00 | |
w e | |
ĠC R | |
)) < | |
}}, (\ | |
G S | |
\[\ ,\ | |
}^{* }\\ | |
s b | |
}, ... | |
Ġf inite | |
cccc cccc | |
ĠP a | |
] /\ | |
{\ }}=\ | |
M S | |
)) : | |
c ard | |
r y | |
}{ [ | |
Ġ2 6 | |
Ġd v | |
12 34 | |
) ** | |
}\ }}( | |
}] )=\ | |
B un | |
S N | |
\ }\,,\] | |
}_{* , | |
Ġ=\ | | |
d G | |
}, * | |
L F | |
l cm | |
_{* }=\ | |
De t | |
un i | |
$ }.\ | |
I M | |
j a | |
}^{ {\ | |
!\! / | |
Ġ=\ |\ | |
! }.\] | |
N m | |
l s | |
}\ #\ | |
_{* }}( | |
Ġ3 6 | |
v u | |
Ġ )\, | |
),\ ;\ | |
\, =\,\ | |
}} ]^{ | |
C Alg | |
cu t | |
}\! +\!\ | |
i es | |
n on | |
};\ ,\ | |
K K | |
}| {\ | |
{|}\ ; | |
de x | |
ea k | |
Ġpro bability | |
B i | |
{(}\ ,\ | |
tra in | |
C K | |
r p | |
Ġp er | |
}* _{ | |
)^{* }\] | |
)\ },\ | |
or phi | |
u re | |
}| }{|\ | |
^{( {\ | |
}}- (\ | |
}} }}\] | |
C x | |
{| }\\ | |
}}& -\ | |
cy c | |
}_{- }^{ | |
}| -|\ | |
z x | |
}: |\ | |
}\, ,\, | |
Ġ:=\ { | |
}: \| | |
}}+ |\ | |
10 8 | |
u mber | |
)+ (- | |
C u | |
o rm | |
}}^{- }\ | |
Ġ prime | |
ga p | |
)( | | |
\! -\!\ | |
)\, :\, | |
}}& =\ | |
' { | |
t m | |
E P | |
x f | |
Ġs o | |
P erf | |
si de | |
[\ ![\ | |
~ {}\ | |
^{* })+ | |
inu ous | |
s to | |
tri c | |
_{* }\] | |
}] =- | |
)+ \] | |
Ġ curl | |
R C | |
x u | |
w w | |
| },\] | |
co ker | |
12 1 | |
n ce | |
L C | |
.. , | |
}}=\ |\ | |
Ġ }{( | |
}\,\ ,\,\ | |
f r | |
v t | |
| )^{- | |
h a | |
Ġ || | |
)= &\ | |
Ġw eakly | |
. + | |
a si | |
}- \] | |
}) )}^{ | |
lo ck | |
{)}\ |\ | |
dx ds | |
tr ue | |
}} }^{( | |
{)}^{ -\ | |
\ })=\ | |
ect ed | |
U V | |
\% \) | |
}\, ,\,\ | |
}\! =\!\ | |
a cc | |
)\; ,\] | |
M e | |
m on | |
Ġ=\ {( | |
)^{ [ | |
_{( -\ | |
28 8 | |
{) }&\ | |
t b | |
|= |\ | |
s at | |
)|= |\ | |
h v | |
Ġ )^{- | |
)\, {\ | |
le ngth | |
Ġ} [\ | |
}^{\ ,\ | |
ĠT ime | |
L D | |
}}| ( | |
Ġ ext | |
= {\ | |
M R | |
00 5 | |
(-\ ) | |
Con v | |
l p | |
, . | |
}}) }.\] | |
{ +} | |
u c | |
}^{* \ | |
] }+ | |
{) }|\ | |
}}\| ( | |
n v | |
}) )=( | |
)^{ (\ | |
}}(\ { | |
}\ }+\ | |
)] - | |
ĠV ar | |
; [ | |
B y | |
C y | |
D w | |
\| }{ | |
)) ).\] | |
Ġ5 6 | |
^{* },\] | |
Ġcon stant | |
e i | |
homotopy limit | |
2 13 | |
| },\ | |
at e | |
^{* }}^{\ | |
F T | |
b n | |
}} }}{\ | |
^{- }} | |
}] )= | |
d Q | |
^{\ , | |
tr op | |
}^{* })= | |
ĠL emma | |
R a | |
E S | |
t g | |
_{ {( | |
-\ { | |
}}_{ (\ | |
}))\ ,\ | |
\{\ , | |
] ]\ | |
a j | |
t N | |
\ (-\) | |
Ġd W | |
L u | |
Ġ rank | |
ma p | |
cri s | |
}}) / | |
}} ]( | |
t k | |
or em | |
}}) ) | |
n K | |
^{* }: | |
Ġdx dt | |
}] )^{ | |
)) &\ | |
}}[ ( | |
}^{* }}(\ | |
)) )= | |
})= \] | |
k T | |
}) * | |
}^{- }=\ | |
sp ec | |
Ġint eg | |
P P | |
` ` | |
:=\ {\ | |
)& ( | |
}}) }( | |
B T | |
}\ }^{ | |
Ġ{ | | |
)( -\ | |
)\, =\, | |
^{- },\ | |
{) }> | |
})| |_{ | |
[ {\ | |
z y | |
[\ , | |
Ġ over | |
))= (\ | |
F l | |
\ }: | |
12 2 | |
Con e | |
. \, | |
C n | |
O PT | |
\ }}{\ | |
Ġ3 1 | |
}+ { | |
}\| ,\] | |
10 5 | |
^{* })}\ | |
}] / | |
11 3 | |
Y Z | |
d E | |
}) _ | |
Ġ2 9 | |
L in | |
)} /\ | |
Ġ2 00 | |
}:= [ | |
M ax | |
N A | |
N E | |
big circ | |
o c | |
r ror | |
f ix | |
la tion | |
h f | |
)}{\ | | |
i w | |
e ar | |
Ġ inf | |
In v | |
}) )|\ | |
)< +\ | |
P V | |
Ġ( ( | |
res tri | |
ĠS O | |
Ġ- (\ | |
B F | |
] }- | |
v x | |
la ss | |
{| | | |
})] ^{\ | |
L a | |
P SL | |
: |\ | |
p ut | |
Ġ ^{*}\ | |
)! }\] | |
Ġterm s | |
q z | |
\( { | |
R x | |
\| <\ | |
})}{ }_{ | |
) _ | |
Ġ })+\ | |
S ch | |
t ed | |
co m | |
\, ,\,\ | |
}=( ( | |
M D | |
Ġ_{ ( | |
)/ (\ | |
}}& = | |
J X | |
) }}}\ | |
^{* }:\ | |
}& =-\ | |
U n | |
h y | |
M or | |
}}_{ [ | |
}] ]\] | |
}& (\ | |
\ })= | |
y n | |
}) }\,.\] | |
})( ( | |
Ġ }),\ | |
me n | |
^{* }}}\ | |
\{ [ | |
}^{+ }.\] | |
,\ ! | |
la s | |
S ol | |
T op | |
] | | |
}_{\ # | |
fra me | |
ad d | |
Ġ )\,\ | |
}$ - | |
Ġ ro | |
}_{+ }^{\ | |
ve l | |
00 2 | |
Ġ *}\ | |
}= & | |
Ġme asu | |
G e | |
})| + | |
B in | |
= :\ | |
I F | |
{ {(\ | |
Ġ }).\] | |
^{+ })^{ | |
on e | |
L O | |
}) }) | |
}] \,\ | |
}^{ < | |
Ġn t | |
})/ (\ | |
. ( | |
ĠC n | |
\ }\, | |
Ġ gen | |
|\ ; | |
}_{ / | |
A W | |
}}( [\ | |
) }}, | |
arrow right | |
G C | |
) }))\ | |
d T | |
N t | |
{\ }}= | |
)) )=\ | |
^{+ }\] | |
}}\, ( | |
var Lambda | |
C O | |
Ġ vec | |
in i | |
^{* }), | |
** } | |
}}:=\ { | |
}}) :=\ | |
] ] | |
tri v | |
)) }{| | |
re t | |
})| ^{\ | |
he art | |
big triangledown | |
}| ,|\ | |
, +}\ | |
)\ }^{ | |
ĠA x | |
)] }\ | |
heart suit | |
p c | |
}}{ {= | |
ra ble | |
ĠP ro | |
)}}{ {=}} | |
K M | |
U U | |
}^{ > | |
}}{ }_{ | |
_{* }+\ | |
I s | |
ra c | |
)| ^{- | |
ici ent | |
|_{ [ | |
}}{ }^{\ | |
sin ce | |
}}| }\ | |
{, }\] | |
b p | |
d Z | |
}^{* })^{- | |
&& &\\ | |
) }}_{ | |
=\ |\ | |
:\ ;\ | |
A E | |
| ).\] | |
_{+ }=\ | |
. ,\] | |
p ol | |
^{* })^{- | |
_{{ }_{( | |
Ġ\(-\ ) | |
T R | |
}) ],\] | |
}^{* }}\] | |
Ġi m | |
go od | |
Ġ })^{\ | |
\| }{\ | |
)| >\ | |
{- ( | |
v a | |
})] +\ | |
) }}- | |
h u | |
}}^{* }\] | |
g p | |
)] ,\ | |
f ib | |
Ġ })-\ | |
^{+ }+ | |
ro up | |
)= : | |
\ )- | |
};\ , | |
&= & | |
|\ | | |
)) +( | |
11 11 | |
V ec | |
l b | |
^{+ }}( | |
] ),\] | |
i le | |
}_{* }^{\ | |
Ġ}\ ; | |
99 8 | |
H T | |
Da sh | |
}$ , | |
m h | |
{) },\\ | |
B E | |
T w | |
})= | | |
restri ction | |
O rb | |
}\! =\! | |
Ġ edge | |
^{* }}{\ | |
}[ -\ | |
B U | |
L B | |
R G | |
\ };\] | |
f e | |
ab cd | |
)&= & | |
)= -( | |
] ),\ | |
ĠR es | |
_{+ }}{ | |
z t | |
F G | |
o ff | |
}))\ |_{ | |
Ġ& ( | |
18 0 | |
Ġcon tain | |
big triangle | |
co re | |
})| }{ | |
bigtriangle up | |
l ds | |
99 9 | |
{ }{ | |
Ġi x | |
{] }- | |
}}}{ (\ | |
\! +\!\ | |
ĠN umber | |
Ġ log | |
15 0 | |
v Dash | |
Ġp osi | |
D C | |
D g | |
o f | |
}\ }\\ | |
\|_{ * | |
23 1 | |
Ġbo unded | |
D S | |
ri d | |
})| | | |
Ġ\[+ (\ | |
n N | |
b l | |
}_{\ {| | |
12 6 | |
Ġ inter | |
ii int | |
}}= [\ | |
]{ } | |
P F | |
h h | |
Ġ\ % | |
), [ | |
})}{ |\ | |
ĠI n | |
r v | |
t H | |
k u | |
_{+ }^{- | |
w eakly | |
)}= - | |
+ }^{ | |
Fro b | |
))\, .\] | |
P R | |
pa ct | |
K T | |
\{\ { | |
on ent | |
ĠA lg | |
Ġbo und | |
}} }^{- | |
}})\ | | |
Ġ3 3 | |
A f | |
ĠD u | |
q s | |
{| }^{\ | |
,\ ,\, | |
\ }( | |
\[ < | |
}) ^{*}(\ | |
}^{* }|\ | |
S V | |
}) )}.\] | |
}| }( | |
}\, +\,\ | |
AB C | |
Ġ\[ -( | |
)) ,\\ | |
& | | |
{ .}\] | |
}_{ (- | |
au g | |
A M | |
M in | |
b q | |
}: \\ | |
re c | |
_{* }}{ | |
ab s | |
ec tion | |
]- [ | |
^{ {}^{ | |
}] ).\] | |
}] ; | |
{| }(\ | |
_{- ( | |
era ge | |
14 5 | |
olu tion | |
, ... | |
3 21 | |
}} }[\ | |
mo oth | |
i al | |
p tion | |
De f | |
Ġa v | |
})=\ {( | |
T L | |
}}) > | |
]= -\ | |
A V | |
h r | |
r j | |
i H | |
: \| | |
Q P | |
\| ^ | |
})\, |\, | |
a h | |
} ...\ | |
ra m | |
}}\| (\ | |
O D | |
g f | |
Ġ3 4 | |
},\, -\ | |
ĠD i | |
}}, ..., | |
38 4 | |
ri t | |
\|\ ,\ | |
_{+ }^{( | |
}) }&\ | |
}\},\ {\ | |
}} ].\] | |
S B | |
; {\ | |
T v | |
si ble | |
le ave | |
A y | |
45 6 | |
Ġ1 000 | |
}^{* }}^{ | |
Ġ_{ - | |
Ġ\[=\ | | |
2 16 | |
p T | |
u q | |
Ġ ar | |
{( -\ | |
[\ { | |
F in | |
^{ < | |
i A | |
i able | |
M on | |
T F | |
b al | |
er o | |
h x | |
{\ }}^{ | |
)) },\] | |
Ġco nd | |
\ }}=\ | |
}} . | |
^{* }|\ | |
^{* }(- | |
}] \, | |
3 20 | |
,\,\ ,\, | |
N a | |
] =( | |
f l | |
}\ )} | |
)\ }=\ | |
_{- }+ | |
) }}+ | |
no rm | |
: }\ | |
_{\ ! | |
)| } | |
\ }).\] | |
S G | |
Ġ size | |
_{* }-\ | |
x a | |
le n | |
arc sin | |
}]- [ | |
] & | |
Ġ\ &\ | |
)) )^{ | |
)_{+ }^{ | |
2 11 | |
A U | |
B W | |
}) _{*} | |
de nt | |
|\ ;\ | |
}\!\ !\!\ | |
)) :=\ | |
^{* }| | |
Ġ6 0 | |
N M | |
t ch | |
| }=\ | |
A s | |
{[ }- | |
Ġ3 5 | |
Ġ })- | |
}}\ !\! | |
}\| }{ | |
H e | |
ĠM o | |
}^{* ( | |
}^{- }= | |
dy dx | |
\| +\| | |
O ut | |
{ }{}{ | |
p u | |
_{+ }\] | |
}=- (\ | |
\;\ ; | |
sq subseteq | |
]\ !\ | |
R D | |
}})\ |\ | |
})\ ;.\] | |
}\| <\ | |
Ġcon v | |
= -( | |
> - | |
se n | |
Lo c | |
) { | |
P E | |
ds dt | |
_{* })\] | |
_{* }:\ | |
C I | |
{[ }\,\ | |
L A | |
{)} <\ | |
Ġ8 0 | |
Ġcon n | |
t c | |
Ġ3 7 | |
}_{+ }.\] | |
ow er | |
)+ |\ | |
]\! ]\ | |
P M | |
it s | |
}):= (\ | |
D N | |
\ }\,\ | |
] ^{( | |
})| |\ | |
W P | |
)) -( | |
}\| ^ | |
Ġ da | |
up tau | |
mo de | |
\| | | |
:=\ {( | |
Ġs ign | |
P GL | |
}\ : | |
ĠA d | |
ĠY es | |
)) }=\ | |
di ff | |
.. .. | |
34 5 | |
c sc | |
| }(\ | |
)} })\ | |
T ot | |
Ġ 99 | |
10 24 | |
\( {}_{ | |
ĠS L | |
Ġ4 8 | |
I so | |
b z | |
n L | |
}} }}{{\ | |
F M | |
a ce | |
{) }^ | |
Ġ( -\ | |
ĠC om | |
}}| |_{ | |
ĠSp ec | |
P e | |
b w | |
}^{- }- | |
), (- | |
P oly | |
Ġcont inuous | |
}] |\ | |
})| <\ | |
}|_{ [ | |
Ġ }}.\] | |
}^{* }: | |
Ġal most | |
r w | |
}+\ \ | |
M a | |
o u | |
! }(\ | |
^{+ }=\ | |
2 000 | |
Ġ case | |
Ġ )|^{ | |
\| {\ | |
}^{* }\|_{\ | |
}: \|\ | |
}_{+ })\ | |
A ff | |
ĠA v | |
_{- }} | |
cccc cc | |
comp lement | |
> ( | |
^{* }|^{ | |
}& & | |
a ma | |
s j | |
\[\ , | |
}_{+ })\] | |
) }}) | |
C s | |
d U | |
ma in | |
}_{ , | |
00 01 | |
}$ },\\ | |
}_{- }(\ | |
I w | |
j t | |
in ed | |
) })}{ | |
}{ }^{( | |
)| ,\ | |
te p | |
H ol | |
q q | |
Ġ )\|_{ | |
po st | |
S F | |
{( ( | |
) })(\ | |
)] ^{- | |
P u | |
a us | |
36 0 | |
$ .}\ | |
o rt | |
}} ... | |
}^{* })_{ | |
)}( ( | |
}^{- }+ | |
und s | |
_{ !}\ | |
}) }^{( | |
am p | |
}),\ ; | |
}( (-\ | |
00 4 | |
}):=\ {\ | |
ro ss | |
Ġop en | |
Ġ qu | |
00 8 | |
,- }( | |
)& -\ | |
Ġ })( | |
}, +\ | |
( . | |
Ġ })=\ | |
)} |_{ | |
ĠA ut | |
n R | |
}^{* }).\] | |
{| ( | |
15 6 | |
}$ .}\] | |
^{\# } | |
}) _{- | |
}} ]^{\ | |
{\| }\] | |
:= -\ | |
x v | |
d K | |
{(} [\ | |
]\ }\ | |
{] }_{\ | |
})| - | |
}* ( | |
$ } | |
}] \}\] | |
|- |\ | |
âĢ Ļ | |
U E | |
,\ ;\;\ | |
D h | |
var Delta | |
Ġ& =( | |
black triangleright | |
al ity | |
}^{* , | |
}|\ ! | |
st d | |
\ }}+\ | |
10 4 | |
frame box | |
,\ ;\; | |
}\, +\, | |
A z | |
}\ }+ | |
}| }}\ | |
}}, - | |
G A | |
N P | |
q n | |
Ġ\ ,\] | |
)}=\ { | |
Ġ )(\ | |
{\| }( | |
_{- }}{ | |
))^{ * | |
, (- | |
B er | |
m L | |
}^{* })+\ | |
ĠS ym | |
,\, ( | |
erf c | |
w x | |
})\ !\ | |
\|\ , | |
om ial | |
})] _{\ | |
Ġ9 5 | |
Ġre sp | |
})^{ +}\ | |
Ġd B | |
) &- | |
), {\ | |
F E | |
T ra | |
h ss | |
Ġe lement | |
L G | |
Ġ\[ := | |
Ġd iff | |
}* | | |
) }))\] | |
),\ ,( | |
curve arrowright | |
+ }^{\ | |
(\ , | |
)) [ | |
00 3 | |
{\ '{ | |
}} })^{ | |
\ }> | |
{\ }}\\ | |
em p | |
Ġf ix | |
Ġs h | |
ĠI II | |
sm ile | |
| )| | |
); \\ | |
C Z | |
k o | |
t L | |
}{ =}\ | |
ver ti | |
c T | |
c q | |
Ġ pri | |
}^{- }} | |
13 6 | |
0 25 | |
j r | |
)= :\ | |
}}^{ +\ | |
T erm | |
h yp | |
Ġ ge | |
B e | |
r dr | |
}} ]_{\ | |
)}\ ! | |
dx dv | |
Ġ4 2 | |
dV ol | |
ama lg | |
}+ || | |
}] /( | |
}^{( + | |
}^{* })- | |
}^{* })-\ | |
), -\ | |
})= [\ | |
}; ( | |
16 8 | |
z q | |
| }+\ | |
}{ {\ | |
^{* }\\ | |
m skip | |
ĠC M | |
_{+ }= | |
c v | |
}}_{ * | |
}_{+ }+ | |
,* }(\ | |
) }}-\ | |
\[\ #\{ | |
^{* }\|_{\ | |
Ġ )|\ | |
le ad | |
)) /\ | |
k q | |
Ġ ref | |
Ġ{ }_{ | |
\[= (\ | |
R f | |
}}) ).\] | |
k b | |
}}\ ;.\] | |
}^{+ }) | |
la x | |
}- { | |
ĠThe orem | |
E E | |
| }^{ | |
^{* })( | |
au x | |
+ [\ | |
s A | |
}[ {\ | |
\[| {\ | |
})) <\ | |
T y | |
Ġ })_{ | |
Ġ\[= [ | |
}< ( | |
}$ }\ | |
u se | |
Ġc y | |
3 12 | |
{| },\] | |
ca tion | |
L aw | |
M O | |
^{* }),\ | |
}_{+ , | |
)\,\ ,\ | |
}< | | |
ĠO p | |
}\; =\;\ | |
Pro x | |
\[( [ | |
Ġ9 6 | |
|\! |\! | |
g raph | |
m g | |
Ġ det | |
lo sed | |
22 2 | |
Ġ| |\ | |
m q | |
}^{- })\] | |
)) ]\ | |
})| =| | |
}}[ (\ | |
Ġ9 4 | |
) }}^{( | |
P G | |
w s | |
{|}\ ;\ | |
N O | |
}- [\ | |
Ġ })+ | |
o slash | |
Ġe l | |
})) > | |
}] ,\\ | |
}}) )= | |
Ġs gn | |
),& ( | |
\ }}^{ | |
var Sigma | |
M U | |
] }^{( | |
Ġ} / | |
Ġc l | |
}$ },\] | |
Ġ\ }}\ | |
sq cap | |
22 1 | |
ty pe | |
mu m | |
Ġ= [\ | |
Ġe n | |
me asu | |
R Hom | |
Ġ })= | |
^{* }\|\ | |
ik x | |
Ġuni formly | |
\ }}= | |
\ }|\] | |
K S | |
var limsup | |
)}, &\ | |
du al | |
M W | |
q k | |
po unds | |
\ }<\ | |
}\, ^{ | |
ĠL o | |
}})= (\ | |
orphi sm | |
| }|\ | |
me as | |
Ġu p | |
Ġp re | |
Ġ\[=\ |\ | |
\ }},\ | |
q c | |
})|\ , | |
.& .& | |
k g | |
{) }}\] | |
_{* }^{( | |
}}, {\ | |
j q | |
}} }&\ | |
}}) /\ | |
)) }= | |
v s | |
}^{* }& | |
Ġv ol | |
sin c | |
ir st | |
}\ }\}\] | |
)_{ | | |
i B | |
}^{* }\,\ | |
Ġ} })\ | |
}\| }{\ | |
d I | |
Ġ |_{ | |
}) }}.\] | |
}\| {\ | |
}},\ |\ | |
))= -\ | |
ĠâĢ Ķ | |
H L | |
}}\ },\] | |
Ġi mp | |
]= [\ | |
}\ {| | |
- [\ | |
< |\ | |
}^{+ , | |
}{ $ | |
}},\ | | |
Ġs pan | |
_{* ,\ | |
po s | |
i ven | |
Ġp r | |
10 2 | |
}+| |\ | |
Q R | |
p j | |
{ < | |
})\ |+\ | |
_{* }= | |
}) }[\ | |
Ġon e | |
{ . | |
ĠL e | |
}}, -\ | |
}}| = | |
# _{ | |
$ }}} | |
9 05 | |
{$-$ }} | |
i an | |
{ + | |
| }{|\ | |
^{* }_{( | |
f u | |
t B | |
) })}{\ | |
right rightarrow | |
}}) )=\ | |
rightrightarrow s | |
E q | |
w f | |
t j | |
_{- }^{( | |
C G | |
Ġ= -( | |
Ġs in | |
ma rk | |
)\ }= | |
Ġ1 28 | |
}^{* }:=\ | |
R u | |
a il | |
}) *\ | |
f ull | |
Ġ }}-\ | |
)) ] | |
Ġl arge | |
24 3 | |
}}^{- }( | |
Ġmo del | |
men sion | |
)= & | |
^{* }}=\ | |
}}) |^{ | |
)}{\ |\ | |
)) .\ | |
)+ {\ | |
25 0 | |
Ġho lds | |
|\ |\ | |
^{* }[ | |
}\, [ | |
}=( -\ | |
14 0 | |
el d | |
se s | |
)\, | | |
A G | |
\, [ | |
Ġ matrix | |
_{ !} | |
)+\ | | |
a X | |
nu m | |
\| -\ | |
st rongly | |
Ġ9 0 | |
+ }(\ | |
}| )^{\ | |
)\, |\ | |
^{ { | |
}( . | |
N e | |
Ġ linear | |
ma ll | |
Ġâľ Ĺ | |
P ar | |
\,\ ,\,\ | |
ct s | |
Ġ0 0 | |
Ġi z | |
}}= (- | |
Ġposi tive | |
O P | |
{\ }}\,.\] | |
}^{* }[ | |
Ġb c | |
rea sing | |
r q | |
x leftrightarrow | |
ci ty | |
G P | |
H R | |
ma xi | |
})| }{| | |
\[= - | |
cri t | |
]\ }.\] | |
)| |_{\ | |
^{* }; | |
Ġ\[= | | |
!\!\ !\ | |
P W | |
)\ { | |
}^{* }:\ | |
i L | |
{| }| | |
Q x | |
W e | |
are a | |
R B | |
)| |^{ | |
}}| ^{\ | |
)\| _ | |
0 15 | |
H M | |
O b | |
] }) | |
] }^{[ | |
)\, |\,\ | |
# ( | |
\ }| | |
] }} | |
u gh | |
bo w | |
ho rt | |
\{\ ,\ | |
}^{+ },\] | |
ĠP rop | |
})| +\ | |
}}\,\ | | |
S c | |
}}(\ | | |
\|\ |\ | |
sta nce | |
}\; ( | |
}{*}{\ ( | |
| }| | |
si ty | |
}, { | |
< -\ | |
O N | |
\ }}|\ | |
