|
import numbers |
|
from functools import partial |
|
from typing import Union, List |
|
|
|
import torch |
|
from torch import Tensor, Size |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.parameter import Parameter |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
normalized_shape: Union[int, List[int], Size], |
|
eps: float = 0.00001, |
|
elementwise_gain: bool = True, |
|
elementwise_bias: bool = True, |
|
device=None, |
|
dtype=None, |
|
) -> None: |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
|
|
if isinstance(normalized_shape, numbers.Integral): |
|
|
|
normalized_shape = (normalized_shape,) |
|
self.normalized_shape = tuple(normalized_shape) |
|
self.eps = eps |
|
self.elementwise_gain = elementwise_gain |
|
self.elementwise_bias = elementwise_bias |
|
|
|
if self.elementwise_gain: |
|
self.weight = Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) |
|
else: |
|
self.register_parameter("weight", None) |
|
|
|
if self.elementwise_bias: |
|
self.bias = Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) |
|
else: |
|
self.register_parameter("bias", None) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
if self.elementwise_gain: |
|
with torch.no_grad(): |
|
self.weight.fill_(1.0) |
|
|
|
if self.elementwise_bias: |
|
with torch.no_grad(): |
|
self.bias.zero_() |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
"{normalized_shape}, eps={eps}, " |
|
"elementwise_gain={elementwise_gain}, " |
|
"elementwise_bias={elementwise_bias}".format(**self.__dict__) |
|
) |
|
|
|
|
|
class LPLayerNorm(LayerNorm): |
|
"""From MosaicML composer. |
|
|
|
See: https://github.com/mosaicml/composer/blob/6acca4c70425455be7280a5459dbf02e1ac5591d/composer/algorithms/low_precision_layernorm/low_precision_layernorm.py#L63 |
|
""" |
|
|
|
def forward(self, x): |
|
module_device = x.device |
|
downcast_x = _cast_if_autocast_enabled(x) |
|
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight |
|
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias |
|
with torch.autocast(enabled=False, device_type=module_device.type): |
|
return F.layer_norm( |
|
downcast_x, |
|
self.normalized_shape, |
|
downcast_weight, |
|
downcast_bias, |
|
self.eps, |
|
) |
|
|
|
|
|
def _cast_if_autocast_enabled(tensor): |
|
if torch.is_autocast_enabled(): |
|
if tensor.device.type == "cuda": |
|
dtype = torch.get_autocast_gpu_dtype() |
|
elif tensor.device.type == "cpu": |
|
dtype = torch.get_autocast_cpu_dtype() |
|
else: |
|
raise NotImplementedError() |
|
return tensor.to(dtype=dtype) |
|
return tensor |
|
|
|
|
|
class RmsNorm(nn.Module): |
|
def __init__( |
|
self, |
|
normalized_shape: Union[int, List[int], Size], |
|
eps: float = 1e-6, |
|
device=None, |
|
dtype=None, |
|
) -> None: |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
|
|
if isinstance(normalized_shape, numbers.Integral): |
|
|
|
normalized_shape = (normalized_shape,) |
|
self.normalized_shape = tuple(normalized_shape) |
|
self.eps = eps |
|
self.weight = Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) |
|
self.reset_parameters() |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
|
|
return output * self.weight |
|
|
|
def reset_parameters(self) -> None: |
|
with torch.no_grad(): |
|
self.weight.fill_(1.0) |
|
|
|
def extra_repr(self) -> str: |
|
return "{normalized_shape}, eps={eps} ".format(**self.__dict__) |
|
|
|
|
|
def get_norm_class(model_norm): |
|
if model_norm == "default_layer_norm": |
|
return torch.nn.LayerNorm |
|
elif model_norm == "lp_layer_norm": |
|
return LPLayerNorm |
|
elif model_norm == "gain_only_lp_layer_norm": |
|
return partial(LPLayerNorm, elementwise_gain=True, elementwise_bias=False) |
|
elif model_norm == "gain_only_layer_norm": |
|
return partial(LayerNorm, elementwise_gain=True, elementwise_bias=False) |
|
|
|
elif model_norm == "no_wb_layer_norm": |
|
return partial(LayerNorm, elementwise_gain=False, elementwise_bias=False) |
|
|
|
elif model_norm == "rms_norm": |
|
return RmsNorm |
|
|
|
else: |
|
raise ValueError(f"Unsupported model-norm: {model_norm}") |
|
|