Training in progress, step 390, checkpoint
Browse files- checkpoint-390/README.md +202 -0
- checkpoint-390/adapter_config.json +34 -0
- checkpoint-390/adapter_model.safetensors +3 -0
- checkpoint-390/added_tokens.json +24 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-390/global_step390/mp_rank_00_model_states.pt +3 -0
- checkpoint-390/latest +1 -0
- checkpoint-390/merges.txt +0 -0
- checkpoint-390/rng_state_0.pth +3 -0
- checkpoint-390/rng_state_1.pth +3 -0
- checkpoint-390/rng_state_2.pth +3 -0
- checkpoint-390/rng_state_3.pth +3 -0
- checkpoint-390/rng_state_4.pth +3 -0
- checkpoint-390/rng_state_5.pth +3 -0
- checkpoint-390/rng_state_6.pth +3 -0
- checkpoint-390/rng_state_7.pth +3 -0
- checkpoint-390/scheduler.pt +3 -0
- checkpoint-390/special_tokens_map.json +31 -0
- checkpoint-390/tokenizer.json +3 -0
- checkpoint-390/tokenizer_config.json +207 -0
- checkpoint-390/trainer_state.json +2763 -0
- checkpoint-390/training_args.bin +3 -0
- checkpoint-390/vocab.json +0 -0
- checkpoint-390/zero_to_fp32.py +604 -0
checkpoint-390/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-Coder-7B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
checkpoint-390/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-Coder-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 256,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"k_proj",
|
24 |
+
"v_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"up_proj",
|
27 |
+
"q_proj",
|
28 |
+
"down_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-390/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e55d353f890722b24dcc749c63e5bb000b3e10447a4ed77ffe070d138c97047
|
3 |
+
size 1291899552
|
checkpoint-390/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-390/global_step390/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1a2d9e3a35a00d90ee041a1e23aa784e618e204d48839313bb5cd809ede5b01
|
3 |
+
size 486977360
|
checkpoint-390/global_step390/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6b030a033910635a3580f971be5f0ffb92c7387e27f0b0726f86471323f28cc
|
3 |
+
size 486976656
|
checkpoint-390/global_step390/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0018a43b4a4cc71ed6a0b3b19d57e968f28ce7488ab78b31553d209845a8bc6b
|
3 |
+
size 486977360
|
checkpoint-390/global_step390/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07f66f55921008cac46882572a58e9613791b297c9e85547a720a966f70a5c0f
|
3 |
+
size 486976720
|
checkpoint-390/global_step390/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a3bf79bd2a50f703d15ece3661242b0a992c8a3434c2343b8e3220bffb826b7
|
3 |
+
size 486977424
|
checkpoint-390/global_step390/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29d00f135b4c46de54593ef051ebcbbf8476f5ebb825fbcd417a8b1b44a76db8
|
3 |
+
size 486976720
|
checkpoint-390/global_step390/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e69057af32b0d7c261cecaa1c83b0cc4b4b80409eed8cf0981298bb1c073444f
|
3 |
+
size 486977424
|
checkpoint-390/global_step390/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2903a044fa81dc5c74e1b953bdec8d265321ac5b2a6e2f0f2b7aef5f6cbb8afd
|
3 |
+
size 486976720
|
checkpoint-390/global_step390/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e52cf1f5919a9369e59823ff311c4f29e37bd93726574672338ac034a6b4065
|
3 |
+
size 1292148716
|
checkpoint-390/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step390
|
checkpoint-390/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-390/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df0da5d7893d8985ac0b37f21418371d5f43b31ca998e5ef5d956eb7721e1c4
|
3 |
+
size 15920
|
checkpoint-390/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75b2962821a01989d2355addf71932157eb5745cca131c6ff07c7b38d5515500
|
3 |
+
size 15920
|