{\ , | |
Ġ{ [ | |
!\!\ ! | |
u d | |
}} }& | |
or k | |
^{+ }.\] | |
}) ! | |
Av g | |
Y X | |
\ : | |
u f | |
w v | |
ti e | |
}}) &\ | |
}_{* },\ | |
Ġcom pact | |
la tive | |
Ġ& . | |
})] + | |
7 20 | |
k G | |
Ġs ing | |
ĠK er | |
ne l | |
}}{ - | |
)} >\ | |
Ġ\[= :\ | |
osi tion | |
I R | |
Ġ )\\ | |
Ġ& &&\ | |
Ġ3 8 | |
. - | |
\ }}+ | |
\ }:\ | |
}} }}( | |
de v | |
}^{* })( | |
}^{+ }}( | |
}$ }\\ | |
S k | |
)) |_{ | |
cr ys | |
13 3 | |
N o | |
Z F | |
}\ })=\ | |
ri c | |
)) ]\] | |
}\| ^{- | |
}}{( - | |
D B | |
K P | |
S f | |
Ġ lin | |
}}{ =}\ | |
)}\ }\ | |
}}}{ |\ | |
}}\, | | |
[ [\ | |
m f | |
Ġ }}+ | |
^{* \ | |
H t | |
N k | |
h p | |
}}) <\ | |
l v | |
}_{ {}_{\ | |
Ġcon st | |
K U | |
Ġ res | |
00 6 | |
mi ze | |
}^{- (\ | |
Ġd f | |
l f | |
}& =- | |
_{- }=\ | |
\ })^{ | |
^{* }/ | |
}[ [\ | |
Sub set | |
z u | |
Ġ +| | |
{] }\,.\] | |
, ...,\ | |
}: {\ | |
ol d | |
)^{* }( | |
F L | |
k L | |
| }- | |
Ġin v | |
(| | | |
T A | |
^{* }}_{ | |
}\, =\ | |
))\ }\] | |
\! =\! | |
Ġ )}^{ | |
}| }=\ | |
{\{ }| | |
24 6 | |
Ġdx dy | |
ori thm | |
y t | |
Ġ\ & | |
^{\ ,\ | |
}< - | |
^{* }& | |
})+ | | |
Con f | |
}) $ | |
}) )/ | |
sta b | |
so ft | |
}( * | |
,\, -\ | |
Ġ5 00 | |
Ġ }(- | |
)=\ \ | |
A H | |
p b | |
|^{ ( | |
T e | |
co f | |
00 7 | |
})\, =\,\ | |
jk l | |
bow tie | |
P B | |
\ }},\] | |
N D | |
] > | |
x q | |
}^{ {}^{ | |
E u | |
Ġ top | |
ĠE nd | |
0 20 | |
v mode | |
| &\ | |
er ence | |
{) }=-\ | |
}& &\ | |
leave vmode | |
) _{*}\ | |
; (\ | |
g d | |
}) _{*}( | |
})^{ [ | |
sma sh | |
! }=\ | |
P H | |
g H | |
q a | |
Ġs pace | |
ĠE rror | |
F x | |
G ap | |
s ys | |
}} }\,.\] | |
\| )\ | |
)) |\] | |
}(- , | |
K t | |
at ch | |
^{* }),\] | |
Po i | |
x w | |
\[ <\ | |
}: \{ | |
O M | |
}}, ...,\ | |
M x | |
n z | |
}) ],\ | |
^{* }:=\ | |
Ġpa rameter | |
âĢ ĵ | |
}} ]}\ | |
)=\ |\ | |
\| [ | |
Ġ\[= |\ | |
z f | |
Ġ ta | |
{\ }}+\ | |
ĠC L | |
)}( {\ | |
Ġw hi | |
U B | |
^{ > | |
et we | |
etwe en | |
0 13 | |
}/ {\ | |
ĠI nt | |
| )\, | |
}^{- }+\ | |
)} ^ | |
}\|=\ | | |
Ġst rongly | |
* }_{ | |
_{- }^{- | |
_{+ }}( | |
on al | |
Ġ4 4 | |
pen dent | |
}) }> | |
circle d | |
. },\] | |
}{ (- | |
}^{* })+ | |
))\ |_{\ | |
* _{\ | |
F D | |
Ġ\[ {\ | |
})= |\ | |
Ġ\, ,\ | |
! }+\ | |
^{ !}\ | |
text circled | |
}] =( | |
&& &&\\ | |
I T | |
s ol | |
math ord | |
}) }& | |
}}) ^{*}\ | |
,* } | |
bre ak | |
5 76 | |
| }\, | |
|_{ ( | |
. }&\ | |
A n | |
F or | |
})\ } | |
})] - | |
}): ( | |
R ad | |
i ck | |
Ġ\ ,( | |
}}) : | |
})}=\ | | |
Un if | |
Ġ sim | |
_{* }: | |
^{[ * | |
Ġ:= ( | |
e pi | |
o tal | |
}) _{*}(\ | |
ll ll | |
up beta | |
}\ }^{\ | |
^{* }})\ | |
); ( | |
}] : | |
}] }=\ | |
Ġ} &\ | |
^{( + | |
Ġ4 5 | |
Ġ }}=\ | |
ma tion | |
}}\, {\ | |
R i | |
s ph | |
ra tion | |
Ġ\( [( | |
{] }.\ | |
T ype | |
{) }^{( | |
}] /\ | |
n se | |
| )( | |
Ġs olution | |
)\, ,\\ | |
K O | |
\[ {}_{\ | |
{\ {\ | |
A rg | |
C rit | |
I D | |
M K | |
)}\ ; | |
}^{- }-\ | |
11 4 | |
]= - | |
( {}^{ | |
0 16 | |
8 00 | |
k in | |
Ġ data | |
)) }+\ | |
)} })\] | |
}|\ !|\! | |
})] ^{- | |
Ġle ngth | |
}] =-\ | |
)\; =\;\ | |
}) }).\] | |
{\ ,\ | |
g ph | |
}^{ { | |
^{- }|^{ | |
ĠMe thod | |
u a | |
), ..., | |
}}}{\ | | |
@ @ | |
}\| ,\ | |
\[ +( | |
{) }+( | |
))^{ -\ | |
99 98 | |
$ }^{ | |
_{- }= | |
}\; ,\ | |
Ġ{* } | |
_{\# }\ | |
R c | |
Ġv al | |
Ġsatisf ies | |
Q M | |
}}(\ |\ | |
}}) [ | |
Ġe v | |
T D | |
ci te | |
\ }}, | |
] := | |
)) }{( | |
on s | |
( (-\ | |
Y Y | |
\, - | |
Ġ_{ + | |
\( {}^{ | |
| }+ | |
}| },\] | |
Ġt w | |
lead sto | |
}),\ ;\ | |
eqq colon | |
})}{\ | | |
Ġu v | |
}/ \|\ | |
12 7 | |
22 5 | |
ru e | |
n ing | |
Ġ} }_{\ | |
})} < | |
})| +|\ | |
K e | |
X Z | |
^{* , | |
^{* }}, | |
Ġ( {\ | |
ĠT h | |
Ġp rop | |
) }]_{ | |
Ġpa th | |
A ss | |
_{ <\ | |
{)}\ .\] | |
ĠT M | |
\,\ }\] | |
}{| | | |
Ġif f | |
)! }.\] | |
ĠO r | |
V R | |
y ing | |
al most | |
}] }.\] | |
},\ ,\, | |
{) }=( | |
vert ex | |
Com p | |
s z | |
\, +\, | |
{| |\ | |
)| ^ | |
) }}{| | |
r z | |
}:=\ | | |
}) }\,,\] | |
lo ze | |
lin g | |
C W | |
Ġ3 9 | |
}}| (\ | |
loze nge | |
J Y | |
Ġv alue | |
\[(\ { | |
S x | |
u g | |
| [ | |
)= +\ | |
\{ {\ | |
^{+ }= | |
24 5 | |
Ge o | |
Ġ& =- | |
us ing | |
)+ [ | |
ĠE xt | |
D V | |
x g | |
A p | |
Ġ )_{\ | |
}\|_{ ( | |
ĠS U | |
^{+ }}^{\ | |
, < | |
| }\,\ | |
ra int | |
{) }}.\] | |
)}{ =}\ | |
{\| }(\ | |
,+ }(\ | |
\({ }^{- | |
+ - | |
V aR | |
Ġ }),\] | |
Ġ=\ ,\ | |
t ing | |
ig en | |
\|_{ [ | |
Ġp oly | |
{\{ }- | |
Ġ4 9 | |
})\, |\,\ | |
\[- (\ | |
eff icient | |
2 12 | |
> \] | |
J v | |
P ol | |
Ġ_{ * | |
}> ( | |
G R | |
n H | |
w u | |
co st | |
u ct | |
igh t | |
)}_{ - | |
64 0 | |
Ġpoint s | |
Ġvar iable | |
2 10 | |
in al | |
{( }(- | |
Ġ+ (\ | |
)}\, ,\ | |
no ise | |
{) }} | |
sta ble | |
4 14 | |
> -\ | |
E L | |
Y T | |
} !} | |
ve s | |
) })_{\ | |
ĠC ase | |
)| )\ | |
})_{ +}\ | |
^{+ }-\ | |
})} .\ | |
en tial | |
}}:=\ {\ | |
E G | |
a ss | |
},\ ;\; | |
tri bu | |
Ġf orm | |
}}) < | |
ĠB V | |
)\, , | |
{)} < | |
)< ( | |
E H | |
g t | |
A F | |
}\ {(\ | |
}\|_{ * | |
ĠE x | |
23 5 | |
})) < | |
): \, | |
dr d | |
Co st | |
| )+ | |
}= { | |
Ġ\[\ { | |
}^{* }\) | |
Ġ} ;\ | |
}/ \| | |
})&= & | |
H o | |
)| }\] | |
ĠK L | |
,& ( | |
Ġ:= -\ | |
N n | |
big odot | |
}|\ \ | |
}), ..., | |
}}[ - | |
up mu | |
}}\ ,\,\ | |
}] ]\ | |
)&= &\ | |
when ever | |
p v | |
de al | |
Ġ\[ >\ | |
re ct | |
}_{- } | |
76 8 | |
o v | |
^{+ })\] | |
([ - | |
Ġ{* }( | |
H D | |
N K | |
ma ge | |
)}\ .\] | |
}] <\ | |
/ |\ | |
R ob | |
| (| | |
) })} | |
A r | |
S Q | |
Ġ }}, | |
))\, ,\] | |
}} ],\ | |
cal ly | |
}] [\ | |
})| =|\ | |
E X | |
\ }}^{\ | |
ra nge | |
}| }+\ | |
)- {\ | |
E D | |
E F | |
Ġ hi | |
},\ ;\;\ | |
R IS | |
] )^{\ | |
c w | |
de pendent | |
00 9 | |
Ġdeg ree | |
> _{ | |
_{* }.\] | |
_{+ }) | |
for e | |
}})\, .\] | |
Ġ }{| | |
}_{\ , | |
}] }^{ | |
q e | |
ll corner | |
Ġc d | |
Ġh ave | |
33 3 | |
) }-( | |
] +( | |
_{\ _ | |
})_{ | | |
11 5 | |
\}\ }.\] | |
cent er | |
N I | |
w eak | |
var liminf | |
sq subset | |
\}\ .\] | |
k y | |
w z | |
}\ }\) | |
leq q | |
Ġ{ |\ | |
}}=\ {( | |
st em | |
ĠD iff | |
(| |\ | |
Ġconn ected | |
+ }_{ | |
: - | |
L x | |
}\ })= | |
,- }\ | |
MM D | |
( {}_{ | |
Q C | |
}^{* }),\ | |
{| }+ | |
)| }{|\ | |
O R | |
Ġd w | |
\[[ [ | |
)}, & | |
Ġ9 8 | |
S u | |
d C | |
Ġ ^{* | |
in ct | |
\, ; | |
}}:= ( | |
Ġ multi | |
Ġ}\ |^{ | |
Ġ^{ (\ | |
Is om | |
! \, | |
ĠG r | |
Ġ4 1 | |
})| }{\ | |
0 14 | |
f x | |
)\ ;\;\ | |
)\, .\ | |
f v | |
j u | |
me tric | |
ĠC C | |
)},\ , | |
D t | |
U L | |
}^{* }|^{ | |
{] }<\ | |
23 6 | |
leftarrow s | |
}) }^{- | |
}{ +} | |
)\ }}\ | |
{(}\ {\ | |
11 6 | |
}_{+ },\] | |
Ġ\| ( | |
]\! ] | |
]\! ]\] | |
, { | |
E C | |
b k | |
var Pi | |
^{* }}= | |
Ġi r | |
Ġp o | |
ĠPa rameter | |
}| },\ | |
ĠC T | |
Ġ }))\ | |
}} }\|_{ | |
right leftarrows | |
Ġw e | |
\ )\ | |
}}) & | |
un iv | |
Ġd m | |
ge bra | |
di c | |
R K | |
Ġ\( |\ | |
)_{ [ | |
{] }^{- | |
48 0 | |
,* }_{ | |
I G | |
| /\ | |
}^{- })^{ | |
}\| < | |
Ġgen era | |
L v | |
\| ^{- | |
}}) }(\ | |
}}} <\ | |
))= - | |
\; ( | |
Ġ9 3 | |
}]+ [\ | |
) [- | |
Ġ )}(\ | |
})^{ (\ | |
\[\| {\ | |
maxi mize | |
! (\ | |
Ġ( | | |
... + | |
]{ }\ | |
K l | |
f h | |
f w | |
+\ \ | |
^{* }))\ | |
{] }(\ | |
11 7 | |
, }\] | |
N F | |
u k | |
Ġ opt | |
}| ).\] | |
})}{\ |\ | |
})\; ,\] | |
M V | |
| ),\] | |
}) )| | |
}^{* ,\ | |
}& :=\ | |
)}=\ | | |
&* & | |
o bj | |
}\ }|\ | |
}}) },\] | |
,- ( | |
Ġ7 2 | |
R A | |
d D | |
Ġ }},\] | |
}{ -\ | |
us p | |
Ġd V | |
- )\ | |
}\ }-\ | |
}=\ \ | |
ge t | |
}^{* }\}\] | |
Ġt ran | |
triangleleft eq | |
E mb | |
N d | |
| }= | |
Ġ )| | |
}] \) | |
Ġt ot | |
{- - | |
}_{+ }; | |
\|=\ | | |
t K | |
}] },\ | |
}}) ]\ | |
Re LU | |
Ġ7 0 | |
}}^{+ }(\ | |
C ol | |
j b | |
n il | |
}} ...\ | |
))\ |\ | |
dt dx | |
Ġfix ed | |
# \{\ | |
. }}}{{\ | |
Z Z | |
}^{* }| | |
\, +\,\ | |
_{- }) | |
10 3 | |
^{+ }) | |
}:\ ; | |
)\! =\!\ | |
= (( | |
L f | |
R H | |
}\ }) | |
lo op | |
^{- }}( | |
C d | |
t l | |
}^{- }_{\ | |
Ġs qu | |
}}) ]\] | |
Ġconv ex | |
) })\|_{ | |
D X | |
17 28 | |
so c | |
) }}\, | |
Ġ cr | |
perf ect | |
)\, :\,\ | |
]=\ { | |
0 21 | |
m N | |
| }}{ | |
Ġ\(\ | | |
}}:= (\ | |
r h | |
re n | |
}}\,\ |\ | |
)]\ ), | |
{| }>\ | |
ĠA u | |
side set | |
d j | |
}} $ | |
var triangle | |
ĠC d | |
Sp c | |
Ġcomp onent | |
Ġm n | |
iz ation | |
| : | |
\[\ {\{ | |
_{* }}^{ | |
$ }_{\ | |
] }{( | |
b v | |
Ġ&= &\ | |
! },\] | |
R W | |
Ġ= \] | |
_{* })^{ | |
}}= {\ | |
] }[ | |
! ^{ | |
N s | |
u es | |
le s | |
}:= [\ | |
T U | |
)\ : | |
Ġn x | |
G G | |
N x | |
)) & | |
)) ),\] | |
Ġ+\ |\ | |
6 18 | |
A tt | |
R N | |
t es | |
Ġ eq | |
}} })=\ | |
Ġ( [ | |
}},\ ; | |
}}^{* }=\ | |
s I | |
| }-\ | |
^{* }=( | |
^{* };\ | |
Ġ} & | |
M f | |
qu e | |
Ġ2 56 | |
O L | |
Ġ ap | |
], [\ | |
( ., | |
) })\\ | |
A w | |
}} }).\] | |
li z | |
}} }(- | |
}] :=\ | |
})+ \] | |
* (\ | |
D ist | |
l c | |
l cl | |
Ġ })^{- | |
\ }< | |
\[\ {[ | |
},\ ,\,\ | |
^{* }\| | |
Ġd X | |
16 2 | |
^{* }}+ | |
K n | |
Ġ }}- | |
}\ }=\{\ | |
ca use | |
ĠR ic | |
Ġg rad | |
Ġ:=\ {\ | |
D W | |
K h | |
}})\ ) | |
10 9 | |
V u | |
| ^{-( | |
{| }_{( | |
Ġd p | |
ge s | |
,\, | | |
13 1 | |
g u | |
{\| }| | |
Ġ4 3 | |
du dv | |
Rob ba | |
ul corner | |
_{+ })\] | |
}_{* })\ | |
}}< +\ | |
6 00 | |
i N | |
}} &- | |
}=\ {\{ | |
ce n | |
dy ds | |
})\, ( | |
g k | |
ho l | |
}\; =\; | |
: \{ | |
}\ }\,.\] | |
}_{ [- | |
{\ }}\,\ | |
fo ld | |
\[[ - | |
Ġma xi | |
P x | |
y e | |
rel y | |
) }}}{{\ | |
N et | |
{( }\, | |
Ġ\[ [\ | |
}] & | |
}] ;\ | |
)+\ |\ | |
an ti | |
$ ;}\\ | |
\[( | | |
}. \\ | |
ia nt | |
ale nt | |
$ }}}\ | |
F R | |
M r | |
f il | |
| ,|\ | |
}) _{* | |
}} ],\] | |
^{- })^{ | |
}^{- , | |
})| ,\] | |
):= - | |
| }{( | |
}{ }^{- | |
}^{* }}^{\ | |
ĠA B | |
})) },\] | |
Ġ* }( | |
3 56 | |
< _{ | |
}^{* - | |
Sh t | |
$ }}_{ | |
K R | |
}| }- | |
}}) )^{ | |
}}= | | |
Ġin c | |
c N | |
var Psi | |
Ġm on | |
Ġ9 7 | |
96 0 | |
K N | |
M ul | |
Ġ\ .\] | |
\| < | |
}}) +( | |
Ġd im | |
ĠL i | |
\! :\! | |
4 32 | |
K H | |
O C | |
}{ =} | |
la n | |
ll l | |
}| /\ | |
co r | |
Ġ\[=\ { | |
+ }\] | |
h l | |
k c | |
11 8 | |
Ġh y | |
\ },&\ | |
m ot | |
}} /( | |
}}= \] | |
)] }{ | |
measu re | |
E A | |
me s | |
{| }<\ | |
Ġs c | |
})( -\ | |
}|_{ ( | |
Ġn p | |
sp in | |
}}\| \] | |
}_{- , | |
}}^{* })\ | |
si an | |
Ġ} ; | |
}}) }=\ | |
)}| \] | |
Q T | |
c ed | |
}_{ = | |
\| } | |
}\, { | |
}})\ }\] | |
10 6 | |
20 1 | |
L HS | |
N B | |
l h | |
ra di | |
)= (( | |
_{- }+\ | |
)| -\ | |
Sp f | |
},\,\ ,\, | |
Ġwhen ever | |
] < | |
}\ },\\ | |
hi ft | |
ĠH F | |
}* (\ | |
a nt | |
ti v | |
}},\ ;\ | |
}; {\ | |
\}\ }\ | |
Ġ rad | |
)\ |= | |
;\ ,\, | |
_{* })=\ | |
\[[ (\ | |
905 512 | |
t C | |
^{* }}- | |
^{+ }}^{ | |
o od | |
)}\ { | |
)) :\ | |
{{ * | |
S m | |
Ġj k | |
Ġ5 4 | |
ut e | |
Ġ left | |
Ġp t | |
}})^{ -\ | |
Co ker | |
{)}\, ,\ | |
] )+\ | |
}{ -} | |
W h | |
c limit | |
)) }(\ | |
_{* * | |
Ġinteg er | |
: \\ | |
}^{* }=( | |
\, -\, | |
Ġk er | |
B H | |
R HS | |
g v | |
{ .}\ | |
{\{ }\| | |
succ curlyeq | |
}}) |\] | |
)}{ }_{ | |
ĠB o | |
\}\ !\ | |
Re l | |
an n | |
^{** }( | |
M I | |
}\ }( | |
}= +\ | |
_{[ -\ | |
P re | |
h igh | |
Ġ sup | |
}) }}( | |
Ġc t | |
)| -| | |
ĠI nd | |
homotopy climit | |
SI NR | |
$ }^{\ | |
0 24 | |
J M | |
M t | |
de p | |
}_{\ ,\ | |
}^{* }\|\ | |
ĠD a | |
)] (\ | |
)] \\ | |
13 8 | |
con n | |
Ġco st | |
3 24 | |
Ġ }]\ | |
}:=\ {(\ | |
10 7 | |
sk ew | |
Ġpa ir | |
X t | |
}^{* })}\ | |
}\, ^{\ | |
}; - | |
14 7 | |
}^{[ - | |
Qu ot | |
x I | |
}\ )- | |
{( | | |
16 7 | |
cy l | |
! / | |
! \] | |
+ (-\ | |
\ };\ | |
f p | |
| }}{\ | |
text sf | |
})+ (- | |
17 5 | |
}}\; ,\] | |
H z | |
}} }:\ | |
)) ^ | |
{)}\ ,\] | |
))\ ) | |
22 4 | |
01 9 | |
Ġequ iv | |
F C | |
{) }& | |
Ġf i | |
\, ;\ | |
Ġ4 7 | |
A N | |
C k | |
ri s | |
ĠS h | |
01 8 | |
}$ ,}\\ | |
a in | |
i id | |
or y | |
))=\ { | |
Ġ7 5 | |
,* }^{ | |
3 11 | |
b h | |
ti cal | |
}| &\ | |
^{* }},\ | |
_{- }\] | |
Ġ+\ | | |
- }^{\ | |
O r | |
X A | |
\| > | |
ine ar | |
ĠAlg orithm | |
S cal | |
\ }),\] | |
}} })= | |
ĠMe an | |
Ġvec tor | |
v f | |
th ick | |
(\ !\ | |
}}) :\ | |
Ġ4 6 | |
13 0 | |
Ġ8 1 | |
Ġsu rely | |
y l | |
}} }:=\ | |
}}{ }_{\ | |
00 000 | |
}[\ { | |
}:= - | |
\; (\ | |
or mal | |
Lo S | |
)}& =\ | |
) }}\,\ | |
Ġ}\ |_{\ | |
_{+ })^{ | |
})\, =\, | |
Ġ si | |
ho r | |
})=\ |\ | |
Ġ }] | |
}|\ }\] | |
Ġwhi ch | |
. }}\ | |
: {\ | |
B a | |
] |^{ | |
| _ | |
}\, -\, | |
or der | |
))\ |^{ | |
}\|\ , | |
):=\ {( | |
diamond suit | |
Ġinf inite | |
Ġcond ition | |
% ) | |
) })}\] | |
| )} | |
Ġ exist | |
Ġ\[+\ |\ | |
}}}{\ |\ | |
})& ( | |
Ġ* } | |
C a | |
Ġ}\ {\ | |
}& =( | |
_{+ ,\ | |
{\{ }\, | |
\; ,\ | |
)\| .\] | |
{\ #\ | |
Ġf ac | |
}}\, (\ | |
14 98 | |
sti ma | |
ĠC l | |
ĠT ra | |
})| > | |
}}^{* },\ | |
,* , | |
s pace | |
{ > | |
}}) |_{ | |
}^{+ }\\ | |
|\, .\] | |
Ġel se | |
K G | |
i Y | |
Ġ ^{*} | |
la y | |
Ġ\( | | |
)& :=\ | |
= &\ | |
Q D | |
}+\ { | |
)) }+ | |
)- (- | |
ĠL ip | |
Ġc n | |
em ph | |
Ġ\| (\ | |
B N | |
c frac | |
}}^{ (- | |
/ [ | |
A I | |
P X | |
{ `` | |
pri m | |
^{- }=\ | |
}{\ ( | |
\| - | |
}), - | |
14 6 | |
)}+ (\ | |
E I | |
b g | |
)} _ | |
\[\| | | |
}> \] | |
+ + | |
J e | |
to n | |
{)}\ |_{ | |
12 9 | |
_{- }}( | |
}]\! ]\] | |
center dot | |
0 22 | |
p li | |
Ġ |}\ | |
Ġ proj | |
)\ ,\, | |
to tal | |
}] .\ | |
}&\ |\ | |
Ġb a | |
Ġb etween | |
}$ }\] | |
C ase | |
q b | |
Ġin d | |
})\, :\, | |
)^{* }=\ | |
I K | |
R V | |
] })=\ | |
] }\\ | |
h D | |
:\ !\ | |
ĠP r | |
Di sc | |
0 23 | |
De s | |
}[\ ![\ | |
})|\ ,\ | |
&& && | |
Reg ret | |
. }}}{{=}}\ | |
G x | |
Ġ vertex | |
th en | |
ra nd | |
da ngle | |
Ġ{ }^{ | |
)) },\ | |
}\| }\] | |
Ġc losed | |
Ġs y | |
_{* }}(\ | |
7 29 | |
H N | |
a ng | |
f a | |
}\ }- | |
th o | |
ĠC E | |
\, _{ | |
]\ .\] | |
H d | |
)^{* }= | |
}}^{+ } | |
}\|=\ |\ | |
measure dangle | |
] [\ | |
i rr | |
Ġ }), | |
^{* }}-\ | |
ĠC F | |
Ġ6 6 | |
( * | |
U C | |
