olm-chat-7b / open_lm /train.py
henhenhahi111112's picture
Upload folder using huggingface_hub
af6e330 verified
raw
history blame
18.8 kB
import itertools
import logging
import math
import time
from contextlib import nullcontext
import numpy as np
import torch
import torch.distributed as dist
from torch.distributed.distributed_c10d import ReduceOp
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
try:
from megablocks.layers.moe import batched_load_balancing_loss, clear_load_balancing_loss
from megablocks.layers.arguments import Arguments as MoEArgs
except ImportError:
batched_load_balancing_loss = None
clear_load_balancing_loss = None
MoEArgs = None
try:
import wandb
except ImportError:
wandb = None
from open_lm.data import sample_chunk
from open_lm.distributed import is_master
from open_lm.precision import get_autocast
from open_lm.meters import AverageMeter
def unwrap_model(model):
if hasattr(model, "module"):
return model.module
else:
return model
def backward(total_loss, scaler):
if scaler is not None:
scaler.scale(total_loss).backward()
else:
total_loss.backward()
def train_one_epoch(
model, data, loss, epoch, step, optimizer, scaler, scheduler, total_steps, args, tb_writer=None, averagers=None
):
"""Trains model for one epoch on the provided data.
Returns:
success (bool): Whether training completed successfully
step (int): Global step at the end of the epoch. Note that "epoch" actually is not one full pass through the
data, but rather the number of tokens specified by `--train-num-samples`, rounded based on shard size.
As such, the number of steps in an "epoch" can vary, and we have to keep track of steps separately.
"""
device = torch.device(args.device)
autocast = get_autocast(args.precision)
model.train()
data["train"].set_epoch(epoch) # set epoch in process safe manner via sampler or shared_epoch
dataloader = data["train"].dataloader
num_batches_per_epoch = dataloader.num_batches
sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10))
losses_m = AverageMeter()
load_balancing_losses_m = AverageMeter()
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
forward_time_m = AverageMeter()
backward_time_m = AverageMeter()
optim_step_time_m = AverageMeter()
sync_time_m = AverageMeter()
if averagers is not None and args.log_avg_model_training_loss:
losses_avg_m = {key: AverageMeter() for key in averagers.avgs_dict.keys()}
local_avg_losses = {}
total_loss_avg = {}
# used only if --log-logit-mean flag is passed
logit_m = AverageMeter()
end = time.time()
data_iterator = iter(dataloader)
if args.moe_freq > 0:
# these MoEArgs are necessary for logging load balancing.
moe_args = MoEArgs(
hidden_size=model.dim,
ffn_hidden_size=model.dim * 4,
moe_num_experts=args.moe_num_experts,
num_layers=model.n_layers // args.moe_freq,
moe_expert_model_parallelism=True,
moe_top_k=args.moe_top_k,
device=torch.cuda.current_device(),
moe_capacity_factor=args.moe_capacity_factor,
moe_loss_weight=args.moe_loss_weight,
fp16=False,
bf16=False,
)
for i in itertools.count():
if not args.skip_scheduler:
scheduler(step)
if step >= total_steps:
logging.warning(f"step: {step} has reached/exceeded total_steps: {total_steps}. ending training.")
break
try:
batch = next(data_iterator)
has_data = torch.tensor(1, dtype=torch.long, device=device)
except StopIteration:
has_data = torch.tensor(0, dtype=torch.long, device=device)
if args.world_size > 1:
dist.all_reduce(has_data, op=ReduceOp.SUM)
# if is_master(args):
# print("current has data", has_data)
if has_data < args.world_size:
break
# (texts,) = batch
# texts = torch.LongTensor(texts).to(device)
data_time_m.update(time.time() - end)
optimizer.zero_grad()
if args.accum_freq == 1:
with autocast():
forward_start = time.time()
if args.dataset_type == "jsonl":
inputs, targets = batch
# for input in inputs:
# max_label_length = max(len(l) for l in input)
# mod_inputs = []
# mod_targets = []
# for input, target in zip(inputs, targets):
# assert len(input) == len(target)
# mod_inputs.append(input + [1] * (max_label_length - len(input)))
# mod_targets.append(target + [-100] * (max_label_length - len(target)))
inputs = torch.LongTensor(inputs).to(device)
targets = torch.LongTensor(targets).to(device)
inputs = inputs[:, :-1]
targets = targets[:, 1:]
assert inputs.size() == targets.size()
if is_master(args):
if i == 0:
print("enter customed jsonl step")
print("inputs id of first forward on")
print("current inputs")
print(inputs[:3, :])
print("current targets")
print(targets[:3, :])
else:
(texts,) = batch
if is_master(args):
pass
texts = torch.LongTensor(texts).to(device)
inputs, targets = sample_chunk(texts, args)
out, _, _ = model(inputs)
if is_master(args) and i == 0:
pass
forward_time_m.update(time.time() - forward_start)
if args.log_logit_mean:
logit_m.update(torch.mean(out).item())
total_lm_loss = loss(out.reshape(-1, args.vocab_size), targets.reshape(-1))
total_loss = total_lm_loss
if args.moe_freq > 0:
total_load_balancing_loss = batched_load_balancing_loss(moe_args)
clear_load_balancing_loss()
total_loss += total_load_balancing_loss
backward_start = time.time()
backward(total_loss, scaler)
backward_time_m.update(time.time() - backward_start)
if averagers is not None and args.log_avg_model_training_loss and i % args.log_avg_model_training_loss == 0:
with autocast():
for key, averager in averagers.avgs_dict.items():
with torch.no_grad():
out_avg, _, _ = averager.av_model(inputs)
# save the loss for the average model for logging
total_loss_avg[key] = loss(out_avg.reshape(-1, args.vocab_size), targets.reshape(-1))
else:
# split up batch into accum_freq chunks -- if you have --batch-size 8 and --accum-freq 4
# then you only process 2 items at a time. batch-size must be divisible by accume-freq.
assert args.per_gpu_batch_size % args.accum_freq == 0, "Per-GPU batch size must be divisible by accum_freq"
per_batch = args.per_gpu_batch_size // args.accum_freq
# inputs, targets = sample_chunk(texts, args)
inputs, targets = batch
forward_total_time = 0
backward_total_time = 0
for ii in range(args.accum_freq):
maybe_no_sync = nullcontext
# Don't sync gradients until the final batch for FSDP.
if isinstance(model, FSDP) and ii != args.accum_freq - 1:
maybe_no_sync = model.no_sync
with maybe_no_sync():
with autocast():
forward_start = time.time()
inputs_ii = inputs[ii * per_batch : (ii + 1) * per_batch]
if inputs_ii.shape[0] == 0:
break
targets_ii = targets[ii * per_batch : (ii + 1) * per_batch]
out, _, _ = model(inputs_ii)
forward_total_time += time.time() - forward_start
if args.log_logit_mean:
logit_m.update(torch.mean(out).item())
local_lm_loss = (
loss(out.reshape(-1, args.vocab_size), targets_ii.reshape(-1))
* inputs_ii.shape[0]
/ inputs.shape[0]
)
local_loss = local_lm_loss
if args.moe_freq > 0:
local_load_balancing_loss = batched_load_balancing_loss(moe_args)
clear_load_balancing_loss()
local_loss += local_load_balancing_loss
backward_start = time.time()
backward(local_loss, scaler)
backward_total_time += time.time() - backward_start
with autocast():
if (
averagers is not None
and args.log_avg_model_training_loss
and i % args.log_avg_model_training_loss == 0
):
for key, averager in averagers.avgs_dict.items():
with torch.no_grad():
out_avg, _, _ = averager.av_model(inputs_ii)
local_avg_losses[key] = (
loss(out_avg.reshape(-1, args.vocab_size), targets_ii.reshape(-1))
* inputs_ii.shape[0]
/ inputs.shape[0]
)
if ii == 0:
total_lm_loss = local_lm_loss
if args.moe_freq > 0:
total_load_balancing_loss = local_load_balancing_loss
if (
averagers is not None
and args.log_avg_model_training_loss
and i % args.log_avg_model_training_loss == 0
):
for key, averager in averagers.avgs_dict.items():
total_loss_avg[key] = local_avg_losses[key]
else:
total_lm_loss += local_lm_loss
if args.moe_freq > 0:
total_load_balancing_loss += local_load_balancing_loss
if (
averagers is not None
and args.log_avg_model_training_loss
and i % args.log_avg_model_training_loss == 0
):
for key, averager in averagers.avgs_dict.items():
total_loss_avg[key] += local_avg_losses[key]
forward_time_m.update(forward_total_time)
backward_time_m.update(backward_total_time)
total_loss = total_lm_loss
if args.moe_freq > 0:
total_loss += total_load_balancing_loss
optim_step_start = time.time()
if scaler is not None:
if args.grad_clip_norm is not None:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
scaler.step(optimizer)
scaler.update()
else:
if args.grad_clip_norm is not None:
if isinstance(model, FSDP):
model.clip_grad_norm_(args.grad_clip_norm, norm_type=2.0)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
optimizer.step()
optim_step_time_m.update(time.time() - optim_step_start)
if averagers is not None:
averagers.step()
global_loss_tensor = total_loss.detach().clone()
if averagers is not None and args.log_avg_model_training_loss and i % args.log_avg_model_training_loss == 0:
# same for the average model loss
for key, value in total_loss_avg.items():
total_loss_avg[key] = value.detach().clone()
sync_start = time.time()
if args.world_size > 1:
dist.all_reduce(global_loss_tensor, op=ReduceOp.AVG)
if averagers is not None and args.log_avg_model_training_loss and i % args.log_avg_model_training_loss == 0:
for key, value in total_loss_avg.items():
dist.all_reduce(value, op=ReduceOp.AVG)
if args.moe_freq > 0:
dist.all_reduce(total_load_balancing_loss, op=ReduceOp.AVG)