checkpoint-390/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bf379ae713e6d57a203769736218565a44b1ed31e2304ede567be3a6b83906a
|
3 |
+
size 15920
|
checkpoint-390/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db1f07e27767707cd34232950584bdff543ea565425a1b4a42506f5d380be936
|
3 |
+
size 15920
|
checkpoint-390/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:470295537efe8f20c574d5654029090e3aba95098e4d0a2f236c6e2d4ed8e317
|
3 |
+
size 15920
|
checkpoint-390/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:458e24735b991cd82987cffff573337faed762cdfedf9e41b7f0b39ea3ffa315
|
3 |
+
size 15920
|
checkpoint-390/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4c6ba64cfdd942048b7c7b1924040b350b930cef352dc92474b01da1ffb2dc3
|
3 |
+
size 15920
|
checkpoint-390/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8d43516d74621a021d9335fcffda1d72d1487aed647bcda64a3e6e8cc21a16e
|
3 |
+
size 15920
|
checkpoint-390/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ffc0e4f845ac15b7e569e192ff922d4c8f2553f7ce35bcf9f33f4a936ce7268
|
3 |
+
size 1064
|
checkpoint-390/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-390/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-390/tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
checkpoint-390/trainer_state.json
ADDED
@@ -0,0 +1,2763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.5006418485237484,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 390,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0012836970474967907,
|
13 |
+
"grad_norm": 0.9255548715591431,
|
14 |
+
"learning_rate": 5.000000000000001e-07,
|
15 |
+
"loss": 2.8985,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0025673940949935813,
|
20 |
+
"grad_norm": 0.7692601680755615,
|
21 |
+
"learning_rate": 1.0000000000000002e-06,
|
22 |
+
"loss": 2.9774,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0038510911424903724,
|
27 |
+
"grad_norm": 0.7884671092033386,
|
28 |
+
"learning_rate": 1.5e-06,
|
29 |
+
"loss": 2.9898,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.005134788189987163,
|
34 |
+
"grad_norm": 0.8319393396377563,
|
35 |
+
"learning_rate": 2.0000000000000003e-06,
|
36 |
+
"loss": 2.9573,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.006418485237483954,
|
41 |
+
"grad_norm": 0.822285532951355,
|
42 |
+
"learning_rate": 2.5e-06,
|
43 |
+
"loss": 2.9316,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.007702182284980745,
|
48 |
+
"grad_norm": 0.7564650774002075,
|
49 |
+
"learning_rate": 3e-06,
|
50 |
+
"loss": 2.9537,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.008985879332477536,
|
55 |
+
"grad_norm": 0.9220781922340393,
|
56 |
+
"learning_rate": 3.5000000000000004e-06,
|
57 |
+
"loss": 2.9826,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010269576379974325,
|
62 |
+
"grad_norm": 0.7977064847946167,
|
63 |
+
"learning_rate": 4.000000000000001e-06,
|
64 |
+
"loss": 2.8548,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.011553273427471117,
|
69 |
+
"grad_norm": 0.6889916658401489,
|
70 |
+
"learning_rate": 4.5e-06,
|
71 |
+
"loss": 2.9936,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.012836970474967908,
|
76 |
+
"grad_norm": 0.9777728915214539,
|
77 |
+
"learning_rate": 5e-06,
|
78 |
+
"loss": 2.9578,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014120667522464698,
|
83 |
+
"grad_norm": 0.8187949061393738,
|
84 |
+
"learning_rate": 5.500000000000001e-06,
|
85 |
+
"loss": 2.9442,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01540436456996149,
|
90 |
+
"grad_norm": 0.7016908526420593,
|
91 |
+
"learning_rate": 6e-06,
|
92 |
+
"loss": 2.9299,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.01668806161745828,
|
97 |
+
"grad_norm": 0.6974747180938721,
|
98 |
+