Ġ\ ,\,\ | |
)- |\ | |
_{- }-\ | |
ĠM od | |
Ġ )}.\] | |
in ing | |
^{* })}{ | |
Ġd om | |
}}, [ | |
}}+ \] | |
Ġre d | |
) }}| | |
N h | |
k z | |
p z | |
})\ |=\ | |
er gy | |
})| < | |
prec sim | |
Ġ7 8 | |
D ol | |
] ^ | |
k A | |
}}\ #\ | |
Ġg raph | |
{|}\ !\ | |
}}^{* }}\ | |
Tra ce | |
1 99 | |
G rad | |
] )+ | |
m is | |
}+ (-\ | |
J K | |
m v | |
Ġ{ }^{\ | |
pa th | |
}}+ [ | |
6 25 | |
t D | |
ga ther | |
ro ot | |
^{* }}+\ | |
lu x | |
\ }=\{\ | |
b it | |
wi st | |
un if | |
(- (\ | |
)\, (\ | |
Ġdist inct | |
9998 63 | |
s cal | |
)}\ ;\ | |
\|\ !\ | |
ĠS et | |
Ġor d | |
! | | |
R o | |
V A | |
] )- | |
Ġ [- | |
ti o | |
Ġ\[ :=\ | |
}: \] | |
}^{* }),\] | |
ble m | |
15 2 | |
{/ } | |
3 22 | |
Ġs ol | |
gather ed | |
h G | |
},\ ,( | |
Ġ}\ ;\ | |
\|\ \ | |
_{- })\] | |
}^{+ }; | |
ĠR eg | |
}> -\ | |
14 2 | |
)\! .\] | |
ĠDa ta | |
=\ \ | |
}}\, =\,\ | |
}|< | | |
] )_{ | |
m K | |
q m | |
u z | |
}) }}^{ | |
}) )).\] | |
Ġ\( (- | |
}}: ( | |
CV aR | |
D H | |
}| }+ | |
om orphism | |
}^{+ }\|_{ | |
)\, :=\,\ | |
^{\# }( | |
. ,\ | |
0 27 | |
Ġ )},\ | |
la nd | |
}|\ { | |
Ġm s | |
}\ }&\ | |
)\| =\ | |
64 8 | |
C Y | |
| )+\ | |
~ { | |
&= &\ | |
Ġ&&& & | |
# (\ | |
K x | |
a N | |
}{ { | |
ĠC PU | |
Ġs mooth | |
_{* }\|_{ | |
{] }}{\ | |
ab a | |
&* &*\\ | |
}] \,.\] | |
}}) ^ | |
,- }(\ | |
ei ther | |
Ġsqu are | |
- , | |
A Y | |
^{* }}.\] | |
te rm | |
u dx | |
}\ }}{ | |
}}\ }_{\ | |
}^{- }) | |
11 9 | |
}}\, |\ | |
}< ... | |
L k | |
M H | |
P ri | |
la g | |
}([ -\ | |
/ \| | |
n omial | |
Ġ }+( | |
Ġ ^{*}( | |
al se | |
}}) ,( | |
(( ( | |
Ġ6 5 | |
}+\| ( | |
56 7 | |
Ind Coh | |
ur corner | |
1498 15 | |
j x | |
n M | |
_{ :, | |
op p | |
Ġn e | |
\[\| [ | |
}< -\ | |
Tr op | |
\[= \] | |
Ġ9 1 | |
: & | |
\ }}}\ | |
}] ),\] | |
)) >\ | |
}\| > | |
ve d | |
/\ !\!/ | |
10 10 | |
] ), | |
}) )=(\ | |
}} ]+\ | |
^{* })_{ | |
}] }= | |
Ġg iven | |
... \\ | |
Ġ5 7 | |
Ġ5 8 | |
})) ]\] | |
A J | |
}^{ {}^{( | |
)}\ ,\] | |
\, { | |
Ġ5 5 | |
xx xx | |
+ , | |
V E | |
c L | |
Ġ\ }_{ | |
}> - | |
Ġre al | |
tribu tion | |
) }^{*}\ | |
S e | |
\ },\, | |
})_{\ #}\ | |
19 6 | |
L h | |
Ġ })}{ | |
\| }\] | |
}&\ | | |
)] )\ | |
}_{- },\ | |
37 5 | |
Ġme an | |
0 34 | |
B O | |
}\ }}.\] | |
{) };\] | |
ci t | |
)|\ \ | |
Ġ$ | | |
Ġ9 2 | |
nor mal | |
) [( | |
Ġ sum | |
Ġ |^{\ | |
^{* }))\] | |
}^{* }/ | |
}_{* }}\ | |
L d | |
| )^{-\ | |
ĠC S | |
)( |\ | |
In f | |
Ġle ast | |
] ;\] | |
}| }(\ | |
Ġe i | |
ĠR F | |
}_{- }}\ | |
99 99 | |
here nt | |
Ġcontain s | |
] )} | |
s ig | |
ĠC A | |
}\, :=\,\ | |
13 7 | |
|}{\ ( | |
Cu rl | |
E V | |
Ġ\ #\ | |
me d | |
}^{+ })=\ | |
{\{ }|\ | |
}]\! ]\ | |
}) }: | |
Ġf d | |
{\{ }\,\ | |
): | | |
01 7 | |
Ġmeasu rable | |
. }& | |
W A | |
| }} | |
Ġ }}= | |
}}| .\] | |
Co nt | |
N r | |
\ }}-\ | |
h b | |
Ġ tri | |
le d | |
}] }| | |
})^{ | | |
ĠS ta | |
5 000 | |
T W | |
c g | |
q d | |
v E | |
^{ +\ | |
)| ) | |
ĠP o | |
})) )= | |
Ġ7 6 | |
\( {}^{\ | |
] _{( | |
ra cle | |
)\ ), | |
}] :\ | |
Ġe ss | |
ĠH S | |
)_{ |\ | |
)] , | |
2 64 | |
k v | |
_{* })= | |
Ġin dependent | |
Ġcon ver | |
fin ition | |
Cor r | |
A lt | |
j d | |
}|\ | | |
ĠOr der | |
, > | |
D x | |
O bj | |
P Sh | |
m z | |
})\ { | |
Ġ1 13 | |
^{+ }+\ | |
]+ [\ | |
F I | |
}\ }}{\ | |
ma n | |
}^{+ })}\ | |
15 5 | |
' ' | |
8 998 | |
}\ }).\] | |
})\ }^{ | |
}| )+ | |
}\, {}^{\ | |
}}_{ {\ | |
ĠT V | |
})| |^{ | |
Ġ5 2 | |
Ġco efficient | |
| +( | |
Ġ ))^{ | |
Ġ& (\ | |
}\| }{\| | |
Ġh e | |
{\{ }\|\ | |
* }_{\ | |
y w | |
}) }^ | |
Ġ= &-\ | |
ĠV alue | |
check mark | |
18 4 | |
t S | |
Ġ }}{( | |
}_{- }^{\ | |
con j | |
Ġad j | |
; -\ | |
S ta | |
S tr | |
W E | |
{) }:=\ | |
}] &\ | |
{] }\,,\] | |
11 00 | |
}=( (\ | |
17 6 | |
sti ff | |
r N | |
Ġ li | |
}^{- }}{ | |
Ġ\[= [\ | |
SA T | |
B ar | |
G K | |
_{ . | |
^{- }) | |
De n | |
}}) =-\ | |
)( (\ | |
16 9 | |
}_{+ })}\ | |
Ġdi am | |
Ġro ot | |
0 28 | |
F A | |
s N | |
| ),\ | |
Ġ ga | |
Ġ end | |
Ġ }}| | |
}) )\,.\] | |
era tion | |
Ġd d | |
ĠR ate | |
14 3 | |
verti ces | |
. }}{{\ | |
m y | |
}} })^{\ | |
}{ } | |
}}_{ = | |
Th e | |
23 2 | |
)\! =\! | |
T d | |
] }}( | |
Ġ can | |
era tions | |
15 9 | |
ome o | |
]\! ]_{ | |
D ir | |
S z | |
}} }}(\ | |
}^{* }\, | |
}\| )\ | |
:=\ !\ | |
})) /\ | |
en cy | |
O S | |
Q A | |
}) }}{{\ | |
}}(\ {\ | |
}\| } | |
ĠI V | |
)\, =\ | |
)] )\] | |
,- }^{ | |
{{ }_{ | |
}}^{* }, | |
tharpo ons | |
{: }\ | |
V V | |
c j | |
^{+ },\] | |
22 3 | |
100 00 | |
Ġco r | |
0000 0000 | |
8998 49 | |
I nn | |
\ }^{- | |
Ġ ca | |
_{ +\ | |
{) }=- | |
\| |\ | |
})) : | |
T ri | |
W W | |
p y | |
t Y | |
Ġ quad | |
ra t | |
}{ ** | |
})_{ [ | |
:= [ | |
)& =-\ | |
Att n | |
, .., | |
h n | |
m C | |
Ġ prod | |
}} }> | |
}}) }= | |
}& * | |
}& ...& | |
}:=\ |\ | |
Ġno rm | |
$ }}}{\ | |
8 64 | |
G Sp | |
L t | |
j N | |
{ +}\ | |
)) ,( | |
Ġd S | |
ĠM ax | |
23 3 | |
Ġimp lies | |
n w | |
}}\ } | |
var iant | |
_{* }|^{ | |
ĠV ol | |
}}= |\ | |
bi as | |
) }}[ | |
al t | |
}| +( | |
\| [\ | |
0 30 | |
E B | |
c lip | |
s hort | |
[\ !\ | |
}}) .\ | |
$ }( | |
d J | |
right lef | |
\| +\|\ | |
un c | |
}}| =\ | |
N c | |
i M | |
t P | |
}) })= | |
Ġs mall | |
}:\ ;\ | |
Ġ\(\ |\ | |
rightlef tharpoons | |
; | | |
}) )|^{ | |
ĠC k | |
^{( -\ | |
})=\ | | |
)( [ | |
Ġs tep | |
}\|\ ,\ | |
;\;\ ;\;\ | |
ian ce | |
B v | |
C X | |
k B | |
)- [ | |
}}) ,\\ | |
)} ;\] | |
}^{+ }}\] | |
Ġ5 1 | |
\% ) | |
\ }|= | |
| }^{\ | |
}) }:\ | |
Ġ0 1 | |
Ġc lass | |
Ġp eri | |
Ġequiv alent | |
G T | |
g ra | |
o ng | |
}^{ ! | |
}}) }+\ | |
uni formly | |
- }(\ | |
Ġ ]_{ | |
Big m | |
}\, +\ | |
Ġ\[=\ ,\ | |
_{+ }.\] | |
})) )=\ | |
}{*}{\ (\ | |
Ġdo es | |
ĠMo del | |
F it | |
] ,\,\ | |
] \,,\ | |
x h | |
Ġ ss | |
{) }/\ | |
})+ |\ | |
em b | |
33 6 | |
cl ub | |
M B | |
u y | |
}) })=\ | |
Ġ1 20 | |
) }]= | |
S at | |
}) }=( | |
me an | |
{) }/ | |
32 6 | |
A g | |
] \|\ | |
a ge | |
Ġ }^{*}\ | |
}}= : | |
))^{ ( | |
18 9 | |
|\, | | |
Ġdef ined | |
Ġma ny | |
Ra nge | |
Ġtw o | |
d ig | |
Ġ right | |
^{ = | |
}| =( | |
ĠD f | |
,\, (\ | |
val ue | |
& ...& | |
F B | |
^{- {\ | |
)] }{\ | |
vi al | |
! -\! | |
V I | |
n I | |
Ġt rue | |
{)}\ !\ | |
club suit | |
S tar | |
W D | |
}\ {|\ | |
qu ence | |
^{- }- | |
)}, ..., | |
|| ( | |
Ġ7 7 | |
r T | |
u al | |
Ġ app | |
^{* })} | |
\, =\ | |
* }\] | |
A L | |
n et | |
w ork | |
su re | |
or el | |
{\{}\ { | |
T Q | |
U T | |
] ))\ | |
c usp | |
o dic | |
}} ], | |
}\, {}_{ | |
\, )\ | |
{| }-\ | |
ge om | |
)}( [ | |
})+ {\ | |
R ed | |
a xi | |
u i | |
}\ }]\] | |
&& &\ | |
,+ }^{ | |
4527 6 | |
\ }}- | |
Ġ })}{\ | |
}) }(- | |
}} }}.\] | |
si s | |
}& := | |
ĠM SE | |
L IS | |
Q S | |
u h | |
}) }},\] | |
Ġ\[ -(\ | |
^{* })\|_{ | |
Ġ( (\ | |
Ġb i | |
14 8 | |
0 35 | |
3 32 | |
A c | |
M v | |
] }}{\ | |
] \|_{\ | |
Ġ )/ | |
^{- })\] | |
}\, [\ | |
),\ |\ | |
ĠE q | |
Ġ(\ %) | |
,- )\ | |
,+ }_{ | |
. (\ | |
T B | |
b ad | |
q j | |
}( {}^{ | |
=\ {(\ | |
Ġx x | |
}), {\ | |
}; [ | |
16 4 | |
{{ }^{ | |
)! }{\ | |
Ġ7 9 | |
Ġ&= & | |
8 45276 | |
I f | |
] ))\] | |
i K | |
}| }= | |
ĠT otal | |
_{* }|\ | |
}; (\ | |
24 8 | |
V al | |
v r | |
| )}{ | |
in dex | |
ĠM L | |
)! ! | |
S K | |
!\ ,\ | |
) }]^{ | |
= & | |
c lo | |
co herent | |
}& | | |
\! ( | |
}}& ( | |
28 0 | |
})^{* }= | |
# } | |
n D | |
{( }-( | |
p g | |
ĠC s | |
}/ | | |
})- {\ | |
Ġ+ |\ | |
Ġ5 3 | |
Ġto tal | |
P CA | |
Q Q | |
| [\ | |
_{ ; | |
Ġ6 7 | |
{, }\\ | |
$, }\] | |
Ġdi mension | |
Ġsp e | |
: \|\ | |
F X | |
f s | |
v y | |
v z | |
at ed | |
\| )^{ | |
Ġd A | |
Ġe igen | |
Ġr s | |
&\ ,\ | |
ĠU n | |
}\; (\ | |
Ġ8 5 | |
G O | |
}} }\,,\] | |
}\| -\ | |
_{* })( | |
}_{+ }}( | |
})\, {\ | |
Ġ5 9 | |
})) ]\ | |
lu e | |
no break | |
}\# _{ | |
Ġpar t | |
$ })\ | |
Ġk t | |
\[\| [\ | |
Ġg r | |
\[[\ ![ | |
Ġ\, {\ | |
S i | |
a ut | |
| }, | |
Ġ rel | |
}) )] | |
ga tive | |
ĠM at | |
^{+ }}{ | |
16 5 | |
$ };\\ | |
F e | |
i th | |
y f | |
Ġ }^{(\ | |
{\ }}\,,\] | |
big star | |
}}+ {\ | |
Ġg roup | |
}}[ | | |
ne ss | |
88 6 | |
) }]=\ | |
H g | |
\ }\,,\ | |
k ij | |
Ġ ve | |
Ġf ree | |
, {}^{ | |
. }\\ | |
w y | |
}} }< | |
}}\ ,\, | |
ĠC a | |
re du | |
ĠB C | |
})- | | |
}})\ |_{\ | |
Ġ6 8 | |
}})\, ,\] | |
ective ly | |
G en | |
M n | |
Q H | |
h j | |
p oint | |
t V | |
ph ys | |
^{- }\] | |
)) }+\| | |
})= : | |
)| }{( | |
cccc ccccc | |
pe ri | |
M u | |
Ġ low | |
}+ (( | |
er y | |
}^{- }.\] | |
\|_{ {\ | |
}^{* }[\ | |
), ...,\ | |
it er | |
}]- [\ | |
H y | |
n subseteq | |
Ġ subset | |
^{* })}{\ | |
Ġt est | |
}}) ),\] | |
15 7 | |
]= (\ | |
Ġ6 3 | |
+ _{ | |
I O | |
\ })}\ | |
q y | |
{\ }}\, | |
Ġ& +( | |
Ġb lock | |
Ġme thod | |
) }}}{\ | |
H u | |
I A | |
] }}{ | |
}}^{ [\ | |
ĠC K | |
dt d | |
Ġ7 3 | |
36 8 | |
supset neq | |
)\; =\; | |
i on | |
k H | |
le v | |
ar m | |
ex act | |
ĠC H | |
}^{* }&\ | |
})^{ |\ | |
)},\ ,\ | |
25 7 | |
Ġ8 4 | |
)=- (\ | |
x b | |
Ġ cu | |
us t | |
{)}\ ; | |
ĠD F | |
}_{+ }=\ | |
20 8 | |
}}] -\ | |
c M | |
Ġ )}+\ | |
ĠT ype | |
_{* })- | |
): (\ | |
en v | |
}},\ { | |
))\ ; | |
let e | |
21 5 | |
Ġ8 9 | |
})_{+ }^{ | |
T Y | |
^{- }= | |
co ev | |
:=\ , | |
)] } | |
)] =[ | |
Ġ7 4 | |
}<... < | |
T E | |
b X | |
Ġ ]}\ | |
)}\ !\ | |
ce ss | |
})< +\ | |
)^{+ } | |
}|+|\ { | |
Ġmin i | |
\| }{\| | |
}\| | | |
<\ ,\ | |
Ġin dex | |
Ġ6 2 | |
0 48 | |
J S | |
] )-\ | |
i P | |
v c | |
Ġ subject | |
{\ }}.\ | |
)+ [\ | |
Ġk x | |
ĠS E | |
Ġlo ss | |
U f | |
] }:=\ | |
)) := | |
}\, _{\ | |
}^{\# }\ | |
scri ption | |
! }\,\ | |
H od | |
\ }(\ | |
^{ !} | |
ĠT x | |
}^{+ })= | |
}), [ | |
tr y | |
)}}\ \ | |
_{ = | |
}) )}( | |
}) )+( | |
^{- }+ | |
Ġn ew | |
}[ ] | |
ĠE xp | |
}(- ( | |
15 4 | |
))- (\ | |
|< | | |
Y M | |
Ġ operator | |
Ġ )}_{ | |
Ġ }}\,\ | |
|\ |_{ | |
)= (-\ | |
}] | | |
{= }\ | |
FP dim | |
M G | |
y u | |
_{ !}( | |
)}_{ (\ | |
Ġ8 8 | |
G raph | |
J u | |
K u | |
] _{- | |
l x | |
m T | |
)\ {\ | |
)| (\ | |
dt ds | |
ĠCo v | |
asi coherent | |
{{* }}{{\ | |
- }, | |
E t | |
Ġ under | |
ma g | |
un t | |
}), -\ | |
13 9 | |
Ġ6 9 | |
\! [ | |
36 5 | |
S oc | |
U R | |
] ^{-\ | |
] ]_{ | |
}, .., | |
\|_{ *}^{ | |
)) }+\|\ | |
}& &&\\ | |
19 8 | |
Ġno de | |
] }\,\ | |
}_{ (-\ | |
}: & | |
})=\ \ | |
}& {\ | |
15 3 | |
)\| <\ | |
) }}}{ | |
, } | |
C hi | |
H omeo | |
L K | |
}} }+\| | |
big times | |
}}{ =} | |
Ġi i | |
}}= :\ | |
Ġw eight | |
Ad j | |
las si | |
F ree | |
t I | |
Ġ })(\ | |
}} ]+ | |
la st | |
))\ | | |
Ġw t | |
}})=\ { | |
Ġre pre | |
\ }})\ | |
me r | |
})= -( | |
_{- }}^{ | |
}^{+ })^{\ | |
Ġr ot | |
})| ( | |
})) &\ | |
Ġ8 2 | |
Lo ss | |
Ad m | |
Ġra nd | |
A Z | |
K B | |
g lo | |
i D | |
Ġ& =(\ | |
^{* }}}{ | |
}_{+ }}\] | |
}:= {\ | |
! },\ | |
T z | |
b cd | |
Ġ pi | |
}\ {- | |
Ġs ample | |
^{+ }|^{ | |
ba se | |
)]\ ! | |
/ {\ | |
}{ [\ | |
)\ (\ | |
\{ [\ | |
]\ ; | |
}}+ (- | |
}}| + | |
}* }\ | |
be cause | |
Ġelement s | |
L Mod | |
P h | |
S pa | |
)}= [ | |
19 5 | |
Ġ:= (\ | |
L n | |
Ġ row | |
ra tic | |
\|_{ (\ | |
}\, ; | |
}\, -\,\ | |
ing s | |
35 8 | |
}}}{{= }}( | |
Ġpar ti | |
Ġmeasu re | |
! \{ | |
H x | |
] )( | |
i ll | |
q v | |
+\ { | |
Ġp ower | |
32 8 | |
Ran k | |
L N | |
L im | |
R X | |
] )}^{ | |
n C | |
| )=\ | |
)\ |}\ | |
}{\ (\ | |
}| }-\ | |
^{* }}} | |
}] {\ | |
};\ ,\, | |
}}\, |\, | |
15 8 | |
)]\ ,\ | |
tu re | |
}}^{+ }\] | |
3 23 | |
E T | |
d ro | |
i X | |
}} }: | |
^{* }[\ | |
16 6 | |
})^{* }=\ | |
0 40 | |
z ero | |
}\, / | |
00 10 | |
}^{+ }}{ | |
cy cle | |
black triangle | |
h w | |
nd ard | |
li c | |
{{ }^{\ | |
dig amma | |
] )}\] | |
l ct | |
w hi | |
Ġ )).\] | |
}) &- | |
}^{* }=(\ | |
)| }.\] | |
}^{+ ,\ | |
con stant | |
02 6 | |
succ sim | |
)_{+ } | |
D U | |
i ed | |
k M | |
re al | |
_{+ }}{\ | |
}\!\ !\! | |
Map s | |
Lin k | |
Ġbound ary | |
F N | |
] -( | |
}\ {\| | |
})\ },\ | |
}] )+\ | |
}^{* }/\ | |
Ġa bs | |
}\| )\] | |
Ġ\( > | |
_{* }}{\ | |
\,\ { | |
^{+ }}(\ | |
dy dz | |
}< _{ | |
) })|\ | |
E is | |
Ġ nd | |
}] |^{ | |
tri ct | |
ĠC I | |
Ġt n | |
Ġs tr | |
})| >\ | |
Ġ6 1 | |
tion al | |
Sp d | |
})\| _ | |
Ġequ ation | |
E ff | |
)| ,| | |
})+\ |\ | |
eigh bo | |
{: } | |
Ġ }))\] | |
}(\ , | |
Ġ\[ +| | |
\,\ ,\, | |
Ġy es | |
&& & | |
F V | |
L emma | |
q T | |
{ }^{*}\ | |
}^{+ }:=\ | |
Ġma p | |
. }} | |
T ail | |
in st | |
da te | |
})\ |.\] | |
)) )-\ | |
ci al | |
ĠS t | |
)}( -\ | |
})| -| | |
)}| |\ | |
ni form | |
orphi c | |
C U | |
D o | |
x d | |
}\ }}| | |
ti mal | |
tar get | |
Ġ} <\ | |
Ġ= -(\ | |
_{* }; | |
{\| }|\ | |
17 8 | |
Ġ7 1 | |
Ġbo th | |
C ard | |
f c | |
Ġ line | |
Ġ vertices | |
_{ |_{ | |
}|\ }\ | |
Ġd q | |
}}{( | | |
56 0 | |
\ }|.\] | |
i J | |
n P | |
x r | |
Ġ })} | |
Ġ hom | |
sum ption | |
^{* }]\ | |
{(}\ !\ | |
=- (\ | |
})] \\ | |
33 1 | |
Ġoth er | |
) }}\| | |
\ & | |
\ }]\ | |
q N | |
lo cal | |
Ġ& \\ | |
ver se | |
}^{( -\ | |
)}{ }^{\ | |
Ġc c | |
_{- ,\ | |
\[\| |\ | |
}_{* }, | |
\% ** | |
X P | |
] ]= | |
)\ }} | |
)}\ {\ | |
}}^{ {}^{\ | |
}: &\ | |
)^{\ # | |
ĠA C | |
st ep | |
dy d | |
\# _{ | |
}+... +\ | |
ke w | |
D K | |
E v | |
R I | |
T m | |
\ }})\] | |
q i | |
Ġ ^{+ | |
}| }{( | |
}}\, , | |
)},\ ; | |
)}=\ {\ | |
* , | |
}\ }\,,\] | |
}^{* }}=\ | |
}\,\ |\,\ | |
19 4 | |
19 7 | |
c ell | |
c cu | |
i F | |
x s | |
}, (- | |
})\ }=\ | |
), | | |
Ġ\[= -( | |
20 48 | |
) })) | |
s T | |
se e | |
}}| +\ | |
)> ( | |
)\! ,\] | |
\,(\ , | |
ML E | |
G B | |
\ }}) | |
] }\, | |
}| )^{- | |
Ġb ut | |
}* |\ | |
S y | |
X u | |
\ }]\] | |
j oint | |
k Q | |
}\ }}(\ | |
}) ]}\ | |
}) [- | |
op en | |
)}\ }.\] | |
^{* }] | |
}^{* })}{ | |
{)}\ ;\ | |
ĠS e | |
}^{+ }|^{ | |
_{+ }\|_{ | |
Ġh igh | |
}}^{* }-\ | |
;\;\ ; | |
pa ra | |
}^{* };\ | |
}}| +| | |
* )\ | |
C ay | |
F f | |
\ }}_{ | |
] \| | |
b er | |
}_{ { | |
}_{\ ! | |
\) . | |
})^{- ( | |
})\, , | |
Ġ\[+ |\ | |
}\; :\; | |
)* ( | |
Ġsatisf ying | |
G E | |
Ġd R | |
Ġo bs | |
Ġsa me | |
0 45 | |
se mi | |
_{* })+\ | |
Ġb d | |
Ġal g | |
= (-\ | |
K F | |
i cal | |
^{* }}) | |
]\ ,\] | |
_{* })}\ | |
Ġp q | |
})_{ |\ | |
)^{- }\ | |
}(- )\ | |
)}, ( | |
| )|\ | |
}^{* }))\ | |