sync_time_m.update(time.time() - sync_start)
batch_time_m.update(time.time() - end)
end = time.time()
batch_count = i + 1
step += 1
if is_master(args):
batch_size = len(inputs)
if args.moe_freq > 0:
losses_m.update(global_loss_tensor.item() - total_load_balancing_loss.item(), batch_size)
load_balancing_losses_m.update(total_load_balancing_loss.item(), batch_size)
else:
losses_m.update(global_loss_tensor.item(), batch_size)
if averagers is not None and args.log_avg_model_training_loss and i % args.log_avg_model_training_loss == 0:
for key, value in total_loss_avg.items():
losses_avg_m[key].update(value.item(), batch_size)
if i % args.log_every_n_steps == 0 or batch_count == num_batches_per_epoch or step == total_steps - 1:
num_samples = batch_count * batch_size * args.world_size
samples_per_epoch = dataloader.num_samples
percent_complete = 100.0 * batch_count / num_batches_per_epoch
# gathered_loss = [torch.zeros_like(total_loss) for _ in range(args.world_size)]
# torch.distributed.all_gather(gathered_loss, total_loss)
# losses_m.update(sum(gathered_loss).item() / args.world_size, batch_size * args.world_size)
if args.moe_freq > 0:
losses_m.update(global_loss_tensor.item() - total_load_balancing_loss.item(), batch_size)
load_balancing_losses_m.update(total_load_balancing_loss.item(), batch_size)
else:
losses_m.update(global_loss_tensor.item(), batch_size)
samples_per_second = inputs.numel() * args.world_size / batch_time_m.val
samples_per_second_per_gpu = inputs.numel() / batch_time_m.val
loss_str = f"Loss: {losses_m.avg:.3f}"
loss_str += f" LB-Loss: {load_balancing_losses_m.avg:.3f}" if args.moe_freq > 0 else ""
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"{loss_str} "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f}, {samples_per_second:#g}/s, {samples_per_second_per_gpu:#g}/s/gpu "
f"LR: {optimizer.param_groups[0]['lr']:5f} "
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"loss": losses_m.val,
"load_balancing_loss": load_balancing_losses_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"forward_time": forward_time_m.val,
"backward_time": backward_time_m.val,
"optim_step_time": optim_step_time_m.val,
"sync_time": sync_time_m.val,
"samples_per_second": samples_per_second,
"samples_per_second_per_gpu": samples_per_second_per_gpu,
"lr": optimizer.param_groups[0]["lr"],
"tokens": (step + 1) * args.global_batch_size * args.seq_len,
"expected_steps_epoch": data["train"].dataloader.num_batches,
"seen_steps_epoch": batch_count,
}
if averagers is not None and args.log_avg_model_training_loss:
for k in averagers.avgs_dict.keys():
if (
averagers is not None
and args.log_avg_model_training_loss
and (i % args.log_avg_model_training_loss == 0 or batch_count == num_batches_per_epoch)
):
log_data[k + "_loss"] = losses_avg_m[k].avg
if args.log_logit_mean:
log_data["logit_mean"] = logit_m.val
for name, val in log_data.items():
name = "train/" + name
if tb_writer is not None:
tb_writer.add_scalar(name, val, step)
if args.wandb:
assert wandb is not None, "Please install wandb."
wandb.log({name: val, "step": step, "tokens": log_data["tokens"]})
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
forward_time_m.reset()
backward_time_m.reset()
optim_step_time_m.reset()
sync_time_m.reset()
if math.isnan(losses_m.val):
# case where loss goes to nan, we see this sometimes with bad nodes.
# in this case we would like to free resources and prevent other issues
# e.g., saving checkpoints and optmization states that may lead to skipped
# training on restarts.
return False, step
# reset all average meters
losses_m.reset()
if averagers is not None and args.log_avg_model_training_loss:
for k in averagers.avgs_dict.keys():
losses_avg_m[k].reset()
# end for
if tb_writer is not None:
tb_writer.flush()
return True, step