"learning_rate": 6.5000000000000004e-06,
|
99 |
+
"loss": 2.9699,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.01797175866495507,
|
104 |
+
"grad_norm": 0.8423139452934265,
|
105 |
+
"learning_rate": 7.000000000000001e-06,
|
106 |
+
"loss": 2.8706,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.019255455712451863,
|
111 |
+
"grad_norm": 0.8017705082893372,
|
112 |
+
"learning_rate": 7.5e-06,
|
113 |
+
"loss": 2.8443,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.02053915275994865,
|
118 |
+
"grad_norm": 0.9362208247184753,
|
119 |
+
"learning_rate": 8.000000000000001e-06,
|
120 |
+
"loss": 2.872,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.021822849807445442,
|
125 |
+
"grad_norm": 1.013128638267517,
|
126 |
+
"learning_rate": 8.500000000000002e-06,
|
127 |
+
"loss": 2.797,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.023106546854942234,
|
132 |
+
"grad_norm": 1.255325436592102,
|
133 |
+
"learning_rate": 9e-06,
|
134 |
+
"loss": 2.8109,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.024390243902439025,
|
139 |
+
"grad_norm": 1.1081339120864868,
|
140 |
+
"learning_rate": 9.5e-06,
|
141 |
+
"loss": 2.6742,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.025673940949935817,
|
146 |
+
"grad_norm": 0.8878622651100159,
|
147 |
+
"learning_rate": 1e-05,
|
148 |
+
"loss": 2.7251,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.026957637997432605,
|
153 |
+
"grad_norm": 0.894791305065155,
|
154 |
+
"learning_rate": 1.05e-05,
|
155 |
+
"loss": 2.7127,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.028241335044929396,
|
160 |
+
"grad_norm": 0.6742448806762695,
|
161 |
+
"learning_rate": 1.1000000000000001e-05,
|
162 |
+
"loss": 2.6842,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.029525032092426188,
|
167 |
+
"grad_norm": 0.6250098943710327,
|
168 |
+
"learning_rate": 1.1500000000000002e-05,
|
169 |
+
"loss": 2.6476,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.03080872913992298,
|
174 |
+
"grad_norm": 0.6331678032875061,
|
175 |
+
"learning_rate": 1.2e-05,
|
176 |
+
"loss": 2.6339,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.03209242618741977,
|
181 |
+
"grad_norm": 0.4726584255695343,
|
182 |
+
"learning_rate": 1.25e-05,
|
183 |
+
"loss": 2.5994,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.03337612323491656,
|
188 |
+
"grad_norm": 0.46077489852905273,
|
189 |
+
"learning_rate": 1.3000000000000001e-05,
|
190 |
+
"loss": 2.5545,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.03465982028241335,
|
195 |
+
"grad_norm": 0.5746111273765564,
|
196 |
+
"learning_rate": 1.3500000000000001e-05,
|
197 |
+
"loss": 2.5542,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.03594351732991014,
|
202 |
+
"grad_norm": 0.47136253118515015,
|
203 |
+
"learning_rate": 1.4000000000000001e-05,
|
204 |
+
"loss": 2.6138,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.037227214377406934,
|
209 |
+
"grad_norm": 0.5951219797134399,
|
210 |
+
"learning_rate": 1.45e-05,
|
211 |
+
"loss": 2.5941,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.038510911424903725,
|
216 |
+
"grad_norm": 0.48593708872795105,
|
217 |
+
"learning_rate": 1.5e-05,
|
218 |
+
"loss": 2.5751,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03979460847240052,
|
223 |
+
"grad_norm": 0.482264906167984,
|
224 |
+
"learning_rate": 1.55e-05,
|
225 |
+
"loss": 2.5689,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.0410783055198973,
|
230 |
+
"grad_norm": 0.4937015175819397,
|
231 |
+
"learning_rate": 1.6000000000000003e-05,
|
232 |
+
"loss": 2.5559,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04236200256739409,
|
237 |
+
"grad_norm": 0.5136978030204773,
|
238 |
+
"learning_rate": 1.65e-05,
|
239 |
+