\, -\,\ | |
)}( | | |
}^{+ + | |
+| | | |
}}^{* })\] | |
25 5 | |
den ti | |
\ }; | |
co rr | |
}] ),\ | |
{)}\ ! | |
less approx | |
96 8 | |
})= :\ | |
)| &\ | |
}[\ ,\ | |
})\, :\,\ | |
\[= (- | |
))}\ ,\ | |
9 00 | |
= +\ | |
J N | |
}| ),\] | |
}})^{ ( | |
Ġ8 7 | |
30 4 | |
})}=\ |\ | |
Ġdiv i | |
}]\! ]_{ | |
A k | |
I B | |
K f | |
\ }& | |
Ġ )}}\ | |
{\ }}+ | |
De c | |
_{- })^{ | |
Ġ$ (\ | |
)}= (- | |
34 6 | |
Ġla y | |
3 15 | |
4 20 | |
E R | |
S ur | |
c tr | |
f y | |
r A | |
}( {}_{ | |
}}\ },\ | |
)}{ [ | |
^{+ + | |
P O | |
ex c | |
|^{ |\ | |
^{* }{\ | |
}] )^{\ | |
}^{* })(\ | |
)} }_{\ | |
]\ },\] | |
})) .\ | |
)\| +\ | |
}) ):=\ | |
})\ }_{\ | |
^{* }}| | |
)) )- | |
Ġ\( + | |
22 8 | |
}_{* }\] | |
},\, | | |
Ġ8 3 | |
}}] (\ | |
XY Z | |
}! }\] | |
! }}\ | |
: ,\ | |
F ind | |
a T | |
| })\ | |
}}{ || | |
\| , | |
)) ,&\ | |
)| : | |
) })=( | |
: &\ | |
E rror | |
f ind | |
h am | |
}} ])\ | |
la w | |
}] )}\ | |
Ġi h | |
}^{+ }}{\ | |
}^{+ })_{ | |
,\, |\ | |
,+ } | |
78 4 | |
N u | |
s L | |
in ition | |
)\ })\] | |
}| || | |
nu ll | |
Ġ} > | |
ca y | |
}), ...,\ | |
^{*}\ ! | |
}> _{ | |
}< (\ | |
^{\# }\ | |
Ġfunction s | |
Ġsta te | |
] }}\] | |
g m | |
q f | |
|\ }\] | |
Ġ} /\ | |
ĠL ie | |
Ġc e | |
^{*}( ( | |
con s | |
lef tharpoonup | |
}}: (\ | |
! }= | |
w a | |
\, + | |
Ġt x | |
})}\ }\] | |
Ġ\, (\ | |
/ / | |
ti es | |
\| )\] | |
ĠS H | |
18 5 | |
Ġsin ce | |
$ }\}.\] | |
u rs | |
}} })_{ | |
})\ }= | |
{) }},\] | |
}] }^{\ | |
{\{ }{\ | |
)}=\ |\ | |
black lozenge | |
radi ent | |
C p | |
Ġ }}} | |
)^{ (| | |
ro l | |
)) ,& | |
ci ble | |
}}] )\] | |
tra ns | |
Ġsy stem | |
c R | |
h m | |
k f | |
{[ ( | |
)}+ | | |
27 6 | |
arc tanh | |
( {}^{\ | |
R U | |
T G | |
c H | |
Ġ ]^{ | |
Ġ curve | |
in n | |
}}) }{( | |
pro xi | |
):=\ | | |
16 1 | |
25 2 | |
\( {}_{\ | |
m R | |
rc ll | |
)+\ \ | |
ĠN A | |
}}- | | |
)] \, | |
14 9 | |
20 11 | |
|| |_{ | |
)! \] | |
}): (\ | |
)$ }.\] | |
- \] | |
f inite | |
| }\| | |
to l | |
}] > | |
}] }, | |
{| }> | |
B s | |
] })= | |
t E | |
}) )|\] | |
}) ;\\ | |
\|_{ - | |
Ġ} })\] | |
bul k | |
})( | | |
)}_{ [ | |
|| } | |
18 8 | |
_{\_ } | |
N q | |
s rc | |
}\ }: | |
}} }]\ | |
am il | |
}] )_{ | |
_{( ( | |
) })| | |
t J | |
Ġ })_{\ | |
Ġ }+\|\ | |
}}) -( | |
00 11 | |
}=( {\ | |
)})\ |^{ | |
99 5 | |
)^{* }(\ | |
& + | |
M p | |
f b | |
o in | |
ro n | |
ro ugh | |
ĠG en | |
flo w | |
Ġ4 00 | |
22 0 | |
}}^{- } | |
36 7 | |
Ġse c | |
E d | |
F a | |
;\ { | |
Ġf irst | |
ĠS M | |
{[ }[ | |
{|}\ { | |
)] }( | |
Ġ\[+\ | | |
Ġ\[+ (- | |
)< - | |
9 45 | |
U p | |
g B | |
| =( | |
}) ),\\ | |
)) }^{\ | |
}\| [ | |
Ġd g | |
lus ter | |
}^{+ };\ | |
26 8 | |
ĠProp osition | |
0 33 | |
R y | |
U S | |
\ }),\ | |
i rc | |
Ġ |_{\ | |
}) )-( | |
}(\ !( | |
ĠC x | |
ss on | |
}))\ }\] | |
}\! ( | |
Ġ }}|\ | |
var triangleleft | |
}{\ #\ | |
}| }^{ | |
^{* }})\] | |
Ġ{ +}\ | |
Ġn m | |
Ġn et | |
Ġn eighbo | |
})( {\ | |
{\| ( | |
}:= | | |
18 7 | |
34 7 | |
}$ }.\ | |
Ġ8 6 | |
I L | |
x A | |
}^{- })=\ | |
}\, (- | |
Ġd vol | |
ĠN R | |
)}^{ (\ | |
))}\ |\ | |
)* _{ | |
G N | |
] ].\] | |
u j | |
le ct | |
Ġ\ !\!\ | |
(\ ! | |
}= [( | |
}}{ -\ | |
{) },&\ | |
Ġi deal | |
}\|\ \ | |
,- }_{ | |
}. ( | |
Ġ* & | |
Pa th | |
[ (- | |
)\ }_{\ | |
}^{\ {\ | |
Ġ1 42 | |
)) +(\ | |
}}) ^{*} | |
ĠA s | |
Ġz ero | |
Ġ3 00 | |
}:= |\ | |
17 7 | |
PS H | |
) })\, | |
) }|_{\ | |
F W | |
F y | |
a nge | |
Ġd n | |
40 5 | |
B X | |
_{\ {( | |
),\ { | |
Ġn s | |
Ġ_{ [ | |
Ġs te | |
_{* }\,\ | |
,- },\ | |
56 8 | |
}}^{+ }}\ | |
Ġinter val | |
: _{ | |
W AW | |
t T | |
}) }),\] | |
^{* }\) | |
}] },\] | |
}}) _{( | |
ĠN N | |
}_{+ };\ | |
24 7 | |
}):= -\ | |
ĠDe finition | |
\ }}\, | |
x D | |
y v | |
}) }}{( | |
}_{ ,\ | |
)=\ {(\ | |
pre d | |
}+\| (\ | |
34 4 | |
)}| | | |
!|\! | | |
N b | |
{) }^{*}\ | |
)) )^{\ | |
box dot | |
,- }/\ | |
20 4 | |
\! {\ | |
64 5 | |
Ġ** - | |
499 9 | |
) )}\, | |
E CH | |
t F | |
}= || | |
}\, ;\] | |
))\ .\] | |
):= | | |
17 0 | |
Ġse quence | |
}|\, .\] | |
! |\ | |
) _{*} | |
4 35 | |
< (\ | |
L H | |
a A | |
}_{ :, | |
\|_{ *}\ | |
)& =- | |
02 9 | |
Ġdi sc | |
Ġequivalent ly | |
Ġrand om | |
: \] | |
w ard | |
}\ }|\] | |
ma t | |
})\ ,\,\ | |
}}) ] | |
un lhd | |
^{+ })^{\ | |
):= [ | |
Pr op | |
ic ro | |
75 0 | |
})< ( | |
' s | |
a da | |
}] \,,\] | |
}\,\ }\] | |
})+\ | | |
}}| > | |
Ġpoly nomial | |
< \, | |
{\ }}-\ | |
ri z | |
Ġc s | |
Ġc ent | |
}^{+ }}^{ | |
})) >\ | |
is tic | |
IJ K | |
Cy c | |
Ri em | |
^{* ,\ | |
}}+\ |( | |
{] },\\ | |
ĠQ u | |
)! }=\ | |
,& | | |
B z | |
K E | |
] . | |
] )^{- | |
i C | |
n V | |
v dx | |
}) ))^{ | |
pi tch | |
li d | |
or e | |
re m | |
{] }}{ | |
for k | |
}))\ |^{ | |
17 4 | |
})& -\ | |
h A | |
m dim | |
}) )}= | |
bo und | |
}\|_{ [ | |
)^{- (\ | |
sta t | |
)] }\] | |
up alpha | |
26 7 | |
}_{\# }( | |
. )\ | |
B Z | |
D O | |
p N | |
Ġ split | |
Ġ }}\, | |
}=\ {[ | |
}}) )_{ | |
}_{+ }-\ | |
000 5 | |
M E | |
N V | |
e th | |
n sity | |
| )\,\ | |
Ġ }}\| | |
}) })^{\ | |
}) }_{( | |
&\ , | |
}] }\| | |
}^{- }}( | |
ge ne | |
ij m | |
ĠB S | |
}}, | | |
})| } | |
)> -\ | |
30 8 | |
03 8 | |
60 8 | |
Ġ{* }(\ | |
0 32 | |
\ }|+|\{ | |
Ġ err | |
\[ * | |
pri or | |
er v | |
ho colim | |
{) }:\ | |
}] \|_{\ | |
ĠB orel | |
16 3 | |
23 7 | |
19 0 | |
Ġtra ns | |
g z | |
}\ },&\ | |
(\ #\ | |
{) }{\ | |
}}) := | |
Ġk l | |
Ġ:=\ {( | |
sy n | |
pitch fork | |
K d | |
Ġ }}}{ | |
ti m | |
}{\ # | |
20 5 | |
)\! +\! | |
? \] | |
O pt | |
h c | |
Ġ cap | |
{\ }}^{\ | |
}}} .\ | |
21 8 | |
)! )^{ | |
{= } | |
34 8 | |
})] )\] | |
)^{* }.\] | |
40 96 | |
J H | |
J W | |
\ }/\ | |
] }(- | |
s eq | |
}( :, | |
}) )}+\ | |
}\| ,\| | |
Ġ= {\ | |
Ġk n | |
ĠS ing | |
21 7 | |
Ġno ise | |
Ġla w | |
aus sian | |
- })\ | |
T ime | |
X B | |
f erence | |
r K | |
v p | |
| )= | |
}\ }.\ | |
}) *( | |
}| ^{( | |
): [ | |
17 9 | |
D z | |
}^{* }}}\ | |
}^{* }> | |
Ġt f | |
}\|_{ - | |
}^{+ },\\ | |
ĠR S | |
)! }( | |
\[[\ ![\ | |
( + | |
D r | |
I u | |
] &=\ | |
b ib | |
y b | |
le ction | |
{) }[ | |
Ġ{ {\ | |
)) )+ | |
}\, ;\, | |
Ġa ss | |
)}{ -\ | |
_{+ })}\ | |
^{+ })=\ | |
})\, ,\\ | |
18 6 | |
Ġex act | |
Q f | |
b lock | |
}= [- | |
}: - | |
{] }}\ | |
21 9 | |
)}- (\ | |
tiv ity | |
. ) | |
] )=[ | |
z a | |
Ġ tor | |
\[\ {| | |
^{* }\,\ | |
ĠS C | |
ĠT est | |
}}{( ( | |
0 37 | |
L r | |
] _ | |
k C | |
v d | |
x F | |
=\ !\!\ | |
})= (( | |
+( | | |
Ġin i | |
is H | |
) }}|\ | |
- - | |
A o | |
P N | |
i ve | |
z g | |
| )- | |
Ġi a | |
}/ |\ | |
))\ }.\] | |
ĠM in | |
_{+ }}^{ | |
33 8 | |
is k | |
78 9 | |
ĠCon v | |
TN D | |
H am | |
w eight | |
z h | |
al f | |
\[\ {{\ | |
)) }}\ | |
Ġi e | |
Ġf ull | |
)| )\] | |
^{*}\ }\] | |
})\, | | |
})\, (\ | |
23 8 | |
], &\ | |
})] }{\ | |
* }^{\ | |
)( {\ | |
equ ality | |
)\,\ | | |
Ġo b | |
Ġ+ &\ | |
24 4 | |
15 1 | |
})|\ \ | |
Ġ| ( | |
Ġconst raint | |
Fit t | |
bib ref | |
) }}} | |
> _{\ | |
B PS | |
\ },& | |
x P | |
}) },\\ | |
{) }: | |
co eff | |
}\, ;\ | |
Ġ} < | |
_{* },\] | |
})| ^{- | |
))}\ \ | |
)}}{\ | | |
Ġsu ff | |
)_{+ }\] | |
Ġdis tribution | |
$ }}{\ | |
& [ | |
8 110 | |
] }}(\ | |
Ġ lower | |
^{* }}\| | |
\| (-\ | |
Ġp la | |
_{+ }[ | |
\}\ { | |
\}\ ,\] | |
gen ce | |
}}\!\!\ !\ | |
2 96 | |
i S | |
n B | |
}{ (( | |
}, *}\ | |
})\ ;\;\ | |
li cit | |
^{* })(\ | |
\{ + | |
)}( (\ | |
)| ,|\ | |
Ġm ix | |
{\| }_ | |
^{+ })= | |
en c | |
Ġtra ce | |
V M | |
ig gs | |
in s | |
|\ }\ | |
_{* }[ | |
}\|\ ! | |
}})\ |^{ | |
25 8 | |
J A | |
L arge | |
s hift | |
y g | |
}) }({\ | |
}} }}^{ | |
}_{\ {( | |
ds d | |
nu mber | |
pa ir | |
ĠC m | |
ĠT N | |
_{+ },\] | |
\},\ {\ | |
35 7 | |
Ġle vel | |
Ġsim ple | |
p L | |
t R | |
ra te | |
ho ld | |
)}{ - | |
re ad | |
],\ ; | |
}]= (\ | |
}}[\ |\ | |
8110 24 | |
e k | |
i I | |
al y | |
}}) [\ | |
re qu | |
ĠS T | |
_{* }}^{\ | |
dy n | |
Ġre du | |
4 48 | |
H erm | |
d ing | |
h s | |
k D | |
m M | |
| .\ | |
}) })_{ | |
}^{* }{\ | |
}^{* })\|_{ | |
ĠL inear | |
}},\ {\ | |
ĠN on | |
}}}\ }\] | |
]= \] | |
pe rm | |
})^{+ }\] | |
})\ }}\ | |
at t | |
^{* - | |
}& |\ | |
ĠM ul | |
}^{+ }}(\ | |
mod ule | |
Ġvariable s | |
H a | |
N f | |
c A | |
Ġ })}^{ | |
ra cy | |
^{- }}^{ | |
}| )+\ | |
{) }}{( | |
}] ] | |
{| },\ | |
\[( [\ | |
_{* }).\] | |
Ġ\[=\ {\ | |
}}| - | |
G u | |
i E | |
\, +\ | |
Ġ- | | |
... &\ | |
\!\ !\! | |
99 6 | |
diag up | |
}): \, | |
ĠSp in | |
H W | |
w d | |
}{ = | |
\, ;\] | |
14 1 | |
Ġde c | |
R r | |
\ })- | |
] }).\] | |
p A | |
t M | |
}) )}=\ | |
}_{\ {|\ | |
ĠK e | |
20 6 | |
)! },\] | |
Ġth an | |
Ġ }}^{( | |
pri v | |
}| ]\ | |
}}) ,(\ | |
{| }|\ | |
,\, {\ | |
40 8 | |
sa tisf | |
Ġlo cal | |
N orm | |
le vel | |
ap e | |
chi tz | |
ĠS ub | |
_{* }}\] | |
12 12 | |
))}\ | | |
;\;\ ;\ | |
redu cible | |
A q | |
[ -( | |
m A | |
s ample | |
}) }}=\ | |
\| }.\] | |
:=\ ;\ | |
st e | |
}}^{* }= | |
})) :\ | |
): \,\ | |
}}^{+ , | |
$, }\ | |
Ġsupp ort | |
Ġedge s | |
] }\|_{ | |
}) ... | |
}}\ }}\ | |
re nt | |
_{+ + | |
})| }\] | |
)\| ( | |
04 9 | |
K v | |
L W | |
| }\|\ | |
}\ };\] | |
}) !}\ | |
}} }),\] | |
hi t | |
}^{- })= | |
}\, {}^{ | |
}}) }^{\ | |
}}) _{*}\ | |
{] }, | |
}^{*}\ }_{ | |
)(\ | | |
20 7 | |
27 2 | |
)}}{ (\ | |
}! ( | |
)^{+ }\] | |
Ġresp ect | |
i R | |
m D | |
^{* }}}( | |
{) },& | |
}}) =- | |
), |\ | |
ps chitz | |
Ġis o | |
}_{- })\ | |
)}}{ {= | |
]}{ [ | |
mis sible | |
A Q | |
N g | |
f ar | |
i sh | |
ĠO ut | |
\; =\;\ | |
an nel | |
05 0 | |
29 4 | |
In c | |
_{\# } | |
Ġquad ratic | |
c ross | |
{ }_{( | |
Ġ })\,\ | |
le c | |
ri es | |
}^{* }\| | |
}:= (- | |
23 9 | |
|| | | |
In j | |
\}+\ { | |
ĠAv erage | |
D Y | |
J E | |
\ }}\,\ | |
^{ <\ | |
)\ |^{\ | |
\| :=\ | |
}^{* }},\ | |
Ġc over | |
Ġe m | |
{)}= \] | |
}^{\# }( | |
})&= &\ | |
Ġreg ular | |
T K | |
X f | |
] })_{ | |
s X | |
u lation | |
y a | |
| & | |
par se | |
Ġra di | |
+ { | |
, (-\ | |
C z | |
F lag | |
}^{ <\ | |
}) )}\\ | |
}| |\] | |
}] +( | |
}}) },\ | |
Ġ)\ |^{ | |
99 7 | |
K os | |
N H | |
V D | |
f k | |
s pa | |
Ġ )}-\ | |
}} }=( | |
}| }\,\ | |
}| (| | |
)) ;\ | |
ĠG al | |
Ġal gebra | |
21 4 | |
):= |\ | |
25 9 | |
che me | |
\; ,\\ | |
]{ [\ | |
eri or | |
asi s | |
{}{ {}^{\ | |
rid ge | |
3 13 | |
I X | |
Ġ }_{( | |
^{- }}^{\ | |
}^{* }] | |
Ġ2 50 | |
)) )+\ | |
_{* }:=\ | |
ĠN S | |
)\, +\, | |
Ġ&&& &\ | |
]{[\ @@ | |
> | | |
M h | |
T g | |
| )}{| | |
Ġ }+\| | |
}\ }/ | |
(\ (\ | |
}}\ }=\ | |
lo ss | |
}, : | |
^{* })\|^{ | |
}^{- },\] | |
)) )_{ | |
Ġi y | |
Ġn b | |
_{* })+ | |
Ġ\[= \] | |
Ġ- $ | |
ĠP re | |
};\ {\ | |
})| }{|\ | |
)\| +\| | |
03 9 | |
}) )\,,\] | |
^{* ( | |
})= &\ | |
};\ { | |
|\, ,\] | |
Ġno des | |
g b | |
}) !\ | |
si c | |
co k | |
}\|_{ {\ | |
_{- }.\] | |
)|^{ -\ | |
vol u | |
})^{* }.\] | |
val u | |
&* &\ | |
$ }}\, | |
) }]^{\ | |
< _{\ | |
P Z | |
}| )}\ | |
ĠI rr | |
Ġr k | |
}; -\ | |
per t | |
}_{+ }+\ | |
})| ,\ | |
\[[ {\ | |
\! =\!\ | |
Ex c | |
$ )}\] | |
0 56 | |
J Z | |
K r | |
T a | |
h ull | |
o racle | |
Ġ arc | |
}} }(( | |
)\ }+ | |
}] { | |
}^{( {\ | |
Ġn ear | |
)} . | |
]\ ;\ | |
})( (\ | |
Ġ* }(\ | |
)\! -\!\ | |
! )^{\ | |
7 32 | |
q w | |
v q | |
(\ {( | |
}| |( | |
)) ),\ | |
Ġf in | |
}\| - | |
}}+ || | |
^{+ }\|_{ | |
)}= [\ | |
01 00 | |
04 4 | |
ev al | |
T an | |
^{\ {\ | |
par t | |
Ġf e | |
}\|_{ *}^{ | |
)_{ (\ | |
^{+ }}{\ | |
^{*} |_{ | |
|}{ ** | |
there fore | |
) _{* | |
o o | |
x n | |
}) }},\ | |
ti ce | |
lin k | |
}^{* }), | |
}^{* }(- | |
\, ^{ | |
}}) )^{\ | |
}|\ ) | |
}|\ |\ | |
Ġ\( {\ | |
_{* }\|^{ | |
Ġ}( ( | |
|+\ | | |
}{*}{ ** | |
thick sim | |
M z | |
g c | |
h z | |
}\ }> | |
)\ !\!\ | |
Ġi id | |
}[\ , | |
ĠD E | |
\) ** | |
})| -\ | |
Ġ+ }\ | |
Ġ5 12 | |
Ġdef inition | |
las ses | |
Ġhy per | |
Ġinfinite ly | |
D y | |
c I | |
t emp | |
,\ !\ | |
}^{( * | |
ĠB i | |
_{* }}}\ | |
})}\ .\] | |
Ġg ood | |
pt I | |
}{( | | |
}}{| |\ | |
Ġre lative | |
\[\# \{\ | |
fi ed | |
D b | |
M d | |
a Y | |
}^{ {( | |
}) }=-\ | |
dy dt | |
Re m | |
)}_{ = | |
Ġ}^{ -\ | |
...& ...& | |
O B | |
v ac | |
(\ |( | |
)\ })\ | |
)= {}_{ | |
ĠF M | |
:= - | |
conv ex | |
/ _{ | |
G ra | |
c K | |
m H | |
p C | |
ri cal | |
su rd | |
}^{- }\|_{ | |
Ġt yp | |
}|\ ,| | |
dx dz | |
{[ }{\ | |
)\| +\|\ | |
{< } | |
) }|}\ | |
; }\] | |
] }^{- | |
h S | |
i Q | |
}: [\ | |
Ġi c | |
ĠF ig | |
}}| }{ | |
for mation | |
)\| + | |
19 3 | |
}}] \\ | |
po ch | |
Ġdi stance | |
Ġset s | |
! }\, | |
) }]( | |
c D | |
}^{ !}\ | |
in k | |
ta il | |
}} })( | |
}] }{( | |
Ġin j | |
})\, .\ | |
)})\ ,\ | |
27 5 | |
35 4 | |
26 378 | |
A K | |
F rac | |
G V | |
J x | |
q l | |
}} }]\] | |
Ġ}\ }\ | |
}}}\ { | |
}^{+ }}| | |
\[|\ {\ | |
})^{- }\ | |
22 7 | |
& =-\ | |
B t | |
Ġ sq | |
er n | |
}^{* }]\ | |
)) [\ | |
)) ]^{ | |
}}) >\ | |
Ġa x | |
)| / | |
}^{+ }}|\ | |
liz ed | |
& (- | |
) })}( | |
C m | |
F H | |
] ,( | |
b A | |
t G | |
}) { | |
_{\ {|\ | |
}, ...\ | |
}| [ | |
^{* *}\ | |
{| }{\ | |
_{+ }}\] | |
{- -}\ | |
22 9 | |
): \| | |
)}& = | |
0 36 | |
F ib | |
S GD | |
W L | |
\ }/ | |
\ '{ | |
] })^{ | |
r H | |
u D | |
Ġ },\\ | |
^{- }}{ | |
{| (\ | |
}),\ |\ | |
)\, +\,\ | |
)}| = | |
)}\, | | |
)\; ,\ | |
Ġei ther | |
! =\!\ | |
] $ | |
i tions | |
o de | |
Ġ }}}{\ | |
Ġ ;\] | |
}) })( | |
}+ }\ | |
}}{ [\ | |
}| : | |
}| }| | |
)| -|\ | |
ĠM C | |
}}- {\ | |
)& =( | |
32 9 | |
000 2 | |
100 1 | |
x H | |
}_{ ** | |
{\ }}, | |
na d | |
ve nt | |
45 0 | |
28 9 | |
05 5 | |
ni tial | |
98 9 | |
+ }}\ | |
z G | |
Ġ /( | |
}^{ >\ | |
Ġ1 50 | |
}^{* }))\] | |
{(}\ |(\ | |
)}{ }^{ | |
di sk | |
Ġs m | |
}^{+ }[ | |
if ied | |
,- } | |
45 7 | |
28 6 | |
37 6 | |
]; \\ | |
Ġprod uct | |
C Q | |
C v | |
})\ |+ | |
}] }|\ | |
), [\ | |
Ġe nt | |
17 3 | |
})] }{ | |
cur v | |
H B | |
H V | |
L w | |
] }[\ | |
t st | |
Ġ }}\|\ | |
}\ }},\] | |
}) ], | |
)\ }=\{ | |
se ction | |
}-\ {\ | |
Ġ1 10 | |
)}{ =} | |
ss ing | |
ĠF ro | |
\}\ },\] | |
20 2 | |
Ġ\, | | |
}_{< }( | |
Ġdo main | |
Ġsym metric | |
. }}(\ | |
R MSE | |
W g | |
}\ }}^{ | |
}| _ | |
\| >\ | |
}^{* })}{\ | |
Ġ2 000 | |
Ġa cc | |
re ction | |
}^{+ }).\] | |
)! ^{ | |
35 0 | |
Pa rameter | |
Ġfac tor | |
H A | |
\ }$ | |
g w | |
| )-\ | |
}\ }}|\ | |
}{ }{\ | |
|\ ) | |
}^{* *}\ | |
or s | |
ij l | |
Ġ\( +\ | |
))\ ;\ | |
Ġp erm | |
})_{ (\ | |
:\ : | |
24 9 | |
32 5 | |
xy x | |
}\{\ |\ | |
}|| |_{ | |
98 8 | |
Ġparameter s | |
< [ | |
A h | |
D eg | |
H G | |
J L | |
e ig | |
u tation | |
ad ic | |
^{- }+\ | |
}\| )^{ | |
{)}\ ) | |
})+ [ | |
Ġin equality | |
24 1 | |
\; =\; | |
pr in | |
}! }{ | |
Ġse nse | |
requ ency | |
D own | |
e b | |
| )}{\ | |
Ġ using | |
Ġ= (( | |
di mension | |
}})\ }_{ | |
)] |\ | |
tt t | |
)& := | |
Ġof f | |
[- ,- | |
26 9 | |
04 7 | |
)^{+ }}\ | |
})}}{ {=}} | |
! _{ | |
- },\ | |
}} }},\ | |
}, _{ | |
}_{\ |\ | |
}= {}^{ | |
Ġ1 23 | |
{) }>\ | |
ĠB K | |
}^{+ }: | |
ĠD R | |
})( [ | |
Ġ- {\ | |
... ,( | |
17 1 | |
icient ly | |
/ \|\ | |
S yn | |
V e | |
c ro | |
Ġ\ ,\, | |
li s | |
^{* }}\, | |
}] _{( | |
})= & | |
Ġd P | |
}}, [\ | |
Ġ| |_{ | |
18 2 | |
}}^{+ }=\ | |
subsetneq q | |
!\!\!\!\ !\!\!\!\ | |
sph eri | |
( +\ | |
* },\ | |
@ > | |
B n | |
E g | |
N G | |
U x | |
k w | |
s mooth | |
u sion | |
}- }\ | |
})^{ +} | |
Ġc ell | |
ĠN L | |
}* } | |
99 43 | |
17 2 | |
28 5 | |
}}&\ \ | |
tra n | |
Ġse mi | |
bi lity | |
0 64 | |
S Y | |
V W | |
W r | |
}| )( | |
ĠL R | |
}}+ [\ | |
]^{ <\ | |
ord in | |
)\! +\!\ | |
po si | |
G U | |
S um | |
}) )=- | |
}}\ {( | |
}, .. | |
)=\ #\ | |
}^{* }}= | |
Ġa a | |
{)}\ ;.\] | |
ĠM ap | |
ĠP er | |
sta rt | |
+| |\ | |
sc l | |
up per | |
37 7 | |
},& ( | |
be st | |
010 1 | |
Ġcy cle | |
! -\!\ | |
K p | |
Z ar | |
{ ' | |
Ġ })}\] | |
}_{ /\ | |
ver s | |
}& [ | |
ĠA T | |
ĠI t | |
ĠR o | |
})\, |\ | |
Ġ}{ |\ | |
2 99 | |
H or | |
L g | |
a I | |
g on | |
s P | |
}( ^{ | |
^{* }\, | |
}] }+\ | |
Ġc ri | |
_{- }}{\ | |
)| , | |
}^{+ }|\ | |
26 5 | |
Ġ{- }\ | |
!\! \{ | |
499 886 | |
Ġav g | |
ta tions | |
{) }-( | |
}] ^{( | |
}}_{ =: | |
ĠN a | |
ĠF ix | |
)] / | |
29 8 | |
\[\# (\ | |
Ġini tial | |
U A | |
f tarrow | |
s on | |
Ġ\ },\ | |
{\ #\{ | |
}} }}=\ | |
})\ ), | |
^{* }> | |
Ġi p | |
\, ;\, | |
_{+ }}(\ | |
Ġw eak | |
27 7 | |
* [ | |
H ull | |
x R | |
Ġ1 11 | |
}\, - | |
it x | |
Ġv i | |
{- (\ | |
}_{+ }- | |
76 5 | |
Ġmaxi mal | |
B w | |
a B | |
b circ | |
f X | |
}) }/ | |
)\ }\\ | |
)= |\{ | |
),\ ;\; | |
_{+ }\\ | |
}< |\ | |
20 3 | |
20 10 | |
18 1 | |
{|}_{ (\ | |
]\! ], | |
MM SE | |
) }}^{- | |
> ^{ | |
V C | |
k F | |
Ġ }: | |
Ġ )}+ | |
}\ }<\ | |
}( + | |
}} }},\] | |
=\ {\{ | |
}=\ ,\ | |
}}\, :\, | |
V f | |
g K | |
p M | |
{\ }}_{\ | |
}} };\ | |
}} }/\ | |
}{ +}\ | |
|\ {\ | |
co de | |
ĠA D | |
}}, { | |
ĠG ap | |
27 0 | |
}]\! ] | |
^{! }_{ | |
I E | |
N il | |
q A | |
| })\] | |
Ġ us | |
Ġ\ @@ | |
)\ }+\ | |
pha se | |
})\ {\ | |
^{* }}^{( | |
}}) +(\ | |
un it | |
ĠH H | |
\[|\ ,\ | |
|| = | |
Gr p | |
39 5 | |
) }:=( | |
P v | |
Q X | |
S ign | |
f alse | |
}\ }}=\ | |
lo t | |
}] \}\ | |
Ġ} .\ | |
Ġd h | |
Ġg h | |
}}\, |\,\ | |
Ġ+ }( | |
([ -\ | |
Ġinc reasing | |
$ }\}\] | |
. },\ | |
P y | |
R g | |
h M | |
Ġ )})\ | |
}) }|^{ | |
}} }}^{\ | |
}= + | |
Ġ& &- | |
}| )= | |
{) }[\ | |
}^{* }}+\ | |
ij t | |
ĠA e | |
Ġs trict | |
ĠP S | |
}}_{\ { | |
deg ree | |
mp e | |
48 8 | |
ne ar | |
ĠRe p | |
Ġse cond | |
Ġ{+ }( | |
! }+ | |
5 04 | |
H U | |
L s | |
M AX | |
| )}\] | |
big uplus | |
li ke | |
^{* })}\] | |
)) )}\ | |
ĠS u | |
)\| =\| | |
Ġ[ ( | |
,-\ , | |
B I | |
J J | |
\ }}\| | |
y q | |
Ġ )},\] | |
}) !( | |
in ary | |
^{* }},\] | |
}] _{+ | |
}] /(\ | |
}\| (-\ | |
ĠA n | |
_{( {\ | |
}^{+ })- | |
)\, ,\,\ | |
ĠP T | |
^{+ }}\] | |
}=(\ { | |
dv dx | |
37 49 | |
38 5 | |
Per v | |
GK dim | |
Ġrepre sen | |
z s | |
}| }}{ | |
}^{+ }:\ | |
Ġ^{ [ | |
};\ ; | |
19 1 | |
}}^{+ })\ | |
SL E | |
* }=\ | |
4 37 | |
E r | |
R v | |
V S | |
a D | |
u la | |
y xy | |
Ġ )}=\ | |
Ġ cut | |
}} }/ | |
}}\ }= | |
var Theta | |
ĠC P | |
), + | |
Ġd Y | |
}}^{\ { | |
\[\{ [\ | |
Co b | |
ĠMul ti | |
K A | |
] )}{\ | |
b lk | |
c X | |
Ġ ln | |
_{ / | |
}\ }\,\ | |
}) )),\] | |
}] ,\, | |
}^{- }:=\ | |
)) ].\] | |
Ġa bo | |
Ġd k | |
.\ ,\ | |
12 23 | |
ĠF P | |
_{+ }| | |
dv du | |
Ġde nsity | |
\[{ }^{( | |
Ġmulti pli | |
Ġsuff iciently | |
& -( | |
- { | |
0 31 | |
C c | |
] }&\ | |
c lass | |
j T | |
Ġ }}\] | |
Ġi ter | |
\, [\ | |
}\| |\ | |
_{* }| | |
less dot | |
Co nd | |
lat ed | |
ull i | |
})\! =\!\ | |
âĢ Ŀ | |
ĠDi ag | |
\ })-\ | |
b ut | |
f rom | |
o id | |
lo m | |
)^{ (- | |
}| }}{\ | |
}] := | |
ĠC D | |
}}) }_{\ | |
{| }< | |
)} *\ | |
ĠL S | |
ĠS P | |
(- | | |
ĠD is | |
ĠP I | |
^{+ }\\ | |
}))\ |\ | |
}_{- }\] | |
}): \| | |
}}] - | |
74 9943 | |
ule r | |
A a | |
K dV | |
M AP | |
S g | |
U LA | |
\ })} | |
a K | |
h C | |
p H | |
| -( | |
}\ }| | |
}( ] | |
Ġf ace | |
\, ,&\ | |
}\) . | |
and om | |
32 7 | |
ert y | |
}\; :\;\ | |
)< -\ | |
05 8 | |
38 8 | |
{, }\ | |
)]= [\ | |
Bi as | |
Ġfi eld | |
! .\] | |
& |\ | |
}) )=-\ | |
)\ }, | |
|^{ | | |
}}_{ +}\ | |
Ġk m | |
ĠS I | |
20 9 | |
], | | |
)}}{ { | |
]+ (- | |
}}(- , | |
29 5 | |
Ġra tio | |
We yl | |
$ })\] | |
e h | |
f irst | |
s core | |
w h | |
}{ }^{*} | |
)\ !\! | |
bo unded | |
ds dx | |
}] })\ | |
)) }-\ | |
ĠS ection | |
Ġe stima | |
}^{+ }\}\] | |
Ġh ence | |
,- , | |
14 40 | |
})) }+ | |
): \] | |
27 8 | |
)}) ]\ | |
|> | | |
Ġuni que | |
Ġcy c | |
Mul t | |
; =\;\ | |
< \| | |
B matrix | |
Q N | |
V B | |
c B | |
m ld | |
}) }}(\ | |
}) }+( | |
}} }^{(\ | |
(\ !\!\ | |
\,\ |_{ | |
&- &- | |
TM F | |
Ġse p | |
)$ },\\ | |
})\; =\;\ | |
\[\# ( | |
cur rent | |
do f | |
verti ble | |
) }}}\] | |
- }}\ | |
6 75 | |
\ &\ | |
z v | |
Ġ })\] | |
Ġ )] | |
}} })}\ | |
^{- }.\] | |
ĠC or | |
Ġin put | |
},\, |\ | |
36 9 | |
ess sup | |
Ġval ues | |
) }}\|\ | |
H X | |
L V | |
b el | |
{ }> | |
Ġ Pic | |
_{ >\ | |
le r | |
}}\ # | |
se nt | |
)}\ ;.\] | |
}^{* *}( | |
Ġ\(\ {\ | |
}}|\ , | |
}}^{- }\] | |
dr ds | |
33 7 | |
30 5 | |
26 0 | |
Ġun it | |
tm f | |
) }].\] | |
) }}}{{=}}\ | |
B d | |
N y | |
] /(\ | |
h X | |
ro ll | |
{) }=(\ | |
ĠC p | |
ĠC ar | |
ci sion | |
}\| }{\|\ | |
Ġ=\ , | |
Ġ- |\ | |
\[| [ | |
ol ute | |
|\, |\ | |
res hold | |
so rt | |
so lid | |
iz ed | |
),\,\ ,\, | |
ment s | |
Ġsing ular | |
. &\ | |
p la | |
Ġ\ {(\ | |
\[\ {- | |
_{\ ,\ | |
{| }_ | |
_{* })-\ | |
))\ }\ | |
Ġy x | |
ĠK K | |
Ġ)\ |_{\ | |
)}) &\ | |
Ad d | |
|\! |\ | |
\# \{ | |
rcl rcl | |
\|=\ |\ | |
: .\] | |
H O | |
T Z | |
n A | |
Ġ )}- | |
}) }}+\ | |
^{- }}(\ | |
\, -\ | |
Ġ- , | |
ĠU p | |
}=- {\ | |
}\! :\! | |
cd h | |
no ulli | |
98 4 | |
08 8 | |
46 5 | |
> +\ | |
L an | |
k R | |
x B | |
}} }^ | |
)= { | |
}] })\] | |
Ġs n | |
}^{+ })-\ | |
Ġ}( -\ | |
98 5 | |
}|> | | |
$}} }}{\ | |
lv l | |
$ }, | |
6 78 | |
= _{ | |
H f | |
v b | |
v k | |
Ġ limit | |
}\ }|= | |
}, {}^{ | |
}= &-\ | |
pi c | |
}| )=\ | |
ro und | |
}^{- }\\ | |
\|_{ -\ | |
}^{* }}.\] | |
)- \] | |
ĠN C | |
34 9 | |
}]=\ { | |
Ġlo op | |
Me an | |
M GL | |
X U | |
\ }), | |
o sed | |
s B | |
Ġ mu | |
su rf | |
)) }}{ | |
_{* }/ | |
}^{+ }/\ | |
Ġb asis | |
up omega | |
\% \ | |
}}/ (\ | |
Ġdiff er | |
0 78 | |
J T | |
S v | |
W H | |
b D | |
Ġ rt | |
}) })-\ | |
Ġ\ }\] | |
ft er | |
}] )+ | |
Ġx z | |
}\,\ |_{ | |
Ġ( |\ | |
_{+ }^{*}}\ | |
\[\|\ ,\ | |
})| |_{\ | |
))^{ *}\ | |
99 2 | |
33 5 | |
05 9 | |
res sion | |
]- [\ | |
nn z | |
St k | |
glo b | |
b B | |
b ic | |
g roup | |
x mapsto | |
z d | |
Ġ na | |
}) }>\ | |
}) ;( | |
ar o | |
^{* }< | |
^{* })}( | |
}] }_{ | |
\| },\ | |
)) }- | |
Ġ} |_{ | |
}}) }+ | |
{| {\ | |
}\| >\ | |
Ġn or | |
(- , | |
/\ ! | |
{\| }\,\ | |
\[| |( | |
}_{+ + | |
]}\ { | |
}}^{* })^{ | |
35 2 | |
04 1 | |
F Y | |
G X | |
m P | |
| )^{( | |
Ġ\ }} | |
(\ !( | |
})\ |= | |
}] }\|\ | |
\{ +\ | |
\, ^{\ | |
}/ [ | |
_{* }}\|\ | |
}}}\ ) | |
ĠM axi | |
Ġm m | |
Ġ- }\ | |
)\,\ ,\,\ | |
_{| | | |
05 7 | |
Ġ{* }\] | |
66 7 | |
Ġmo st | |
Mo del | |
> =\ | |
E f | |
L at | |
M m | |
Q F | |
T s | |
\ }}_{\ | |
] )}{ | |
s Set | |
}\ }),\] | |
si ve | |
ri er | |
^{* })\\ | |
}] }}\ | |
)) {\ | |
Ġt e | |
Ġ_{ -\ | |
ĠS D | |
_{* }|^{\ | |
Ġr ig | |
\}\ ;.\] | |
}}\, .\ | |
ay er | |
\ })+ | |
] |_{ | |
r L | |
le xi | |
at er | |
\| ) | |
Ġf low | |
Ġc lo | |
^{+ }| | |
}_{+ },\\ | |
20 22 | |
}_{* }\|_{ | |
64 9 | |
,* }\] | |
Ġco lumn | |
SV D | |
D n | |
Q e | |
a E | |
_{ |_{\ | |
}) ]} | |
}_{ +\ | |
}} }+\|\ | |
bm o | |
)) )( | |
Ġi jk | |
re te | |
ĠB x | |
)\, ,\, | |
)] [ | |
Ġin du | |
}}\| _ | |
arrow left | |
28 4 | |
35 5 | |
Ġtra in | |
T HR | |
\ })^{\ | |
a L | |
a S | |
s low | |
}( || | |
\[ > | |
_{\ !\! | |
)\ )} | |
lo bal | |
eq sim | |
ĠS R | |
ĠX Y | |
ĠR an | |
ĠP ar | |
24 2 | |
27 9 | |
,+ }^{\ | |
Mod ule | |
79 2 | |
39 7 | |
Ġcon e | |
ĠRe LU | |
$ }(\ | |
& {\ | |
C art | |
] ]=\ | |
p ot | |
Ġ }\,.\] | |
^{* _{ | |
Ġ\[\ {\ | |
Ġa ff | |
Ġco v | |
\!\!\!\ !\ | |
U M | |
\ }}(- | |
d log | |
e A | |
g i | |
p K | |
Ġ *\ | |
over leftrightarrow | |
Ġi ts | |
\|\ ! | |
}& &&&\\ | |
})_{ !}( | |
28 7 | |
46 7 | |
|}{\ (\ | |
Ġdiag onal | |
Ġen ergy | |
ĠLo g | |
Ġcomponent s | |
- }+ | |
/ \, | |
L ag | |
Z X | |
[ \] | |
\ }^{( | |
\ }))\] | |
o log | |
u H | |
Ġ }:\ | |
}( ., | |
at u | |
}=\ |( | |
Ġ_{ (\ | |
{[ }\, | |
\[(\ {\ | |
Ġo bj | |
{(}( -\ | |
amil y | |
) ... | |
* }, | |
c st | |
| }_{ | |
Ġ }}^{- | |
^{- }}\] | |
Ġ\[ (- | |
^{* })) | |
chi ld | |
)-\ { | |
ĠS upp | |
)| }{\| | |
Ġin it | |
Ġ}( {\ | |
\!\ !\!/ | |
18 3 | |
34 56 | |
}$ },\ | |
30 6 | |
}}[\ | | |
fi cation | |
E N | |
,\ # | |
}} }^{*}\ | |
rho od | |
}^{* }}- | |
}\, )\ | |
Ġd F | |
\[( |\ | |
Ġy z | |
}_{+ +}^{ | |
{{ ? | |
}}^{* }_{ | |
no ugh | |
/ \,\ | |
H k | |
M w | |
] }: | |
o h | |
q h | |
| }}\] | |
| :\ | |
}^{ {}_{ | |
}| )| | |
}}( { | |
Ġ1 60 | |
}^{* }}-\ | |
ĠB R | |
^{-\ | | |
Ġe nough | |
ĠH e | |
ĠD M | |
)& (\ | |
25 4 | |
})] )\ | |
)\|\ | | |
26 6 | |
98 6 | |
);\ , | |
Ġker nel | |
L p | |
n F | |
}) }(( | |
}+\ {\ | |
}^{* }=\{ | |
}}_{ *}( | |
Pi v | |
ĠF e | |
11 52 | |
}_{+ }) | |
{|\ { | |
Ġ}{ (\ | |
ju ga | |
3749 03 | |
9 75 | |
G p | |
L Q | |
N eu | |
R ow | |
S ec | |
l w | |
Ġ })\|_{ | |
}\| }.\] | |
bigg m | |
ĠB B | |
ĠS hv | |
34 3 | |
Ġ\, |\ | |
})\| ^ | |
46 8 | |
Ġir reducible | |
O rd | |
s D | |
s amp | |
v ia | |
}} }}{{=}}\ | |
am ic | |
tor d | |
}^{* }; | |
_{- }}\] | |
}^{+ }),\ | |
ĠG M | |
Ġ$ [ | |
ch y | |
)}=\ {( | |
Ġ5 000 | |
}}[ |\ | |
)}) _{( | |
)[ [ | |
04 6 | |
mi tive | |
fix ed | |
) }}&\ | |
5 88 | |
H iggs | |
T n | |
a M | |
Ġ }-( | |
}) }]\ | |
}(\ {( | |
}| }} | |
))\ }_{ | |
}}}\ !\ | |
ĠD G | |
}}| } | |
}}| +|\ | |
}> | | |
):= (- | |
}* _{\ | |
)\| ,\] | |
)\| =\|\ | |
\{( - | |
29 7 | |
)_{+ }^{\ | |
iz x | |
)$ }\\ | |
Ġcom mu | |
6 56 | |
U niform | |
e B | |
Ġ\ !\! | |
}{ }_{( | |
bol ic | |
^{- })= | |
Ġt A | |
ĠS ize | |
Ġ\( {}^{ | |
Ġv s | |
_{- })= | |
Ġm k | |
Ġal ong | |
\[= : | |
33 33 | |
(\| (\ | |
|+\ |\ | |
\# }\ | |
: } | |
B ad | |
M X | |
O A | |
V T | |
}} ;\\ | |
+\ ; | |
^{- })^{\ | |
}}) ;\ | |
}|\ |_{ | |
]\ |^{ | |
ĠT R | |
Ġ\( [- | |
ĠF or | |
33 9 | |
}}& &\\ | |
39 2 | |
}}\! =\!\ | |
black triangleleft | |
ens or | |
ĠDe scription | |
ĠLe b | |
D p | |
] }=( | |
a H | |
s C | |
| :=\ | |
Ġ cos | |
Ġ ^{*}(\ | |
}\ }(\ | |
}\ }]\ | |
}) )=\{ | |
}} },\\ | |
de m | |
}{ -}\ | |
}^{* }< | |
)- [\ | |
\, )\] | |
}}\, ,\\ | |
Ġ6 00 | |
30 9 | |
},- , | |
Ġan ti | |
pq r | |
)$ - | |
MF C | |
}|\! |_{ | |
Ġup per | |
ris tic | |
lom orphic | |
# \, | |
+ )\ | |
8 96 | |
> = | |
I Z | |
J f | |
K C | |
O U | |
Z C | |
ti ble | |
^{\ | | |
{( |\ | |
)=\ #\{ | |
ĠC ond | |
)) )^{- | |
)| }=\ | |
ĠR T | |
_{+ })=\ | |
}\) ** | |
+| ( | |
}}^{* }- | |
})] / | |
},- )\ | |
blk diag | |
A cc | |
G l | |
V er | |
ma j | |
}) )}(\ | |
}-\ \ | |
}}^{ |\ | |
}] )-\ | |
Ġa u | |
)}{ {\ | |
_{- })}\ | |
/\ !\ | |
}_{+ })^{ | |
40 9 | |
})\| <\ | |
Ch ar | |
})\! -\!\ | |
J I | |
N W | |
\ }}}{ | |
e o | |
r X | |
t ree | |
w or | |
Ġ )]\ | |
}\ }< | |
}( {}^{\ | |
in x | |
(\ ( | |
Ġ\[= (( | |
box minus | |
}_{+ ,\ | |
}}\, =\, | |
not e | |
],\ ;\ | |
lat tice | |
06 8 | |
Ġre c | |
Ġmini mal | |
6 55 | |
K a | |
P l | |
f it | |
n E | |
ma nd | |
al gebra | |
^{- })=\ | |
)}\ |\] | |
\| ,\| | |
ĠC B | |
}^{* }=-\ | |
}\, -\ | |
}}) ),\ | |
Ġc m | |
12 13 | |
10 11 | |
}}-\ | | |
})> ( | |
LS I | |
FF T | |
! }-\ | |
, ...\] | |
F u | |
O O | |
}} ]} | |
hi s | |
)) ;\] | |
Ġ= :\ | |
ĠL P | |
}}- |\ | |
})) ^ | |
)}) / | |
Sym p | |
|\! | | |
ĠRe lative | |
gene ous | |
E s | |
F ac | |
P g | |
R ay | |
T I | |
}} }}}\ | |
ar ning | |
+\ ;\ | |
si st | |
}| }, | |
hi cle | |
ĠC u | |
)) ))\] | |
}\, : | |
]\ ;.\] | |
Ġc op | |
_{- },\] | |
(- )\ | |
Ġw ell | |
}_{* })\] | |
35 9 | |
fin al | |
Ġho r | |
) }:=\{ | |
3 34 | |
B f | |
}} })- | |
}} }\|_{\ | |
qu ery | |
^{* }=(\ | |
Ġt ree | |
}}) )( | |
Ġe mb | |
ĠP ri | |
\[| || | |
)] =( | |
})) [ | |
\},\ ; | |
\},\ ,\ | |
,+ , | |
Tor s | |
Ġlin k | |
Ġlay er | |
- }) | |
. }}( | |
I sing | |
] ^{*}\ | |
_ \ | |
b H | |
Ġ )^{-\ | |
}= ||\ | |
{| }[ | |
}^{+ })+\ | |
^{+ })- | |
25 3 | |
))=\ {\ | |
\; :\; | |
)^{* }}\ | |
|}{ } | |
}}\! +\!\ | |
Ġresp ectively | |
C ar | |
E SS | |
I H | |
V P | |
k E | |
y d | |
Ġ\ ;\;\ | |
_{\ {- | |
}}\ })\] | |
at ure | |
}^{* }+( | |
)) |_{\ | |
Ġ=\ {(\ | |
ĠS ec | |
})_{ , | |
ĠE n | |
}}| =| | |
... +\ | |
}}^{- }(\ | |
}_{- }, | |
64 4 | |
45 5 | |
gen era | |
|}{\ | | |
reg ular | |
)\! -\! | |
}))- (\ | |
Set s | |
0 95 | |
K k | |
O G | |
P in | |
S tep | |
x T | |
)}^{ [ | |
}_{* }-\ | |
06 5 | |
49 5 | |
dxdy dt | |
denti ty | |
- (( | |
6 79 | |
: -\ | |
= { | |
C as | |
D PD | |
s er | |
s depth | |
w c | |
\[ +(\ | |
ar io | |
}- (-\ | |
}+\ ,\ | |
^{* }}\|_{ | |
ĠS tab | |
12 00 | |
Ġp erf | |
Ġr v | |
}), [\ | |
}_{* }=\ | |
&& &&\ | |
})^{* })\] | |
Ġsu rf | |
4999 31 | |
$ })=\ | |
* })\ | |
3 99 | |
3 000 | |
T H | |
] )=( | |
Ġ gap | |
ma rg | |
}(\ {| | |
^{* }=\{ | |
}^{* }:= | |
}\, + | |
{| }\,( | |
Ġc p | |
}^{+ })}^{ | |
}})\ }\ | |
}}{( -\ | |
44 4 | |
Ġit erations | |
Ġcomp lex | |
poly log | |
va tive | |