"loss": 2.5274,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.043645699614890884,
|
244 |
+
"grad_norm": 0.40434661507606506,
|
245 |
+
"learning_rate": 1.7000000000000003e-05,
|
246 |
+
"loss": 2.4391,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.044929396662387676,
|
251 |
+
"grad_norm": 0.49542951583862305,
|
252 |
+
"learning_rate": 1.75e-05,
|
253 |
+
"loss": 2.5738,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.04621309370988447,
|
258 |
+
"grad_norm": 0.4381186366081238,
|
259 |
+
"learning_rate": 1.8e-05,
|
260 |
+
"loss": 2.5095,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04749679075738126,
|
265 |
+
"grad_norm": 0.486103892326355,
|
266 |
+
"learning_rate": 1.85e-05,
|
267 |
+
"loss": 2.6173,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.04878048780487805,
|
272 |
+
"grad_norm": 0.4313197135925293,
|
273 |
+
"learning_rate": 1.9e-05,
|
274 |
+
"loss": 2.4951,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05006418485237484,
|
279 |
+
"grad_norm": 0.4211004078388214,
|
280 |
+
"learning_rate": 1.9500000000000003e-05,
|
281 |
+
"loss": 2.5469,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.051347881899871634,
|
286 |
+
"grad_norm": 0.44780072569847107,
|
287 |
+
"learning_rate": 2e-05,
|
288 |
+
"loss": 2.4437,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.05263157894736842,
|
293 |
+
"grad_norm": 0.44611668586730957,
|
294 |
+
"learning_rate": 2.05e-05,
|
295 |
+
"loss": 2.4795,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05391527599486521,
|
300 |
+
"grad_norm": 0.4598286747932434,
|
301 |
+
"learning_rate": 2.1e-05,
|
302 |
+
"loss": 2.4786,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.055198973042362,
|
307 |
+
"grad_norm": 0.4416978061199188,
|
308 |
+
"learning_rate": 2.15e-05,
|
309 |
+
"loss": 2.453,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.05648267008985879,
|
314 |
+
"grad_norm": 0.4136359989643097,
|
315 |
+
"learning_rate": 2.2000000000000003e-05,
|
316 |
+
"loss": 2.4975,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.057766367137355584,
|
321 |
+
"grad_norm": 0.44032955169677734,
|
322 |
+
"learning_rate": 2.25e-05,
|
323 |
+
"loss": 2.411,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.059050064184852376,
|
328 |
+
"grad_norm": 0.49505728483200073,
|
329 |
+
"learning_rate": 2.3000000000000003e-05,
|
330 |
+
"loss": 2.5049,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06033376123234917,
|
335 |
+
"grad_norm": 0.43698814511299133,
|
336 |
+
"learning_rate": 2.35e-05,
|
337 |
+
"loss": 2.5828,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.06161745827984596,
|
342 |
+
"grad_norm": 0.44550350308418274,
|
343 |
+
"learning_rate": 2.4e-05,
|
344 |
+
"loss": 2.4326,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.06290115532734275,
|
349 |
+
"grad_norm": 0.38959425687789917,
|
350 |
+
"learning_rate": 2.45e-05,
|
351 |
+
"loss": 2.4684,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.06418485237483953,
|
356 |
+
"grad_norm": 0.4324244260787964,
|
357 |
+
"learning_rate": 2.5e-05,
|
358 |
+
"loss": 2.4496,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.06546854942233633,
|
363 |
+
"grad_norm": 0.4213118553161621,
|
364 |
+
"learning_rate": 2.5500000000000003e-05,
|
365 |
+
"loss": 2.4742,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06675224646983312,
|
370 |
+
"grad_norm": 0.5279268622398376,
|
371 |
+
"learning_rate": 2.6000000000000002e-05,
|
372 |
+
"loss": 2.4222,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.06803594351732992,
|
377 |
+
"grad_norm": 0.40476322174072266,
|
378 |
+
"learning_rate": 2.6500000000000004e-05,
|
379 |
+
"loss": 2.4224,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.0693196405648267,
|
384 |
+