cen ario | |
+ (( | |
L y | |
f m | |
}_{ <\ | |
Ġf g | |
),\ ,\, | |
_{- }\\ | |
ĠD o | |
ĠD iv | |
on ential | |
)}, {\ | |
}_{- }=\ | |
Ġ10 1 | |
)! }\,\ | |
04 3 | |
Ġlo cally | |
fi eld | |
ei ch | |
}}{{= }}( | |
- ,\ | |
4 75 | |
E ll | |
o i | |
r opy | |
w n | |
x Rightarrow | |
ma tch | |
}) [( | |
me try | |
)^{ [\ | |
}}(\ ,\ | |
{| }- | |
Ġb ad | |
{\| }+\ | |
}}\, +\,\ | |
], & | |
36 6 | |
}}:=\ | | |
04 2 | |
96 9 | |
38 6 | |
98 7 | |
RE S | |
& , | |
H Q | |
] )_{\ | |
] _{+}\ | |
m E | |
x c | |
}) )}+\| | |
-\ ( | |
var triangleright | |
Ġ1 0000 | |
}] |_{ | |
}^{- }}^{ | |
)) /( | |
re es | |
}^{+ }}^{\ | |
Ġh yp | |
}}^{* }) | |
)}) > | |
37 9 | |
})]\ ! | |
})^{* },\ | |
Ġmod u | |
Ġequ al | |
$ }}}} | |
& *\ | |
, ...\ | |
- }- | |
: }&\ | |
M Q | |
O F | |
r B | |
u rce | |
}( (( | |
)\ # | |
^{* }}|\ | |
^{* ,*}( | |
Ġc ross | |
}}| ^{- | |
22 22 | |
}}^{* }.\] | |
uv w | |
}^{\# } | |
\)\ ( | |
ĠBo und | |
Ġparti tion | |
Ġste ps | |
$ }) | |
B Q | |
F v | |
h L | |
i V | |
Ġ }}}( | |
}( +\ | |
lo pe | |
^{* }:= | |
^{* }}}\] | |
ge o | |
}& =(\ | |
ĠA dd | |
Ġs cal | |
vec h | |
)_{ -\ | |
_{+ })- | |
}}}{ [ | |
};\ ;\ | |
Ġ(\ { | |
ab q | |
rr rr | |
38 7 | |
Cy l | |
) })}^{ | |
C ut | |
C au | |
I Q | |
M k | |
T p | |
T ree | |
] }}^{ | |
Ġ am | |
Ġ cal | |
Ġ er | |
(\ # | |
)\ }- | |
)\ |\,\ | |
+\ |( | |
par ity | |
\| -\| | |
}\, ,&\ | |
Ġi v | |
Ġ\[= -(\ | |
ĠD om | |
:= | | |
}}| ,\] | |
il ar | |
15 00 | |
28 1 | |
aus s | |
Ġprop er | |
bit ra | |
& ,\ | |
3 16 | |
4 96 | |
W Z | |
u ps | |
_{\ !\ | |
si dual | |
ad v | |
tor y | |
Ġf o | |
}\| [\ | |
}^{+ }=\{ | |
Ġ{\ | | |
25 00 | |
Ġ\, |\, | |
,* }_{\ | |
N l | |
R Z | |
g A | |
Ġ }=-\ | |
}} }),\ | |
}| -( | |
ap x | |
[\ {\ | |
}] ), | |
}\, :\ | |
\, ;\,\ | |
}}) |_{\ | |
}}) -(\ | |
Ġn k | |
Ġc lasses | |
ĠS ch | |
Ġp n | |
_{- }},\ | |
)| )^{ | |
ĠN T | |
ĠR un | |
_{+ })= | |
{\{ }[ | |
))= \] | |
}+| ( | |
)}| |_{ | |
]+ \] | |
}}\! +\! | |
ĠCo nt | |
Ġsing le | |
Ġdivi des | |
- ,-\ | |
. }( | |
C lo | |
P K | |
R Mod | |
)}\ ,( | |
^{* }}\|\ | |
}^{* }_{+ | |
^{( * | |
)-\ ( | |
Ġs ti | |
_{- })=\ | |
ĠE qu | |
ik t | |
}$ .}\ | |
Ġde ri | |
38 1 | |
78 8 | |
0 76 | |
K D | |
O bs | |
a C | |
a F | |
c losed | |
j ac | |
j oin | |
z p | |
{ *} | |
at es | |
tar y | |
}] )- | |
}}_{ / | |
Ġn c | |
Ġs tab | |
})- |\ | |
})( |\ | |
Ġin vertible | |
30 3 | |
})/ {\ | |
Min imize | |
Ġ\(|\ ) | |
ĠData set | |
}&* \\ | |
B ord | |
N ull | |
S X | |
h q | |
Ġ }^{* | |
)\ ( | |
}| )- | |
}] )( | |
Ġa ct | |
ĠN eu | |
ĠM A | |
Ġ{\ { | |
16 00 | |
\[[ -\ | |
34 1 | |
98 0 | |
06 7 | |
46 6 | |
Op en | |
Tri v | |
- }_{ | |
J P | |
J V | |
L m | |
\ })+\ | |
c C | |
f n | |
t Z | |
v g | |
}) )& | |
}} }}+\ | |
}} })^{- | |
}, -( | |
}}{ = | |
Ġ1 12 | |
&\ | | |
ĠA N | |
ĠM N | |
)/ {\ | |
)! \, | |
)! !( | |
)}+ |\ | |
99 4 | |
27 3 | |
ea sible | |
cop y | |
Pri m | |
Ġnet work | |
) }}\,.\] | |
\ :\ | |
h H | |
s F | |
s H | |
z c | |
{ ` | |
Ġ }+(\ | |
}) )}{( | |
}) }}{{=}}\ | |
}] < | |
)) _{( | |
Ġi q | |
ĠT HH | |
\[\| (-\ | |
\[\{ |\ | |
})\, =\ | |
Ġ\[+\ ,\ | |
multi map | |
~{} ~{} | |
measu rable | |
. }}}{{=}} | |
; }\ | |
L I | |
Ġ )),\] | |
Ġ argmin | |
)\ }|\ | |
qu asicoherent | |
{( (\ | |
Ġ& \|\ | |
}\, :=\ | |
})= -(\ | |
\,\ {\ | |
})- (- | |
}^{+ ( | |
}_{+ })}^{ | |
^{*} _ | |
}_{* }^{( | |
25 1 | |
33 0 | |
44 1 | |
Ġ{* })\ | |
ty p | |
tra p | |
iz er | |
). ( | |
{< }\ | |
+ }, | |
3 64 | |
L c | |
P os | |
R O | |
u N | |
z A | |
Ġ ],\ | |
}) }]\] | |
ar se | |
&\ |\ | |
Ġal go | |
}}^{* }+ | |
56 5 | |
}=\{\ , | |
79 5 | |
07 2 | |
{: }}=\ | |
Ġabo ve | |
4 12 | |
W S | |
[ ]{ | |
] })^{\ | |
] _{+ | |
{ }^{*} | |
{ /\!\!/ | |
Ġ }.\] | |
Ġ }^{*} | |
al k | |
}} })-\ | |
},\ ! | |
na t | |
tri p | |
),\ | | |
Ġc b | |
})}\ ) | |
}^{+ }| | |
))= (- | |
): \\ | |
\[\{\ , | |
27 4 | |
48 6 | |
}): | | |
_{{}_{ [ | |
def ined | |
Ġ{* }}\ | |
po rt | |
IN V | |
Ġcond itions | |
conn ected | |
B Y | |
R Q | |
o ci | |
Ġ }}[ | |
}\ :\ | |
}) }}= | |
{\ }}- | |
wi rt | |
}\| , | |
re en | |
ĠT ran | |
)}( |\ | |
)| },\] | |
}]\ }_{ | |
\! (\ | |
)}}{\ |\ | |
np ut | |
Con j | |
}\,(\ , | |
In dex | |
&* &* | |
ĠCo st | |
Ġcomp lete | |
cond ition | |
,\,\,\,\ ,\,\,\,\ | |
Ġso ft | |
4 000 | |
c E | |
Ġ )\,.\] | |
}(\ # | |
eg ory | |
}] ]= | |
}^{* }}| | |
)) ,\, | |
Ġf r | |
}& && | |
Ġc at | |
ĠS ol | |
}),\ ,( | |
}^{+ }&\ | |
Ġj i | |
Ġco l | |
78 7 | |
07 7 | |
Eu cl | |
Ġstrict ly | |
C q | |
N at | |
P art | |
R p | |
a city | |
j v | |
Ġ0 00 | |
{) }}_{\ | |
}^{- }|^{ | |
}^{*}\ }\ | |
)}) ]\] | |
05 1 | |
Ġse e | |
Ġbe long | |
_{! }(\ | |
\({ }^{*}\) | |
$ }}^{ | |
K Q | |
N or | |
O E | |
s M | |
y h | |
Ġ ver | |
)\ }-\ | |
},\ !\ | |
{( {\ | |
}| )}{ | |
ro ups | |
{) }}{| | |
}^{- {\ | |
Ġt N | |
Ġt u | |
Ġd l | |
ĠT rue | |
\,\ }\ | |
ĠW e | |
)}(\ { | |
}\}\ { | |
45 8 | |
26 2 | |
{)}+ \] | |
06 9 | |
08 5 | |
Con st | |
Ġad missible | |
Ġcor resp | |
{\{}{\ }}{ | |
ĠMaxi mum | |
0 96 | |
D is | |
D im | |
I t | |
] ]^{\ | |
x L | |
z er | |
al low | |
co der | |
}}_{ =\ | |
ci p | |
ĠA p | |
ĠT X | |
\}\ !\!\ | |
}]\ |^{ | |
)=( (\ | |
)! !}{( | |
)})\ }_{ | |
mix ed | |
ew ton | |
Ber n | |
T OL | |
f act | |
w ind | |
Ġ ll | |
Ġ }}{{\ | |
}) },&\ | |
Ġ\ }^{ | |
})= +\ | |
})=\ {(\ | |
_{* }), | |
^{+ , | |
ĠG F | |
}))\ }_{ | |
)}= {\ | |
): |\ | |
ik l | |
99 0 | |
\; .\ | |
Ġ:= - | |
06 6 | |
]\! ]_{\ | |
dxdy dz | |
IP W | |
cont inuous | |
ĠInt er | |
K X | |
n er | |
t Q | |
z P | |
Ġ )&\ | |
Ġ })}.\] | |
se u | |
)}\ },\] | |
)=\ ,\ | |
^{* }))^{ | |
}] )=[ | |
ĠC O | |
ĠC X | |
)) )\\ | |
}}) )- | |
{| }}{\ | |
pro b | |
Ġc N | |
di sp | |
}^{+ })+ | |
\[\|\ , | |
)(\ |\ | |
{{ }_{\ | |
ref l | |
30 7 | |
05 4 | |
,* }, | |
:, :, | |
})\! =\! | |
;\,\ ,\, | |
\}-\ { | |
^{(+ )}_{ | |
. }\,\ | |
9 55 | |
H I | |
M ed | |
] >\ | |
j e | |
m w | |
p ub | |
Ġ cases | |
ti ent | |
)) )}{ | |
)) |= | |
ĠB P | |
:= |\ | |
Ġin di | |
34 0 | |
}$ )}\] | |
37 4 | |
76 7 | |
|\! |_{ | |
term s | |
Ġalgo ri | |
) })}.\] | |
3 14 | |
C b | |
] ]^{ | |
] <+\ | |
f pp | |
q B | |
| ,\\ | |
ma nn | |
{\ }}}\ | |
lo city | |
}| |= | |
ĠC q | |
Ġ= (-\ | |
<\ ! | |
Ġw ork | |
dr y | |
)> - | |
28 2 | |
000 3 | |
Le ftarrow | |
ome nt | |
})},\ | | |
Ġ{* }_{ | |
{, } | |
dimension al | |
, {}_{ | |
> \, | |
X v | |
] ],\] | |
g onal | |
q Q | |
r D | |
t W | |
}_{ -( | |
}} ]=[ | |
}^{- })_{ | |
Ġn r | |
ĠB A | |
\,\ |\,\ | |
}}| |_{\ | |
et s | |
\! [\ | |
]+ (\ | |
44 7 | |
78 5 | |
]\! ]}\ | |
Ġpro blem | |
Qu ad | |
) })] | |
+ }=\ | |
, {}^{\ | |
- }= | |
h et | |
p I | |
v G | |
y c | |
Ġ })|\ | |
}) }\,,\ | |
^{\ |\ | |
}(\ #\ | |
nu s | |
Ġ{ -( | |
tri vial | |
}\| ).\] | |
Ġk g | |
<\ !\ | |
Ġc KP | |
ĠI nitial | |
)\, :=\ | |
}}, |\ | |
Ġh eigh | |
{\| }.\] | |
}}| }{| | |
Ġ$ \{ | |
)\|_{ ( | |
>\ ! | |
23 0 | |
)\| (\ | |
48 5 | |
}): [ | |
75 8 | |
38 9 | |
mo geneous | |
) _{*}( | |
E uc | |
P erm | |
\ }))\ | |
}\ #\{ | |
}) )^{* | |
}} }=-\ | |
}}\ }, | |
geq q | |
^{* }+( | |
Ġ\[\ ,\ | |
Ġa e | |
Ġ= : | |
Ġd H | |
ĠA cc | |
Ġp os | |
ĠD v | |
ĠG aussian | |
{{ ! | |
36 2 | |
)$ .}\] | |
,\,\,\ ,\, | |
K SD | |
R SS | |
S YT | |
V alue | |
f ac | |
r R | |
w b | |
Ġ }|| | |
Ġ ]{ | |
}\ }_{( | |
}) )},\ | |
Ġ\ ,- | |
}} }|^{ | |
}}) )-\ | |
)}{ (- | |
ĠN F | |
{)} |_{ | |
Ġo ccu | |
34 2 | |
45 9 | |
}): \,\ | |
_{[\ ![ | |
{|}\,\ , | |
mi ssing | |
fi ll | |
)\},\ {( | |
= + | |
D I | |
I mp | |
I mage | |
W V | |
\ })> | |
a co | |
Ġ )}= | |
Ġ mult | |
in put | |
}}) ^{*}\] | |
}\,\ |\, | |
}}| |^{ | |
,- }^{\ | |
|| |\ | |
Ġan aly | |
}}: | | |
})},\ |\ | |
Ġdi rect | |
cs ch | |
Ġgenera ted | |
Ġeigen value | |
Ġstr uct | |
! +\! | |
D s | |
M g | |
V X | |
W X | |
\ }=( | |
x Q | |
Ġ }^{*}( | |
}\ }^{- | |
}) }/\ | |
}{ }_{*} | |
Ġ1 25 | |
}}) }\\ | |
ĠA A | |
Ġc luster | |
ĠH y | |
tt er | |
Im m | |
xx t | |
}(| |\ | |
)}) ).\] | |
leftrightarrow s | |
56 9 | |
ne gative | |
Da ta | |
ĠParameter s | |
! =\! | |
. }}{{=}}\ | |
6 88 | |
C g | |
a P | |
f dx | |
Ġ phase | |
}_{ : | |
ph g | |
)\ }^{\ | |
da p | |
}- (( | |
}^{- })( | |
}^{* })_{\ | |
Ġ} }) | |
ci l | |
}\| ,\|\ | |
}\|_{ (\ | |
}\|_{ *}\ | |
}& + | |
ĠB u | |
})}\ { | |
^{+ }|\ | |
}+( | | |
}< _{\ | |
)! }+\ | |
as c | |
64 7 | |
}}:=\ {( | |
,+ }+\ | |
}}^{+ },\ | |
})\|\ | | |
,\; ( | |
}! }.\] | |
Fil t | |
ob lv | |
lay er | |
peri odic | |
* ,\ | |
D Q | |
H dg | |
K g | |
N z | |
q X | |
u P | |
^{* }}}{{\ | |
Ġ_{ | | |
ĠR E | |
}}- [ | |
sta ll | |
,- }, | |
20 21 | |
}}^{- , | |
dz dt | |
up downarrow | |
26 3 | |
))\, ,\ | |
Ġch a | |
Do F | |
; =\; | |
= _{\ | |
X T | |
\ }}\|\ | |
] )}.\] | |
c F | |
c S | |
f ast | |
j c | |
k S | |
l arge | |
n leq | |
}^{- })^{\ | |
}}) }}\ | |
}}) )+\ | |
Ġn ormal | |
id ual | |
})- [ | |
ĠI T | |
_{+ })-\ | |
)}, (\ | |
{}_{ [ | |
)! !}{ | |
35 1 | |
sk w | |
05 2 | |
29 3 | |
60 7 | |
iH t | |
) $, | |
* }}\ | |
> }\ | |
A pp | |
D c | |
K J | |
N X | |
N umber | |
] })( | |
h K | |
Ġ arg | |
}^{ = | |
Ġ\ ;\; | |
{\ }}( | |
ft p | |
}_{\ | | |
^{* }&\ | |
)) }| | |
}}_{ +}( | |
)} &- | |
})= (-\ | |
ĠT or | |
_{- }\|_{ | |
_{- })+ | |
^{+ }).\] | |
)] \|_{ | |
... = | |
{{ + | |
en sion | |
60 9 | |
95 8 | |
)|\, .\] | |
Ġda y | |
ĠTh m | |
4 31 | |
; |\ | |
B h | |
L X | |
S o | |
W x | |
s top | |
x k | |
| }[ | |
Ġ prox | |
Ġ ))}\ | |
}\ }}+\ | |
}) )}+\|\ | |
^{\ #\ | |
var iance | |
la ce | |
^{* }/\ | |
}] \|\ | |
}: -\ | |
}^{* })}\] | |
}^{* }]\] | |
ĠA i | |
Ġc ho | |
_{* }[\ | |
_{* })}{ | |
}_{+ }).\] | |
Re f | |
)}= \] | |
}}^{- }}\ | |
},\, (\ | |
})] |\ | |
75 2 | |
50 8 | |
Ġma tch | |
Ġad ja | |
ĠLi pschitz | |
tho gonal | |
, || | |
A rt | |
T otal | |
g iven | |
Ġ )}, | |
}} },&\ | |
^{* + | |
Ġ1 44 | |
}^{* }})\] | |
}\, = | |
Ġe vent | |
ĠD T | |
}\}\ }\ | |
}([ ( | |
ik s | |
}):=\ {( | |
kl t | |
te l | |
05 3 | |
08 7 | |
76 9 | |
SD E | |
Ġinteg ral | |
})\|+\ |\ | |
Ġconver ges | |
! +\!\ | |
. }{\ | |
E n | |
Q v | |
\ }=-\ | |
Ġ })\, | |
Ġ tan | |
Ġ ^{-( | |
}) }),\ | |
}_{ ! | |
{\ }}<\ | |
=\ !( | |
su sp | |
^{* },\\ | |
}] ].\] | |
\, :\ | |
di r | |
ĠE stima | |
{\| (\ | |
ĠK O | |
ch ain | |
)/ | | |
):= [\ | |
}_{* }^{- | |
Ġdx d | |
tu rn | |
77 4 | |
,: }\ | |
{* }{ | |
0 110 | |
G m | |
P Y | |
W B | |
f ace | |
i G | |
Ġ )}{( | |
}} }+( | |
}}\ ;\;\ | |
ri ch | |
matri ces | |
)) ]=\ | |
}}) ,&\ | |
un r | |
{| }\| | |
}[ ||\ | |
Ġb all | |
Ġ10 24 | |
})) |_{ | |
Ġ| }{ | |
}\! :=\ | |
Ġ\, =\,\ | |
}}^{+ }, | |
);\ ,\ | |
)_{+ }}\ | |
Ġsp ec | |
! ,\ | |
, (( | |
Ġ )}^{\ | |
}\ }}}\ | |
{\ }},\\ | |
ad m | |
}| ),\ | |
^{* }}^{- | |
^{* }}}{\ | |
}] }+ | |
Ġi b | |
ĠN ot | |
}}}\ .\] | |
)_{ |_{ | |
})| )\ | |
}}[ [ | |
})\| ,\] | |
76 6 | |
Ġevery where | |
RS B | |
|/ | | |
Ġperi odic | |
riz on | |
. ** | |
; ,\ | |
Z T | |
d ddot | |
}\ {{\ | |
}} }>\ | |
}_{\ !\ | |
Ġ_{ *}\ | |
ĠS W | |
00 25 | |
}}\, ,\,\ | |
)}, - | |
Ġ\[+ [ | |
75 7 | |
29 2 | |
}=[ (\ | |
38 0 | |
08 0 | |
}=|\ { | |
Ġsta rt | |
roll ary | |
Ġsti ff | |
P RM | |
S ig | |
b N | |
b R | |
h ard | |
m F | |
s R | |
Ġ ell | |
Ġ }}\\ | |
Ġ ^{+}\ | |
}) ^{*}}\ | |
}_{ |_{ | |
}} }}{{ | |
}{ }^ | |
)\ ;\; | |
^{- }-\ | |
{) }:= | |
co fib | |
}^{* }}, | |
}^{* }})\ | |
Ġf lat | |
}}) ^{*}( | |
Ġv is | |
Ġv ir | |
{[ }[\ | |
}}+\ |(\ | |
}))\ |_{\ | |
}\}\ !\ | |
}}^{* }\|_{ | |
)! !\ | |
pre Module | |
ik j | |
64 6 | |
40 7 | |
\[(- )^{\ | |
Gra ss | |
E nv | |
J y | |
Q L | |
S im | |
\ }>\ | |
b atch | |
Ġ ))= | |
Ġ )+( | |
su s | |
^{* }}\,\ | |
\{\ {\ | |
Ġs k | |
ĠT e | |
12 96 | |
Ġp s | |
ĠN one | |
}}=\ {(\ | |
})^{\ # | |
}_{+ }:\ | |
}_{- }} | |
)\| }{ | |
}$ }}\ | |
95 2 | |
SD P | |
})\! +\!\ | |
Ġav erage | |
whi le | |
! \| | |
) $,}\\ | |
/ (( | |
3 10 | |
C w | |
E i | |
J g | |
\ (( | |
k ji | |
}) ^{*}, | |
}) };\] | |
}) ]=[ | |
{\ ! | |
}| }|\ | |
[\ ;\ | |
}] }- | |
}] &=\ | |
)) ; | |
}\,\ { | |
ĠL ear | |
11 10 | |
^{*}( {\ | |
_{[ ( | |
up pi | |
30 2 | |
96 7 | |
Ġcontain ing | |
Ġsign al | |
))^{* }\] | |
rdr dx | |
The orem | |
seu do | |
- )= | |
. }\; | |
P OD | |
\ }|=\ | |
] |\] | |
p op | |
u ble | |
z T | |
la tions | |
})\ ,\, | |
Ġ1 26 | |
}] }-\ | |
\{ -( | |
sim ple | |
)-\ | | |
Ġs cale | |
_{* }),\] | |
})}\ ,\] | |
\[| [\ | |
}}| <\ | |
}_{+ }= | |
_{[ [ | |
ba s | |
}}^{* }+\ | |
40 6 | |
AB A | |
Ġ{- }( | |
ran ch | |
Ġcont rol | |
hy po | |
Ber noulli | |
+ },\ | |
. }.\] | |
C i | |
C ho | |
E Z | |
W f | |
] )\\ | |
a o | |
b all | |
q S | |
u A | |
{ *}\ | |
| }}.\] | |
}\ }},\ | |
}) })+ | |
}} }=(\ | |
Ġ1 80 | |
ĠS i | |
ĠS pe | |
Ġ\( < | |
}]\ }.\] | |
23 45 | |
20 23 | |
})] [ | |
)}| }{ | |
,* }^{\ | |
},& | | |
08 9 | |
09 7 | |
0000 00 | |
Ġcontain ed | |
& : | |
, _{ | |
M ST | |
Z B | |
g P | |
n ext | |
z L | |
| ]\ | |
}) }=(\ | |
)\ }}\] | |
na ive | |
^{- },\] | |
}] ))\] | |
)} * | |
ĠA t | |
)\, -\, | |
ĠR MSE | |
ĠD P | |
};\ ,\,- | |
}:= &\ | |
}}:=\ |\ | |
40 4 | |
}{}{ - | |
{\}} ;\] | |
) }}[\ | |
G I | |
H yp | |
L CB | |
N is | |
T o | |
W R | |
] :=\{ | |
c Q | |
v ing | |
y r | |
Ġ })}( | |
Ġ )> | |
}} }^{*} | |
ot ential | |
^{* })=( | |
}: \,\, | |
Ġt d | |
ĠB e | |
}}= +\ | |
_{+ }:=\ | |
^{+ })-\ | |
ere nt | |
36 3 | |
}}}{{=}}\ { | |
Ġse lf | |
Ġdiv is | |
}\,:\, | | |
BD P | |
mon ic | |
Ġar bitra | |
F J | |
K V | |
R Y | |
] ):=\ | |
q P | |
Ġ circ | |
}) }:= | |
)\ }( | |
op f | |
)}\ ,\,\ | |
\| ).\] | |
}^{- | | |
}^{* })\\ | |
),\ {\ | |
Ġn T | |
Ġu sed | |
ĠT C | |
}^{+ })( | |
Ġr n | |
ĠR x | |
})+\ \ | |
}}| < | |
}}\, :\,\ | |
^{*} })^{ | |
Ġ}( [ | |
\[= |\ | |
}_{- })\] | |
},\, {\ | |
en ti | |
}\! : | |
}\! (\ | |
an ce | |
28 3 | |
}}^{+ }} | |
val ues | |
Ġsub space | |
Me thod | |
ĠPro blem | |
Ġge ne | |
normal size | |
) }^{*} | |
* |\ | |
7 07 | |
U P | |
\ }}^{( | |
^{ !}( | |
}) })^{- | |
})\ |}\ | |
}| :\ | |
^{* }}_{\ | |
}^{- }<\ | |
})^{ (- | |
ij ab | |
}}^{\ , | |
Ġs table | |
Ġ\( [\ | |
ĠR a | |
)}| =\ | |
ac tion | |
inter leave | |
AB CD | |
26 1 | |
Ġinteg ers | |
+ }+\ | |
- }\] | |
\ }}} | |
| })^{ | |
| )_{ | |
^{ ? | |
)\ |\, | |
}= {}_{ | |
{( }(( | |
}=\ {- | |
co unt | |
}\, ;\,\ | |
{(}\ |( | |
Ġ} })^{ | |
48 4 | |
Ġde nse | |
96 6 | |
46 9 | |
eigh ts | |
58 4 | |
Ġdis k | |
Ġap proxi | |
9 47 | |
D m | |
H it | |
P sh | |
X W | |
l mn | |
z m | |
| }) | |
| }(- | |
)\ }&\ | |
}= _{ | |
{) }}=\ | |
co d | |
}^{( ( | |
}^{- }}\] | |
ĠC at | |
}}) ; | |
),\ ,\,\ | |
ij r | |
Ġs at | |
{\| }\| | |
Ġ(\ | | |
}}\, ^{ | |
}_{* }) | |
})& (\ | |
}}: \, | |
})]\ ,\ | |
}}^{+ }_{ | |
88 8 | |
95 7 | |
Pro f | |
Ġad d | |
\[\# _{ | |
Poi sson | |
Ġ\(> \) | |
semi stable | |
Ġdec reasing | |
Ġalgori thm | |
4 64 | |
b M | |
y i | |
Ġ ))=\ | |
}} })+\ | |
)\ #\ | |
}=\ # | |
{) }_{( | |
Ġ{ }_{\ | |
)) ), | |
}}) {\ | |
sp oly | |
Ġs d | |
ĠT S | |
_{* }\|\ | |
)\, -\,\ | |
ĠR IS | |
_{+ }|^{ | |
^{+ }},\ | |
)|\ ,| | |
(( | | |
(( {\ | |
ab y | |
Ġ_{\ { | |
Ġ)\ |\ | |
Ġ}}\ |_{ | |
,+ },\ | |
HS IC | |
Qu asicoherent | |
eu c | |
Ġinj ective | |
stall ine | |
C ent | |
g G | |
v L | |
} .}\] | |
to ch | |
la b | |
bo ol | |
\| }( | |
Ġf il | |
}}) }_{ | |
ge nt | |
_{* }\| | |
_{( + | |
ĠR andom | |
}}+ ||\ | |
_{+ - | |
)|\ | | |
{- }{\ | |
Ġ-\ ,\ | |
}}^{( + | |
})) }^{\ | |
Ġ| = | |
99 3 | |
})] \, | |
is sion | |
44 3 | |
}}] ^{- | |
Ġtra ining | |
}}&= &\ | |
Ġposi tion | |
amp ling | |
tho ds | |
$ }=\ | |
4 16 | |
F O | |
\ };\\ | |
f D | |
u F | |
x rightleftharpoons | |
^{ [( | |
}) })- | |
}} }}{{=}} | |
}, {}_{ | |
ex it | |
}=\ , | |
eg ori | |
Ġd L | |
Ġ( + | |
_{* }),\ | |
_{* })^{\ | |
))\ |\] | |
Ġv dx | |
\,\ }.\] | |
Ġ- (- | |
}))\ ) | |
,\,\ | | |
}\}\ }.\] | |
dz ds | |
}_{* }}(\ | |
,+ }\|_{ | |
)$ }\ | |
MC G | |
}\,|\ ,( | |
ĠLe ngth | |
Ġperi od | |
) }:=(\ | |
C BC | |
G lo | |
s W | |
t wist | |
v h | |
| |\] | |
Ġ ),( | |
}\ },\,\ | |
}, +}( | |
)) ,(\ | |
Ġa ction | |
ĠA l | |
Ġs l | |
_{* }})\ | |
ĠN e | |
Ġm t | |
)}, ...,\ | |
{{ < | |
}}}( -\ | |
48 1 | |
,* }=\ | |
Ġco un | |
78 6 | |
SO R | |
sn r | |
ation s | |
tain ed | |
Ġpri m | |
! \,( | |
0 79 | |
R ot | |
X g | |
| {}_{ | |
ra ct | |
|_{ (\ | |
}=\ #\ | |
Ġ& [ | |
ap er | |
}\, ,& | |
ĠL M | |
{)}\ ,( | |
Ġk in | |
Ġ\( {}^{\ | |
_{* })^{- | |
Ġr un | |
^{+ })+\ | |
):=\ |\ | |
}_{* }} | |
)! }\, | |
ĠO bj | |
([ ( | |
ni an | |
,+ }^{( | |
}}] }{\ | |
66 6 | |
_{\# }^{ | |
abc de | |
den ce | |
Ġtran sm | |
Ġfac tors | |
Ha ar | |
volu tion | |
Ġcorresp ond | |
) .}\] | |
T ran | |
m I | |
p lan | |
r st | |
| { | |
Ġ }\,,\] | |
Ġ ]( | |
Ġ matrices | |
la p | |
}| )}{\ | |
ver gence | |
}}^{ -( | |
^{* })| | |
}}{\ ,\ | |
dx dr | |
ĠS y | |
ĠV al | |
ĠD h | |
_{+ }\,\ | |
_{+ }}+\ | |
_{+ })( | |
tr s | |
}}\| + | |
(| ( | |
))= | | |
Ġth rough | |
pre s | |
Ġ\, |\,\ | |
)}| +\ | |
000 4 | |
Ġde s | |
el ds | |
ess inf | |
09 4 | |
)* _{\ | |
CF D | |
Ġdis joint | |
}$, }\] | |
})\|+\ | | |
emb ed | |
> .\] | |
H w | |
V F | |
\ }}}{\ | |
\ }|+ | |
f ig | |
| }&\ | |
Ġ ri | |
Ġ ], | |
}\ {[ | |
}} }}= | |
}| )\,\ | |
)= &-\ | |
^{* }}[ | |
{) }+(\ | |
}^{* }<\ | |
}^{* }=- | |
)) )\, | |
^{( ( | |
sp e | |
ĠB D | |
_{- }|\ | |
_{- }< | |
Ġg radient | |
ĠG S | |
tt ing | |
}$ } | |
56 6 | |
Ġco ordin | |
}}: [ | |
ome tric | |
}. (\ | |
^{\# }(\ | |
vi ded | |
}}\!\!\ ! | |
$ })= | |
3 19 | |
= [- | |
= [( | |
K s | |
S eq | |
U CB | |
W G | |
] })+\ | |
q ftp | |
Ġ ph | |
Ġ& \| | |
}| )|\ | |
\| : | |
}^{- ,\ | |
ĠC c | |
\, ] | |
}}_{ *}\ | |
{| }&\ | |
{| }\,.\] | |
}}^{\ {\ | |
ĠS A | |
_{* }}=\ | |
_{- })( | |
ĠN t | |
Ġy ear | |
}[\ {\ | |
Tr ue | |
em i | |
)&\ \ | |
Ġ8 00 | |
}})=\ {\ | |
48 7 | |
48 9 | |
50 9 | |
}&= &- | |
{|}\,\ ,\ | |
}}\! -\! | |
vi ce | |
resp ectively | |
\{+ ,-\ | |
( ^{ | |
) }}(- | |
4 29 | |
C AC | |
F U | |
] )}( | |
c P | |
c over | |
q g | |
r U | |
ma te | |
}) ))_{ | |
Ġ& -( | |
Ġ& +(\ | |
}| )-\ | |
)= + | |
Ġd b | |
Ġk i | |
ĠS pan | |
fo l | |
):= {\ | |
}}^{* }} | |
27 1 | |
\{( ( | |
sym metric | |
)$ },\] | |
pp ing | |
CF L | |
Ġpro cess | |
Ġit eration | |
PI NN | |
$ }-\ | |
3 96 | |
N LoS | |
j L | |
q C | |
w q | |
Ġ )/\ | |
}) })}\ | |
}) *_{ | |
}] }_{\ | |
\|_{ {}_{\ | |
)) }, | |
\{ || | |
}}) /( | |
Ġu u | |
Ġ= &- | |
:=\ | | |
}& [\ | |
ĠS G | |
))\ ,\] | |
Ġ- }( | |
ĠP oly | |
Ġb ase | |
Ġg ra | |
,\, [ | |
}|_{ (\ | |
ba sed | |
):\ ; | |
{)}\, .\ | |
})< - | |
}^{\# }(\ | |
^{! }_{\ | |
Cor e | |
lassi cal | |
spheri cal | |
aco bi | |
) })+( | |
N j | |
N v | |
T est | |
T eich | |
[ { | |
] }]\ | |
b F | |
i mage | |
o se | |
p ow | |
)\ }\,.\] | |
at ter | |
^{* })|\ | |
}] ^ | |
}^{- }}(\ | |
ĠS S | |
ĠI nf | |
}^{+ }/ | |
ĠP D | |
ĠG P | |
)}^{ +\ | |
}}|\ ,\ | |
Sp r | |
}$ ;}\\ | |
Le ngth | |
05 51 | |
\% , | |
44 9 | |
Ġma ss | |
Ġ&& +\ | |
})_{+ }\] | |
Ġst d | |
Ġprop erty | |
Ġsup er | |
Ġtri vial | |
Ġadja cent | |
) _{-}\ | |
; & | |
T EP | |
k X | |
|\ }.\] | |
int eg | |
par ti | |
{( }{ | |
}^{* })} | |
}}_{ *}(\ | |
}\| -\| | |
Ġn y | |
ĠA P | |
ĠS GD | |
_{* }}+\ | |
_{* }}[ | |
\,\ |\, | |
Ġb ot | |
}; | | |
sh ea | |
}_{+ }}| | |
13 24 | |
)! !}\ | |
)}) <\ | |
up psi | |
up delta | |
47 7 | |
}\}+\ { | |
ĠEx ample | |
ĠNa me | |
) }]_{\ | |
4 40 | |
F h | |
N on | |
R t | |
U X | |
V x | |
] }:\ | |
n G | |
x S | |
}\ }/\ | |
}) }|| | |
}) )}\| | |
}, . | |
Ġ& | | |
Ġ1 30 | |
ĠC v | |
)) }}{\ | |
}}) }-\ | |
}|\ ,|\ | |
ĠA c | |
Ġm p | |
ĠF ull | |
11 12 | |
pt R | |
}}| }{\ | |
Ġo ri | |
}^{*}( -\ | |
}\! :=\!\ | |
49 7 | |
Ker r | |
09 1 | |
St d | |
dn er | |
_{\# }( | |
Com m | |
{\# } | |
& =- | |
R n | |
U D | |
U lt | |
b T | |
Ġ ))+\ | |
th at | |
ar dner | |
tri es | |
}^{- }).\] | |
}^{- })+\ | |
}|\ }.\] | |
Ġs ph | |
}}=\ \ | |
}}= &\ | |
|_{\ { | |
)}+ \] | |
})] }\] | |
}|_{\ { | |
28 80 | |
}]^{ <\ | |
,+ }\] | |
,+ }, | |
})\; =\; | |
olu tions | |
Ġmaxi mum | |
Ġabs olute | |
& [\ | |
C f | |
E nc | |
Q B | |
S ph | |
i Z | |
Ġ })\\ | |
}\ }}^{\ | |
}\ })- | |
}) })+\ | |
=\ ) | |
}}\ ), | |
ho ck | |
}| }\, | |
rc h | |
}}_{ [\ | |
}\,\ ,( | |
ĠA E | |
.\ ; | |
Ġp res | |
}^{+ }<\ | |
\[(\ | | |
}})\ }.\] | |
_{+ }|\ | |
}}^{- }, | |
Ġth us | |
\[\{\ {\ | |
}\! :\ | |
an ish | |
|( |\ | |
)}| + | |
dash arrow | |
44 2 | |
06 3 | |
Ġ* }}\ | |
95 1 | |
95 4 | |
)}:=\ | | |
^{** }, | |
Ġbe fore | |
* | | |
5 77 | |
7 00 | |
h J | |
u T | |
Ġ })|^{ | |
}\ }}= | |
)\ },\\ | |
}| (|\ | |
}| /| | |
)= [( | |
{) }}_{ | |
}^{- }|\ | |
Ġu l | |
Ġd U | |
ĠD C | |
})-\ { | |
Ġh t | |
}_{+ }\\ | |
)\,\ |\ | |
Ġ}( | | |
)_{\ #}\ | |
\! \{ | |
)^{* },\ | |
ect ral | |
39 4 | |
Ġ* })\ | |
mm se | |
{* }{\ | |
circle arrowright | |
Ġne gative | |
* }= | |
> } | |
B q | |
D Alg | |
E uler | |
J F | |
R h | |
S in | |
S hi | |
i deal | |
| ))\ | |
Ġ ]_{\ | |
}\ })^{ | |
in variant | |
al ly | |
ar ed | |
^{- }},\ | |
}+\ , | |
[\ ! | |
\, ,& | |
}\| }=\ | |
ĠB U | |
ĠD L | |
)] +[ | |
il d | |
})| }.\] | |
** ( | |
** \(\ | |
Ġ+ (- | |
20 20 | |
Ġ}^{ [ | |
\[= [ | |
)}}{ |\ | |
)\|\ |\ | |
}|| (\ | |
75 5 | |
55 8 | |
}! \, | |
\# ( | |
}|< |\ | |
CR B | |
const raint | |
{}{ { | |
\: .\] | |
\ )= | |
i U | |
n Q | |
x N | |
Ġ }|}\ | |
}= {}^{\ | |
)) }{|\ | |
Ġt p | |
{| }}\ | |
\|\ ,\| | |
\{\ !\!\ | |
_{- }; | |
_{- }\|_{\ | |
00 20 | |
ĠM AX | |
ĠR ad | |
ĠK dV | |
Ġw ave | |
per fd | |
(( (\ | |
})| ^ | |
}}\| {\ | |
\[[ [\ | |
Ġ| + | |
45 4 | |
37 3 | |
79 7 | |
})^{* },\] | |
]\! ],\ | |
})[ [ | |
Ġle arning | |
])= [\ | |
Ġho ld | |
Mul ti | |
Down arrow | |
fpp f | |
rich let | |
# \{( | |
0 60 | |
B eta | |
K z | |
M c | |
T J | |
V G | |
X e | |
w k | |
y R | |
Ġ }}}\] | |
de R | |
}| }\\ | |
\| }(\ | |
pa rameter | |
ĠC G | |
}^{* }|_{ | |
}}) }- | |
}}) )}\ | |
)+ (-\ | |
Ġd N | |
Ġs cheme | |
_{* }{\ | |
^{+ }|_{ | |
}> = | |
}_{+ }}(\ | |
23 04 | |
}^{*}( {\ | |
}$ }_{ | |
)}| ( | |
96 5 | |
06 1 | |
08 6 | |
66 8 | |
ĠAv g | |
ĠPo i | |
Ġcent er | |
poch s | |
. }\, | |
A bs | |
F o | |
q L | |
v ity | |
}) })_{\ | |
}, *}( | |
})\ |^{\ | |
}- )\ | |
eg el | |
end s | |
ĠC Z | |
}}_{ | | |
}^{+ })} | |
Ġy y | |
Ġr x | |
Ġ10 8 | |
}_{* }+\ | |
Ġ| (\ | |
}): \] | |
50 7 | |
88 0 | |
SS YT | |
ĠDe ep | |
Ġsta ndard | |
IF AR | |
ĠLo ss | |
$ {\ | |
$ }}( | |
* )\] | |
- || | |
3 01 | |
D J | |
F K | |
L z | |
M IN | |
W M | |
h gh | |
m icro | |
Ġ frac | |
math acc | |
}} }; | |
ar ch | |
}| )\, | |
li ce | |
^{* })]\ | |
}^{* }}[ | |
un fold | |
}|\ {\ | |
ĠB G | |
di an | |
st s | |
\[|\ !|\!| | |
(-\ | | |
}_{+ }}|\ | |
}+( (\ | |
})| )\] | |
Ġ\[+\ , | |
))^{ + | |
back sim | |
ĠO D | |
\},\ ;\ | |
{\}}\ .\] | |
08 4 | |
{|}\, | | |
ran ce | |
tim ization | |
mathacc ent | |
) }}}( | |
) *}\ | |
) }],\] | |
. +( | |
5 25 | |
< \|\ | |
] }& | |
] }; | |
k P | |
p ure | |
w R | |
Ġ succ | |
Ġ ))-\ | |
^{ [- | |
}( _{ | |
}) $}.\] | |
Ġ\ }=\ | |
}_{\ {\| | |
}| +\| | |
Ġi u | |
Ġa xi | |
Ġ}\ }.\] | |
{(} [- | |
Ġk j | |
Ġs r | |
Ġs kew | |
vec tor | |
ĠI ter | |
{] }}\] | |
{] }&\ | |
Ġ{\ |\ | |
}})\ .\] | |
_{+ }}}\ | |
^{+ }}}\ | |
ĠG u | |
Re c | |
^{*}( -\ | |
oth er | |
)\| ^ | |
Ġ\,\ | | |
56 1 | |
)}} <\ | |
Ġse ch | |
Ġme tric | |
]: | | |
comp lex | |
Ġuni form | |
^{! }(\ | |
com pact | |
hy dro | |
+ ...+ | |
8 40 | |
A lb | |
O DE | |
] {( | |
] $}.\] | |
w dx | |
| )}( | |
Ġ triangle | |
Ġ ^{*}_{ | |
Ġ }]_{ | |
ra ted | |
}} }:= | |
_{\ !\!\ | |
lo ad | |
)) }{(\ | |
}}) )+ | |
)} /( | |
)} <+\ | |
ĠL C | |
ĠA b | |
}}= -( | |
_{+ })+ | |
^{+ }:=\ | |
]}\ {\ | |
-( | | |
Ġin variant | |
})(\ | | |
}=-\ ,\ | |
Ġis omorphism | |
Ġ}{ {\ | |
en ces | |
as k | |
}\; .\ | |
)^{* })\] | |
56 3 | |
000 6 | |
,* },\ | |
Du al | |
Ġ* },\ | |
!\! /\ | |
58 9 | |
fin e | |
})\! -\! | |
Ġfinite ly | |
_{\! {}_{ | |
}^{{ }_{( | |
GO E | |
Fe yn | |
) [\![ | |
A MP | |
H v | |
J B | |
L eg | |
R am | |
] * | |
b etween | |
n is | |
w ar | |
^{ {}^{( | |
}) }=- | |
}| }^{\ | |
}^{- }),\ | |
)) ))\ | |
Ġf a | |
Ġ=\ |( | |
}& (- | |
Ġc x | |
vec t | |
ĠE B | |
}), | | |
}_{+ })} | |
14 23 | |
dz d | |
}_{* }}( | |
che s | |
Ġ| {\ | |
})] (\ | |
36 00 | |
}}[\ ![ | |
)}\, =\,\ | |
29 1 | |
06 2 | |
Ġ{* },\ | |
Ġ{* }, | |
^{** } | |
Ġare a | |
}|\, ,\] | |
ime n | |
ĠAd am | |
! \|\ | |
) })=(\ | |
- ), | |
5 40 | |
E CT | |
I Br | |
K m | |
V U | |
j y | |
z B | |
Ġ }\,( | |
}) .}\] | |
}) )+(\ | |
}} ! | |
}}\ })\ | |
}, (-\ | |
}, [- | |
^{- [ | |
)}\ ;,\] | |
}/ [\ | |
ĠL ea | |
Ġk r | |
ĠT op | |
}}}\ ;\ | |
^{+ }}-\ | |
}_{+ }: | |
^{*}( [ | |
div idual | |
\[=\ | | |
|| }{ | |
)! (\ | |
)! }(\ | |
96 1 | |
79 3 | |
59 2 | |
69 0551 | |
]\, :\, | |
^{(- )}_{ | |
comp osition | |
})_{+ }^{\ | |
})\! +\! | |
mon o | |
`` \ | |
Hod ge | |
shea ves | |
imen sion | |
) }})=\ | |
5 24 | |
: \{\ | |
S mall | |
f ic | |
l q | |
}\ })}\ | |
me rical | |
}} })+ | |
cal l | |
su r | |
er g | |
^{* })_{\ | |
^{* }\|\] | |
Ġ1 40 | |
)) ]_{ | |
{| }}{ | |
Ġn h | |
}|\ ; | |
}[ :, | |
}\,\ \ | |
{)}\ ;,\] | |
}}^{\ # | |
_{* })} | |
ĠH L | |
12 21 | |
_{- }|^{ | |
00 12 | |
(- {\ | |
}_{* }\|^{ | |
as tic | |
)}) )=\ | |
37 2 | |
55 9 | |
95 3 | |
}\,| |\, | |
db l | |
Ġdu al | |
Ġcop ies | |
" \ | |
" \] | |
- (-\ | |
4 45 | |
D NN | |
J C | |
] }),\] | |
a ck | |
b S | |
h ar | |
j w | |
k I | |
w o | |
x E | |
x K | |
x m | |
}\ }=- | |
}_{\ _ | |
se m | |
li cy | |
)) |=\ | |
\, _{\ | |
)} [- | |
re st | |
ĠL ayer | |
)^{\ #\ | |
ĠA ccu | |
ĠB MO | |
Ġc R | |
ĠH C | |
ĠH ess | |
}^{+ }[\ | |
})_{ +} | |
_{+ }\, | |
}}| }\] | |
bra n | |
})^{- (\ | |
^{*} <\ | |
}|_{ {\ | |
\; {\ | |
Ġ[ [ | |
98 3 | |
po i | |
ĠRe ference | |
SW AP | |
Ġexp onent | |
,. )\ | |
Ġspe ed | |
! }{(\ | |
, [- | |
4 226 | |
A LG | |
I W | |
\ }\| | |
h as | |
w ave | |
Ġ ]^{\ | |
}_{ =: | |
},\ ,\,\,\ | |
era ture | |
^{* }_{- | |
Ġ1 32 | |
}^{* }(( | |
)) )}{\ | |
Ġt v | |
}\| ) | |
Ġk e | |
ĠB atch | |
it z | |
))\ },\] | |
_{- - | |
)| }= | |
:\ :\ | |
_{+ }).\] | |
})| (\ | |
}{| |\ | |
Ġpair s | |
) }):=\ | |
* }^{- | |
E w | |
S d | |
b L | |
b its | |
h R | |
i dx | |
r M | |
z ation | |
Ġ })) | |
Ġ )}| | |
Ġ ))^{\ | |
}\ }),\ | |
}} }}_{ | |
ti s | |
}}\ ;\; | |
}+ _{ | |
}=\ {{\ | |
}| })\ | |
co vol | |
co mb | |
}}) *\ | |
it e | |
ĠT f | |
Ġp ol | |
Ġ\[=\ , | |
ĠF il | |
}> _{\ | |
13 13 | |
Ġth is | |
}_{[ -\ | |
88 5 | |
tra t | |
{{( * | |
Ġra n | |
allow break | |
Ġgene ric | |
deR ham | |
, .. | |
; &\ | |
S pace | |
] }\,.\] | |
b E | |
o g | |
Ġ },\] | |
-\ {\ | |
su lt | |
}- || | |
}| })\] | |
Ġ}\ !\ | |
]\ }_{ | |
}[ (- | |
Ġe s | |
ĠH K | |
Ġg lobal | |
^{+ }}- | |
)] )^{ | |
))= [ | |
)})\ |\ | |
)^{* }, | |
}|| |\ | |
ct ed | |
}&= &-\ | |
39 3 | |
07 3 | |
else where | |
Ġemb ed | |
4 23 | |
4 25 | |
8 75 | |
I g | |
O FF | |
a th | |
h I | |
p X | |
Ġ }+| | |
Ġ {(- | |
}) ),( | |
}} }}{( | |
}^{\ ; | |
na ch | |
})\ })\] | |
^{- }}{\ | |
Ġa bj | |
), (-\ | |
Ġk k | |
Ġc ard | |
})- [\ | |
_{( [ | |
ĠM I | |
}(- ,\ | |
et ti | |
Ġ10 5 | |
},\,\ | | |
78 3 | |
58 7 | |
^{\# }, | |
\# (\ | |
Ġop timal | |
Ġsurf ace | |
E e | |
N Q | |
S a | |
c pl | |
r C | |
r V | |
w g | |
Ġ )}) | |
}) !}{ | |
}}) )_{\ | |
Ġn n | |
ĠB y | |
Ġs er | |
_{- }),\ | |
}^{+ }:= | |
ĠD S | |
ĠF S | |
,- )\] | |
})=( (\ | |
}\; | | |
)^{* },\] | |
,* }}\ | |
39 0 | |
Ġra m | |
dec reasing | |
ou rce | |
) .\\ | |
4 21 | |
B k | |
S eg | |
X L | |
d den | |
k K | |
m G | |
| |}\ | |
} .. | |
^{ {( | |
}\ }; | |
\[ := | |
de ns | |
}= &- | |
se l | |
ro rs | |
}}^{ | | |
De l | |
\| }=\ | |
ĠC W | |
}^{* })\|^{ | |
Ġ= &( | |
ĠB L | |
ĠM ini | |
(- |\ | |
/\ !/ | |
Ġm x | |
ĠR m | |
pt l | |
\[|\ !|\! | |
Ġ(\ |\ | |
})| &\ | |
Ġin dividual | |
}}[ {\ | |
_{| ( | |
)^{* })\ | |
})< _{ | |
!\! \{\ | |
Ġre n | |
IJ KL | |
}]}{ [ | |
MP C | |
.... .... | |
{}{{ }^{*}}{\ | |
ĠAccu racy | |
* }} | |
4 13 | |
Q y | |
j ec | |
q D | |
Ġ ]+\ | |
}}\ }^{ | |
^{- }),\ | |
}}^{ [- | |
^{* })\, | |
Ġ\[\ , | |
}] \,,\ | |
}^{* })=( | |
)) ]= | |
}}) }\| | |
)| =( | |
{] }| | |
)_{ , | |
\[(\ |\ | |
}}| )\ | |
38 2 | |
78 0 | |
]\! .\] | |
SS I | |
Ġ&& &- | |
Ġla bel | |
We il | |
}|\!|\! |_{ | |
ĠBi as | |
ode sic | |
ĠLear ning | |
! - | |
. }{ | |
B ind | |
B AD | |
I RS | |
M y | |
X w | |
] }\) | |
] ],\ | |
e le | |