"grad_norm": 0.6938806176185608,
|
385 |
+
"learning_rate": 2.7000000000000002e-05,
|
386 |
+
"loss": 2.4194,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.07060333761232349,
|
391 |
+
"grad_norm": 0.43899399042129517,
|
392 |
+
"learning_rate": 2.7500000000000004e-05,
|
393 |
+
"loss": 2.4288,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.07188703465982028,
|
398 |
+
"grad_norm": 0.3968575596809387,
|
399 |
+
"learning_rate": 2.8000000000000003e-05,
|
400 |
+
"loss": 2.3968,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.07317073170731707,
|
405 |
+
"grad_norm": 0.6113290786743164,
|
406 |
+
"learning_rate": 2.8499999999999998e-05,
|
407 |
+
"loss": 2.3924,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.07445442875481387,
|
412 |
+
"grad_norm": 0.35704493522644043,
|
413 |
+
"learning_rate": 2.9e-05,
|
414 |
+
"loss": 2.4004,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07573812580231065,
|
419 |
+
"grad_norm": 0.3809000551700592,
|
420 |
+
"learning_rate": 2.95e-05,
|
421 |
+
"loss": 2.4303,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.07702182284980745,
|
426 |
+
"grad_norm": 0.4394189715385437,
|
427 |
+
"learning_rate": 3e-05,
|
428 |
+
"loss": 2.4716,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.07830551989730423,
|
433 |
+
"grad_norm": 0.4325893521308899,
|
434 |
+
"learning_rate": 3.05e-05,
|
435 |
+
"loss": 2.4715,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.07958921694480103,
|
440 |
+
"grad_norm": 0.3560517728328705,
|
441 |
+
"learning_rate": 3.1e-05,
|
442 |
+
"loss": 2.4745,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.08087291399229782,
|
447 |
+
"grad_norm": 0.37922918796539307,
|
448 |
+
"learning_rate": 3.15e-05,
|
449 |
+
"loss": 2.4789,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.0821566110397946,
|
454 |
+
"grad_norm": 0.3665093779563904,
|
455 |
+
"learning_rate": 3.2000000000000005e-05,
|
456 |
+
"loss": 2.4829,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.0834403080872914,
|
461 |
+
"grad_norm": 0.38106483221054077,
|
462 |
+
"learning_rate": 3.2500000000000004e-05,
|
463 |
+
"loss": 2.4203,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08472400513478819,
|
468 |
+
"grad_norm": 0.5111002326011658,
|
469 |
+
"learning_rate": 3.3e-05,
|
470 |
+
"loss": 2.3302,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.08600770218228498,
|
475 |
+
"grad_norm": 0.37738922238349915,
|
476 |
+
"learning_rate": 3.35e-05,
|
477 |
+
"loss": 2.4991,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.08729139922978177,
|
482 |
+
"grad_norm": 0.34703031182289124,
|
483 |
+
"learning_rate": 3.4000000000000007e-05,
|
484 |
+
"loss": 2.4224,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.08857509627727857,
|
489 |
+
"grad_norm": 0.48427700996398926,
|
490 |
+
"learning_rate": 3.45e-05,
|
491 |
+
"loss": 2.3946,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.08985879332477535,
|
496 |
+
"grad_norm": 0.360221266746521,
|
497 |
+
"learning_rate": 3.5e-05,
|
498 |
+
"loss": 2.4853,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.09114249037227215,
|
503 |
+
"grad_norm": 0.4006412625312805,
|
504 |
+
"learning_rate": 3.55e-05,
|
505 |
+
"loss": 2.4654,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.09242618741976893,
|
510 |
+
"grad_norm": 0.3662618398666382,
|
511 |
+
"learning_rate": 3.6e-05,
|
512 |
+
"loss": 2.434,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.09370988446726572,
|
517 |
+
"grad_norm": 0.3694933354854584,
|
518 |
+
"learning_rate": 3.65e-05,
|
519 |
+
"loss": 2.4194,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.09499358151476252,
|
524 |
+
"grad_norm": 0.34268808364868164,
|
525 |
+
"learning_rate": 3.7e-05,
|
526 |
+
"loss": 2.4922,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.0962772785622593,
|
531 |
+
"grad_norm": 0.3664718270301819,
|
532 |
+
"learning_rate": 3.7500000000000003e-05,
|
533 |
+
"loss": 2.4083,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.0975609756097561,
|
538 |
+
"grad_norm": 0.3909706473350525,
|
539 |
+
"learning_rate": 3.8e-05,
|
540 |
+
"loss": 2.4546,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.09884467265725289,
|
545 |
+
"grad_norm": 0.36276674270629883,
|
546 |
+
"learning_rate": 3.85e-05,
|
547 |
+
"loss": 2.5313,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.10012836970474968,
|
552 |
+
"grad_norm": 0.34822535514831543,
|
553 |
+
"learning_rate": 3.9000000000000006e-05,
|
554 |
+
"loss": 2.4833,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.10141206675224647,
|
559 |
+
"grad_norm": 0.37480583786964417,
|
560 |
+
"learning_rate": 3.9500000000000005e-05,
|
561 |
+
"loss": 2.449,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.10269576379974327,
|
566 |
+
"grad_norm": 0.3415388762950897,
|
567 |
+
"learning_rate": 4e-05,
|
568 |
+
"loss": 2.3953,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.10397946084724005,
|
573 |
+
"grad_norm": 0.3487205505371094,
|
574 |
+
"learning_rate": 4.05e-05,
|
575 |
+
"loss": 2.4469,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.10526315789473684,
|
580 |
+
"grad_norm": 0.5083756446838379,
|
581 |
+
"learning_rate": 4.1e-05,
|
582 |
+
"loss": 2.3423,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.10654685494223363,
|
587 |
+
"grad_norm": 0.3747817575931549,
|
588 |
+
"learning_rate": 4.15e-05,
|
589 |
+
"loss": 2.3919,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.10783055198973042,
|
594 |
+
"grad_norm": 0.39472389221191406,
|
595 |
+
"learning_rate": 4.2e-05,
|
596 |
+
"loss": 2.5431,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.10911424903722722,
|
601 |
+
"grad_norm": 0.36542952060699463,
|
602 |
+
"learning_rate": 4.25e-05,
|
603 |
+
"loss": 2.3858,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.110397946084724,
|
608 |
+
"grad_norm": 0.34629878401756287,
|
609 |
+
"learning_rate": 4.3e-05,
|
610 |
+
"loss": 2.3528,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.1116816431322208,
|
615 |
+
"grad_norm": 0.36755290627479553,
|
616 |
+
"learning_rate": 4.35e-05,
|
617 |
+
"loss": 2.5329,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.11296534017971759,
|
622 |
+
"grad_norm": 0.3599033057689667,
|
623 |
+
"learning_rate": 4.4000000000000006e-05,
|
624 |
+
"loss": 2.4971,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.11424903722721438,
|
629 |
+
"grad_norm": 0.3730204701423645,
|
630 |
+
"learning_rate": 4.4500000000000004e-05,
|
631 |
+
"loss": 2.4082,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.11553273427471117,
|
636 |
+
"grad_norm": 0.3773551881313324,
|
637 |
+
"learning_rate": 4.5e-05,
|
638 |
+
"loss": 2.3393,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.11681643132220795,
|
643 |
+
"grad_norm": 0.36052408814430237,
|
644 |
+
"learning_rate": 4.55e-05,
|
645 |
+
"loss": 2.3799,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.11810012836970475,
|
650 |
+
"grad_norm": 0.32685768604278564,
|
651 |
+
"learning_rate": 4.600000000000001e-05,
|
652 |
+
"loss": 2.4284,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.11938382541720154,
|
657 |
+
"grad_norm": 0.36063292622566223,
|
658 |
+
"learning_rate": 4.6500000000000005e-05,
|
659 |
+
"loss": 2.3903,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.12066752246469833,
|
664 |
+
"grad_norm": 0.3656150698661804,
|
665 |
+
"learning_rate": 4.7e-05,
|
666 |
+
"loss": 2.4378,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.12195121951219512,
|
671 |
+