m Q | |
o cc | |
q depth | |
s J | |
x U | |
Ġ },\, | |
ta tive | |
}, || | |
})\ }, | |
}| )}{| | |
}] ))\ | |
}^{* }},\] | |
^{( |\ | |
Ġc ar | |
Ġs b | |
12 56 | |
ĠM V | |
ĠM ed | |
})+ [\ | |
ĠD imension | |
}_{+ }},\ | |
)}_{ -\ | |
]^{ [ | |
}}^{- },\ | |
)}) ^{*}\ | |
36 1 | |
000 8 | |
)}} > | |
50 6 | |
76 3 | |
]\! ].\] | |
09 2 | |
77 7 | |
) _{*}(\ | |
5 27 | |
8 01 | |
< {\ | |
A O | |
H ur | |
S ep | |
] )/ | |
g q | |
l ar | |
p D | |
q F | |
w I | |
| }\\ | |
Ġ let | |
Ġ )=( | |
}_{ !}\ | |
)^{ ** | |
}| }}\] | |
^{* }}}^{ | |
}^{* ,*}( | |
}}_{ -\ | |
Ġk s | |
}& -( | |
_{* }([ | |
}^{+ }=( | |
ĠR L | |
11 01 | |
}), |\ | |
\) : | |
}}| >\ | |
ch ed | |
)},\ | | |
})(\ |\ | |
)}= | | |
}}^{* \ | |
ĠO b | |
}^{[ * | |
}\! :\!\ | |
)}) : | |
}}] }\] | |
he ight | |
|}{\ |\ | |
^{** }(\ | |
}}}{{= }}(\ | |
\)\ (\ | |
ĠGen era | |
Ġradi us | |
{{< }}{{\ | |
) {}^{ | |
. }(\ | |
\ }^ | |
h U | |
w ay | |
| ), | |
Ġ maps | |
Ġ }}{| | |
}} }))\] | |
+\ {\ | |
}}^{ {\ | |
Ġx n | |
Ġ2 40 | |
Ġi dentity | |
}}) ]=\ | |
{| }[\ | |
}\| },\ | |
), -( | |
cu racy | |
}/ \{\ | |
_{- }\,\ | |
}), ...,( | |
_{+ }),\ | |
^{+ }: | |
{- -} | |
{)} . | |
Ġ** ( | |
)}) )= | |
48 3 | |
Ġco de | |
}! )^{ | |
Alg orithm | |
SA M | |
Ġch annel | |
valu ed | |
$ }}}_{ | |
+ }= | |
, <\ | |
: [\ | |
E qu | |
] }),\ | |
b Y | |
s Y | |
s ome | |
Ġ ]=\ | |
}\ }:\ | |
ma ry | |
}) }}{\| | |
Ġ\ {- | |
}+\ #\ | |
}| & | |
}| .\ | |
}] ;\] | |
}^{* }\|\] | |
)} [( | |
}^{+ }),\] | |
st ru | |
_{+ }},\ | |
_{+ }^{*}\ | |
:= [\ | |
sta n | |
ab d | |
Ġin to | |
Ġ| - | |
)})\ }\] | |
)|_{ ( | |
44 6 | |
08 3 | |
49 4 | |
07 4 | |
}}\; =\;\ | |
ie w | |
Ġdiff erent | |
tiv ation | |
Ġoccu rs | |
! }\\ | |
H Z | |
K I | |
c pt | |
s V | |
v is | |
Ġ )}}{ | |
Ġ }+|\ | |
de an | |
}=\ |(\ | |
)}\ !\!\ | |
li an | |
}^{* }}+ | |
}\, )\] | |
Ġi kx | |
Ġf ail | |
}}) })\] | |
Ġa fter | |
}/ \{ | |
ĠL u | |
ĠS ymbol | |
Ġp d | |
)| +( | |
ĠN M | |
}; & | |
Ġ\,\ |\ | |
{)}\, =\,\ | |
,+ }+ | |
49 1 | |
ke y | |
ram ified | |
Ġtran si | |
5 36 | |
X S | |
[ }\ | |
\ }:=\ | |
] }_{( | |
] },( | |
] ]+[ | |
h ed | |
o k | |
Ġ }:=\ | |
Ġ target | |
}^{ !} | |
}) }\|_{\ | |
}) ):= | |
}) )].\] | |
,\ {( | |
de suit | |
su c | |
Ġ1 24 | |
}] -( | |
Ġt L | |
}}) })\ | |
}}) ].\] | |
Ġa bc | |
ĠL E | |
di tive | |
_{* }}- | |
ĠH ilb | |
bf d | |
Ġv ia | |
Ġr d | |
ĠE M | |
}}- \] | |
}\) : | |
}_{+ }^{- | |
})| -|\ | |
}\}\ .\] | |
|| (\ | |
}$ }\}.\] | |
Co ng | |
\[- {\ | |
96 3 | |
}&= &( | |
ne igh | |
ir th | |
46 1 | |
46 3 | |
Bi mod | |
spa desuit | |
ĠCond ition | |
! }(- | |
* })\] | |
B m | |
G f | |
G et | |
M HM | |
N LS | |
S gn | |
X V | |
\ }}&\ | |
] })-\ | |
] }{}^{ | |
r Q | |
| )(\ | |
}\ }\, | |
}\ }}+ | |
}} })_{\ | |
=\ !\! | |
=\ ;( | |
ri x | |
}^{\ #\ | |
}| ]\] | |
Ġf requency | |
un k | |
}}^{\ ,\ | |
}),\ | | |
^{+ }}=\ | |
Ġ10 9 | |
_{| |\ | |
Co eff | |
35 3 | |
ac l | |
^{*}, - | |
98 1 | |
06 25 | |
55 4 | |
\[+ (- | |
95 9 | |
)^{+ }( | |
CF K | |
BMO L | |
Ġho rizon | |
GH Z | |
ĠCom p | |
Ġpri mitive | |
- }_{\ | |
< }\ | |
M s | |
P s | |
Q b | |
b K | |
e con | |
g xy | |
r I | |
z b | |
}\ }_ | |
)\ }}{\ | |
}^{\ |\ | |
ho lds | |
^{* }=-\ | |
^{* })] | |
{) };\ | |
}^{- }}{\ | |
)) ,\,\ | |
\, )\,\ | |
Ġt y | |
ĠS o | |
ĠS w | |
ĠT P | |
ĠN et | |
ĠP V | |
_{+ }}-\ | |
{\| }\|\ | |
^{+ }_{( | |
}}- (- | |
}}| -\ | |
\[|\ {( | |
}_{+ })}\] | |
}}\| .\] | |
}}[ -\ | |
du e | |
}\; ,\\ | |
19 20 | |
}\;\ ;\; | |
Ġ* }, | |
Di rac | |
}! }{\ | |
Ġun if | |
Ġ\! -\! | |
}}]= [\ | |
}}&= & | |
Ġga in | |
Ġderi vative | |
4226 38 | |
= {}^{ | |
S Z | |
v j | |
x dx | |
Ġ }_{- | |
ra ng | |
}) }+| | |
}) )^{*}\ | |
Ġ\ {| | |
}} })(\ | |
^{- , | |
}^{* }{ | |
}}) }\,\ | |
{| }\|\ | |
pro g | |
ĠB ase | |
\,\ \ | |
ĠR M | |
}}| =|\ | |
)|\ }\] | |
}\{ [\ | |
)]\ }\] | |
60 6 | |
)\; :\; | |
49 2 | |
57 60 | |
Ġra nge | |
ĠDe f | |
}}_{+ }^{ | |
olu me | |
short mid | |
) }],\ | |
* \] | |
H MR | |
o sp | |
x j | |
_{ {}^{ | |
}) ^{*})\ | |
}) ),&\ | |
Ġ\ })\ | |
)\ }}{ | |
op ulation | |
Ġ& |\ | |
li ft | |
{) }^{+}\ | |
{) }&=\ | |
}: \,| | |
\|_{ {}_{ | |
)) . | |
)) })\] | |
Ġf amily | |
or th | |
{| }^{- | |
Ġu b | |
sup er | |
re ed | |
ĠB M | |
ĠT u | |
_{* }}+ | |
Ġe pi | |
Ġ\[= {\ | |
})}\ }_{ | |
Ġ- [ | |
_{+ })+\ | |
rel int | |
ĠW eight | |
=( (\ | |
15 36 | |
{]}\ .\] | |
\[[\ ,\ | |
te ri | |
)}| +| | |
Ġde p | |
}): \\ | |
}}^{+ })\] | |
78 2 | |
08 2 | |
46 2 | |
^{*}) ^{*}\ | |
Ġse g | |
})}+\| ( | |
Ġpa ra | |
}^{(+ )}( | |
ĠFig ure | |
via tion | |
Ġarbitra ry | |
/ _{\ | |
F DR | |
M RT | |
R z | |
S kew | |
T OP | |
\ }|,\] | |
e H | |
h T | |
s G | |
Ġ })| | |
}\ }}-\ | |
\[ : | |
}, (( | |
{) }^{*} | |
)) })\ | |
\{ * | |
Ġt z | |
}}) ,& | |
Ġs w | |
ĠS emi | |
_{* }}^{- | |
)\, [ | |
)_{ {}_{ | |
Ġh alf | |
ĠG raph | |
}:= \] | |
\[= | | |
Ġ|\ , | |
}_{* }- | |
pre v | |
\[\{\ ,\ | |
kl m | |
)[ (\ | |
,\; | | |
Ġvec tors | |
Sta nd | |
Ġconstraint s | |
satisf ies | |
! \{\ | |
F m | |
n exists | |
| }<\ | |
Ġ current | |
}} }}- | |
})\ }\\ | |
ad dle | |
^{- }\|_{ | |
se g | |
^{* })> | |
co e | |
}] _ | |
}] )_{\ | |
\| },\] | |
}^{- }&\ | |
}\, ) | |
Ġ}\ }\] | |
}\| / | |
re at | |
ĠL ower | |
ck ing | |
ĠB r | |
ĠN aN | |
ĠF unction | |
ĠP R | |
ĠP SL | |
_{+ }}=\ | |
_{+ }^{*}\\ | |
Ġb k | |
Ġg rid | |
^{+ })}\ | |
\}\ ;\ | |
)] }.\] | |
)] =-\ | |
}_{+ }}{ | |
}}\, _{ | |
20 19 | |
)}, [ | |
})) ;\] | |
)}) < | |
55 2 | |
]\! ]= | |
Ġre qu | |
97 4 | |
Ġdy n | |
Ġch ain | |
Ġba sed | |
whi ch | |
ctr l | |
+ }} | |
\ })}{ | |
k J | |
}) };\ | |
}{ {}_{ | |
}}\ }} | |
Ġ1 29 | |
}] ]=\ | |
}^{* }]= | |
)) ],\] | |
}}) }| | |
Ġd M | |
Ġp otential | |
)| {\ | |
}\|\ ,\| | |
)\, ;\, | |
ĠD D | |
ĠP L | |
{\| }\, | |
^{+ ,\ | |
Ġ3 20 | |
ce pt | |
)] \,.\] | |
,- }\] | |
Ġl k | |
)}= : | |
\[= :\ | |
}}\|\ | | |
})) [\ | |
})] \|_{ | |
con c | |
)}| .\] | |
ac p | |
,* }= | |
lu id | |
]-\ { | |
55 5 | |
\}=\ {( | |
ĠRe f | |
Ġ\! -\!\ | |
Ġreg ion | |
Ġgen erator | |
.&.& .&.& | |
liz ation | |
Ġcri tical | |
atu res | |
9 64 | |
9 28 | |
9 72 | |
> + | |
A rc | |
H aus | |
\ })=\{ | |
] :( | |
n om | |
z M | |
| )/ | |
| |^{\ | |
| }}{| | |
Ġ box | |
Ġ }=( | |
Ġ ]= | |
}) )}_{ | |
}} }\,,\ | |
}, +}\ | |
se lf | |
Ġ0 10 | |
^{* }):=\ | |
^{* })\,\ | |
^{* }|}\ | |
}^{- }),\] | |
Ġi l | |
cu m | |
re lax | |
Ġc T | |
})}\ ;\ | |
}}}\ {\ | |
{] }> | |
{] }=-\ | |
ĠM ar | |
Ġb u | |
)|\ ,|\ | |
(( |\ | |
)}}\ |_{ | |
)}\, |\,\ | |
Ad S | |
ĠDe t | |
_{> , | |
cri tical | |
112 2 | |
,: }\|_{ | |
}}{{= }}(\ | |
ĠTra ining | |
Ġve hicle | |
ĠSing le | |
$ }\,.\] | |
, &- | |
3 18 | |
A ST | |
F EM | |
G AP | |
G auss | |
[ ]{\ | |
\ }\|\ | |
] }/ | |
] )|\ | |
f R | |
t binom | |
x xy | |
Ġ })\|^{ | |
Ġ ^{*})\ | |
}) }; | |
Ġ\ #\{ | |
Ġ1 27 | |
Ġa bi | |
Ġd rd | |
Ġk h | |
ĠA nn | |
_{* }(( | |
Ġp w | |
)| }}\ | |
}\|\ ,\|\ | |
Ġ^{ | | |
for ma | |
})} <+\ | |
}_{* }.\] | |
}* & | |
}\; |\; | |
Ġ&= : | |
Ġ* &*& | |
57 1 | |
ĠâĢ ľ | |
ĠCo rollary | |
Ġnon zero | |
rop ic | |
}^{** }, | |
rac te | |
|\!|\! | | |
}(* )\ | |
Si egel | |
spherical angle | |
) }^{*}( | |
) }),\\ | |
* \\ | |
- }} | |
> |\ | |
D q | |
\ )-\( | |
] }}.\] | |
q K | |
q R | |
w acc | |
y I | |
z K | |
Ġ )[ | |
}} }}-\ | |
ot one | |
})\ : | |
})\ }+ | |
^{* }||_{ | |
pa tible | |
}^{- }\}\] | |
ij s | |
ĠA f | |
Ġs f | |
_{- }).\] | |
Ġm oment | |
ĠF un | |
_{+ }^{* | |
\}\ ! | |
rel u | |
}))\ .\] | |
})| ,| | |
oth e | |
\; :\;\ | |
Ġ[ (\ | |
38 3 | |
)\! )\] | |
}! \] | |
68 6 | |
ea ch | |
Ġla st | |
Ġdivis or | |
5 28 | |
5 44 | |
8 192 | |
P SS | |
R d | |
Y D | |
Z W | |
] })+ | |
e z | |
g ch | |
j H | |
q H | |
u B | |
\[ *\ | |
^{- }), | |
Ġ0 2 | |
De p | |
Ġ1 16 | |
Ġ1 36 | |
\| { | |
row th | |
)) }}\] | |
Ġf f | |
Ġn kQ | |
cu bic | |
Ġd c | |
ĠS ample | |
_{* }}, | |
Ġp ert | |
ĠN u | |
}}}\ ; | |
ĠI nput | |
}^{+ }\, | |
_{+ })_{ | |
{\| }\!\ | |
ĠG e | |
}_{+ }^{( | |
)/ [ | |
}\;\ ;\;\ | |
)}\, |\, | |
+\| (\ | |
)_{+ }.\] | |
SA N | |
}_{\# }(\ | |
}\: .\] | |
Ġdiffer enti | |
- }=\ | |
M b | |
P w | |
S imp | |
] &= | |
e pt | |
g U | |
s parse | |
| }(| | |
Ġ ))- | |
}}\ {(\ | |
la te | |
}+ {}^{ | |
li j | |
Ġc f | |
Ġs ymbol | |
ĠS el | |
ĠS tep | |
Ġ\( = | |
_{* }},\ | |
_{- (\ | |
_{- }}}\ | |
ĠF ed | |
}}+ { | |
_{+ }^ | |
}}| -| | |
}=( [ | |
13 23 | |
}< \| | |
)}_{ > | |
Ġal so | |
}}\| | | |
)! }+ | |
)! \,( | |
)\| < | |
45 3 | |
pr ot | |
37 1 | |
}))^{ ( | |
75 9 | |
,-\ ,\ | |
no des | |
78 1 | |
pe ak | |
^{** })\ | |
^{** }- | |
Tw Sp | |
\|\, .\] | |
Ġpo st | |
Ġrepresen tation | |
, ^{ | |
0 99 | |
G v | |
R k | |
e K | |
f lip | |
m se | |
q E | |
t U | |
z R | |
Ġ ^{+}( | |
}\ })+ | |
^{- * | |
^{- }}, | |
)) }<\ | |
}}) ))\] | |
}}) ^{*}(\ | |
}}) ;\] | |
re ss | |
\{\ !\ | |
ĠA X | |
ĠA z | |
}}+\ \ | |
)| ]\ | |
ĠM U | |
st rong | |
ĠF E | |
_{+ })^{\ | |
ĠK M | |
ĠU niform | |
}_{+ }),\ | |
}_{+ }^{*}\ | |
})_{\ # | |
ĠO PT | |
}}}( (\ | |
}\;\ , | |
an y | |
Le v | |
37 0 | |
|=\ | | |
|< |\ | |
^{\# }_{ | |
}{}{ }] | |
AD M | |
Ġcap acity | |
ĠLea ve | |
, ^{\ | |
4 24 | |
8 47 | |
A m | |
K Z | |
N IP | |
Q Y | |
T t | |
i des | |
x C | |
Ġ ])\ | |
}\ }|.\] | |
ma sk | |
}} }([ | |
Ġ{ +} | |
Ġx t | |
}^{* }]_{ | |
)) )}\] | |
Ġi P | |
}\| -\|\ | |
ĠL L | |
}& : | |
^{-\ |\ | |
_{* }}_{ | |
_{* }> | |
Ġm d | |
})| / | |
\[=\ |\ | |
}\! /_{ | |
40 2 | |
40 3 | |
cccc ccc | |
,* )\ | |
}=[ -\ | |
\}= \] | |
58 6 | |
)^{+ }, | |
_{! }^{\ | |
Ġqu asi | |
Ed ges | |
! )\ | |
. }}{\ | |
6 59 | |
L b | |
O sc | |
S l | |
S te | |
g trap | |
Ġ )-( | |
Ġ })).\] | |
}\ }\| | |
ma ss | |
da y | |
mu lation | |
}| [\ | |
^{* }]\] | |
Ġ1 22 | |
Ġi mage | |
\, (- | |
Ġt s | |
Ġu r | |
ĠS q | |
ĠT F | |
Ġp aper | |
ĠP e | |
)},\ ;\ | |
et c | |
)}\, , | |
Ġde cay | |
Ġ}{\ | | |
Ġcon juga | |
)})^{ ( | |
Ġsu rj | |
}! }{( | |
68 9 | |
})\; ,\ | |
ori ze | |
ĠPro b | |
(. );\ | |
toch astic | |
ĠPoi sson | |
gtrap prox | |
$ }^{( | |
. }, | |
4 10 | |
4 22 | |
5 13 | |
I AA | |
V ir | |
\ }}[ | |
\ }}\\ | |
] }_{[ | |
m rk | |
p J | |
u R | |
Ġ lim | |
Ġ )),\ | |
}) }}-\ | |
}= < | |
{( }|| | |
}}^{ {}^{ | |
Ġ{ [\ | |
}^{* ^{\ | |
}}_{ {}_{ | |
),\ ;\;\ | |
Ġd ue | |
ĠL B | |
{)}\ ,\,\ | |
ĠA F | |
ĠS NR | |
_{* }))\ | |
_{* })\, | |
12 22 | |
12 80 | |
Ġv anish | |
)| },\ | |
})_{ / | |
ĠE G | |
}}| {\ | |
})| ,|\ | |
}}\| }\ | |
)=( [ | |
^{*}(\ { | |
64 1 | |
an ced | |
Ġdx ds | |
})\|\ |\ | |
)}\,\ | | |
07 0 | |
)\! ,\ | |
},\; ( | |
Ġ{+ }}\ | |
vi rt | |
}}}{{= }}-\ | |
}}_{+ }(\ | |
ĠCom ple | |
inn er | |
Ġcyc lic | |
+ ,\ | |
0 123 | |
D d | |
E U | |
E st | |
M Y | |
Q K | |
j ik | |
m Y | |
v A | |
Ġ name | |
Ġ }_{\{ | |
Ġ }}}.\] | |
Ġ `` | |
\[ :\ | |
}} }] | |
}, ||\ | |
la ble | |
text minus | |
}}( [- | |
^{* }}[\ | |
Ġ1 17 | |
Ġ1 92 | |
co arse | |
}}) }+\|\ | |
Ġ}\ ,\,\ | |
)+ _{ | |
})= { | |
Ġd Z | |
Ġg d | |
ĠG D | |
ln ot | |
per s | |
}/\ !\!/ | |
}}\| +\ | |
))^{ *} | |
}}^{* },\] | |
Ġ10 4 | |
^{*}_{ [ | |
Ġ\| {\ | |
)}) |^{ | |
56 2 | |
}|| .\] | |
,+ }=\ | |
)})^{ -\ | |
)_{+ }}{ | |
SE P | |
})}_{ = | |
RS T | |
Ġexact ly | |
Ġus er | |
! + | |
) }})_{ | |
0 98 | |
F g | |
J d | |
N w | |
Q U | |
Z A | |
\ }] | |
\ })_{ | |
] })- | |
b C | |
k V | |
v n | |
{ +\ | |
| )}{|\ | |
Ġ )}_{\ | |
}) ...\ | |
ri ft | |
^{- }).\] | |
set s | |
\, :=\,\ | |
Ġa ngle | |
]\ ;,\] | |
ul t | |
_{+ }& | |
Ġh f | |
Ġg l | |
^{+ })+ | |
{\{ }[\ | |
})}{ - | |
}))\ | | |
}_{+ })}.\] | |
}{| ( | |
^{*}( (\ | |
}}\| =\ | |
\[=\ { | |
dz dw | |
)! .\] | |
Ġ| +| | |
+|\ { | |
45 1 | |
08 1 | |
SO C | |
)\! )\ | |
}))}\ |\ | |
_{< }( | |
Ġ{+ }^{ | |
Ġnu ll | |
SW F | |
den se | |
AS SO | |
Ġso urce | |
ĠVar iable | |
Ġmini mum | |
Ġneighbo rhood | |
Ġass oci | |
) }),( | |
+ }- | |
+ }-\ | |
B SO | |
C J | |
R OM | |
\ })}\] | |
h N | |
j f | |
Ġ ),\\ | |
Ġ triv | |
}^{ / | |
ra ction | |
}{ }^{*}\ | |
qu o | |
^{- })+ | |
Ġ& \{ | |
{) },\, | |
co mm | |
ĠC lass | |
Ġ} }).\] | |
)+ (( | |
)} &-\ | |
}\,\ {\ | |
ĠV e | |
ĠE d | |
}}+ ...+ | |
... \, | |
}}\, =\ | |
}{( |\ | |
})| }{( | |
Ġin cl | |
Ġ| +\ | |
)})\ | | |
}})= {\ | |
}})= (- | |
Ġ&= (- | |
58 5 | |
68 7 | |
Ġdi rection | |
^{** }_{ | |
PS U | |
}}\; ,\ | |
., }\ | |
CM on | |
sw arrow | |
emp erature | |
+- +- | |
* }.\] | |
4 01 | |
B GL | |
E l | |
F Z | |
Q z | |
\ }=- | |
] ))= | |
c de | |
u ge | |
x aby | |
| }_{\ | |
| ))^{ | |
Ġ )\] | |
Ġ )<\ | |
Ġ )})\] | |
Ġ ]-\ | |
Ġ ^{*}\] | |
}\ };\ | |
Ġ& &-\ | |
wi t | |
{) },\,\ | |
}}) }+\| | |
),\ ;( | |
_{* }]\ | |
_{- }:=\ | |
)| ).\] | |
00 13 | |
ĠM a | |
ĠP C | |
Ġh h | |
}}- [\ | |
}}| (-\ | |
ĠU E | |
ĠW P | |
,- ,+ | |
Ġ+ } | |
Ġ10 6 | |
en na | |
})\,\ | | |
}}& (\ | |
an c | |
cd f | |
|\,\ | | |
}}^{+ }= | |
55 7 | |
yy y | |
09 3 | |
68 5 | |
97 3 | |
fe as | |
Ġinter se | |
Ġconver gence | |
dap tive | |
B g | |
N J | |
Q s | |
] ^{+}\ | |
a ij | |
k fl | |
o x | |
s Q | |
z D | |
à © | |
Ġ }|^{\ | |
}) )^{*}\] | |
}_{ >\ | |
ta ge | |
}_{\ #}\ | |
}=\ #\{ | |
sq supset | |
Ġ1 21 | |
Ġ{ {}^{\ | |
}^{- })+ | |
}^{- ,+}\ | |
)) |.\] | |
Ġt wist | |
)^{\ { | |
fo ot | |
_{- })- | |
ĠI RS | |
ĠM R | |
Th ere | |
}&\ { | |
ĠE ff | |
ĠR f | |
ĠK S | |
):=\ #\{ | |
}\) ] | |
)|\ ;\ | |
^{*}\ { | |
)})\ |_{\ | |
}\; |\ | |
)* } | |
CA T | |
}); (\ | |
Ġmod ule | |
tg t | |
ZF C | |
Get S | |
( =\ | |
) }}}{{=}} | |
/ ** | |
N i | |
P et | |
U N | |
b P | |
_{ ] | |
\[ :=\ | |
})\ }} | |
})\ }=\{ | |
^{* }}\\ | |
}\, :=\, | |
\, = | |
ca b | |
sp l | |
ĠL d | |
ĠA ll | |
<\ ;\ | |
ĠH W | |
12 35 | |
ĠM P | |
}^{+ }\,\ | |
}^{+ })^{- | |
)\, ;\] | |
})_{ < | |
Ġm icro | |
ĠR n | |
ĠD B | |
ĠF r | |
_{+ }^{*} | |
Ġw or | |
}=( | | |
}_{- }) | |
ik jl | |
ip tic | |
)\| ,\ | |
45 2 | |
up date | |
ir d | |
Ġ* &\ | |
80 9 | |
Ġ{+ }(\ | |
cyc lic | |
Ġtop olog | |
bran ch | |
* }-\ | |
. }\;\ | |
L inear | |
N um | |
W res | |
] }}, | |
] };\ | |
i W | |
m S | |
r F | |
r S | |
u de | |
Ġ }|_{\ | |
Ġ ):\ | |
le g | |
ta ck | |
si te | |
)}\ |( | |
}| )}\] | |
)=\ {\{ | |
}: \{\ | |
ĠC ap | |
Ġf ol | |
}}) ]( | |
}}) _{*} | |
Ġa q | |