"grad_norm": 0.3563483655452728,
|
672 |
+
"learning_rate": 4.75e-05,
|
673 |
+
"loss": 2.4082,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.12323491655969192,
|
678 |
+
"grad_norm": 0.35744163393974304,
|
679 |
+
"learning_rate": 4.8e-05,
|
680 |
+
"loss": 2.3979,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.1245186136071887,
|
685 |
+
"grad_norm": 0.3400294780731201,
|
686 |
+
"learning_rate": 4.85e-05,
|
687 |
+
"loss": 2.4419,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.1258023106546855,
|
692 |
+
"grad_norm": 0.3691268265247345,
|
693 |
+
"learning_rate": 4.9e-05,
|
694 |
+
"loss": 2.4671,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.12708600770218229,
|
699 |
+
"grad_norm": 0.3483717739582062,
|
700 |
+
"learning_rate": 4.9500000000000004e-05,
|
701 |
+
"loss": 2.3947,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.12836970474967907,
|
706 |
+
"grad_norm": 0.3494178354740143,
|
707 |
+
"learning_rate": 5e-05,
|
708 |
+
"loss": 2.4063,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.12965340179717585,
|
713 |
+
"grad_norm": 0.3814634680747986,
|
714 |
+
"learning_rate": 4.9999986437272225e-05,
|
715 |
+
"loss": 2.4832,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.13093709884467267,
|
720 |
+
"grad_norm": 0.378907710313797,
|
721 |
+
"learning_rate": 4.999994574910364e-05,
|
722 |
+
"loss": 2.3272,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.13222079589216945,
|
727 |
+
"grad_norm": 0.3730032444000244,
|
728 |
+
"learning_rate": 4.999987793553836e-05,
|
729 |
+
"loss": 2.3965,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.13350449293966624,
|
734 |
+
"grad_norm": 0.3670955002307892,
|
735 |
+
"learning_rate": 4.9999782996649994e-05,
|
736 |
+
"loss": 2.4565,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.13478818998716302,
|
741 |
+
"grad_norm": 0.36450427770614624,
|
742 |
+
"learning_rate": 4.999966093254153e-05,
|
743 |
+
"loss": 2.5079,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.13607188703465983,
|
748 |
+
"grad_norm": 0.38658779859542847,
|
749 |
+
"learning_rate": 4.9999511743345426e-05,
|
750 |
+
"loss": 2.4775,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.13735558408215662,
|
755 |
+
"grad_norm": 0.33551573753356934,
|
756 |
+
"learning_rate": 4.999933542922354e-05,
|
757 |
+
"loss": 2.461,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.1386392811296534,
|
762 |
+
"grad_norm": 0.3854399025440216,
|
763 |
+
"learning_rate": 4.999913199036719e-05,
|
764 |
+
"loss": 2.4075,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.1399229781771502,
|
769 |
+
"grad_norm": 0.3932352364063263,
|
770 |
+
"learning_rate": 4.9998901426997104e-05,
|
771 |
+
"loss": 2.4311,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.14120667522464697,
|
776 |
+
"grad_norm": 0.3379668593406677,
|
777 |
+
"learning_rate": 4.999864373936345e-05,
|
778 |
+
"loss": 2.5016,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.14249037227214378,
|
783 |
+
"grad_norm": 0.32840296626091003,
|
784 |
+
"learning_rate": 4.9998358927745826e-05,
|
785 |
+
"loss": 2.3176,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.14377406931964057,
|
790 |
+
"grad_norm": 0.3191027343273163,
|
791 |
+
"learning_rate": 4.999804699245325e-05,
|
792 |
+
"loss": 2.4007,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.14505776636713735,
|
797 |
+
"grad_norm": 0.3358600437641144,
|
798 |
+
"learning_rate": 4.999770793382418e-05,
|
799 |
+
"loss": 2.3724,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.14634146341463414,
|
804 |
+
"grad_norm": 0.335860937833786,
|
805 |
+
"learning_rate": 4.99973417522265e-05,
|
806 |
+
"loss": 2.3479,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.14762516046213095,
|
811 |
+
"grad_norm": 0.34540730714797974,
|
812 |
+
"learning_rate": 4.999694844805753e-05,
|
813 |
+
"loss": 2.3675,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.14890885750962773,
|
818 |
+
"grad_norm": 0.3298475742340088,
|
819 |
+
"learning_rate": 4.999652802174402e-05,
|
820 |
+
"loss": 2.3948,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.15019255455712452,
|
825 |
+
"grad_norm": 0.3612127900123596,
|
826 |
+
"learning_rate": 4.999608047374211e-05,
|
827 |
+
"loss": 2.3855,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.1514762516046213,
|
832 |
+
"grad_norm": 0.4185655415058136,
|
833 |
+
"learning_rate": 4.9995605804537426e-05,
|
834 |
+
"loss": 2.4015,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.1527599486521181,
|
839 |
+
"grad_norm": 0.3759553134441376,
|
840 |
+
"learning_rate": 4.9995104014644986e-05,
|
841 |
+
"loss": 2.4483,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.1540436456996149,
|
846 |
+
"grad_norm": 0.35989564657211304,
|
847 |
+
"learning_rate": 4.999457510460923e-05,
|
848 |
+
"loss": 2.4974,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.15532734274711169,
|
853 |
+
"grad_norm": 0.3161202073097229,
|
854 |
+
"learning_rate": 4.999401907500405e-05,
|
855 |
+
"loss": 2.3712,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.15661103979460847,
|
860 |
+
"grad_norm": 0.3105814456939697,
|
861 |
+
"learning_rate": 4.999343592643274e-05,
|
862 |
+
"loss": 2.4311,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.15789473684210525,
|
867 |
+
"grad_norm": 0.3236968517303467,
|
868 |
+
"learning_rate": 4.9992825659528024e-05,
|
869 |
+
"loss": 2.5536,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.15917843388960207,
|
874 |
+
"grad_norm": 0.3107609748840332,
|
875 |
+
"learning_rate": 4.9992188274952064e-05,
|
876 |
+
"loss": 2.3922,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.16046213093709885,
|
881 |
+
"grad_norm": 0.39889928698539734,
|
882 |
+
"learning_rate": 4.999152377339642e-05,
|
883 |
+
"loss": 2.3488,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.16174582798459564,
|
888 |
+
"grad_norm": 0.379323273897171,
|
889 |
+
"learning_rate": 4.99908321555821e-05,
|
890 |
+
"loss": 2.5278,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.16302952503209242,
|
895 |
+
"grad_norm": 0.35020819306373596,
|
896 |
+
"learning_rate": 4.999011342225952e-05,
|
897 |
+
"loss": 2.3139,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.1643132220795892,
|
902 |
+
"grad_norm": 0.34851884841918945,
|
903 |
+
"learning_rate": 4.998936757420851e-05,
|
904 |
+
"loss": 2.3495,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.16559691912708602,
|
909 |
+
"grad_norm": 0.3453572392463684,
|
910 |
+
"learning_rate": 4.9988594612238336e-05,
|
911 |
+
"loss": 2.4128,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.1668806161745828,
|
916 |
+
"grad_norm": 0.34227538108825684,
|
917 |
+
"learning_rate": 4.998779453718768e-05,
|
918 |
+
"loss": 2.3419,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.1681643132220796,
|
923 |
+
"grad_norm": 0.3947238028049469,
|
924 |
+
"learning_rate": 4.998696734992462e-05,
|
925 |
+
"loss": 2.3941,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.16944801026957637,
|
930 |
+
"grad_norm": 0.306533545255661,
|
931 |
+
"learning_rate": 4.998611305134669e-05,
|
932 |
+
"loss": 2.4645,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.17073170731707318,
|
937 |
+
"grad_norm": 0.35172709822654724,
|
938 |
+
"learning_rate": 4.998523164238082e-05,
|
939 |
+
"loss": 2.4407,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.17201540436456997,
|
944 |
+
"grad_norm": 0.34511688351631165,
|
945 |
+
"learning_rate": 4.9984323123983334e-05,
|
946 |
+
"loss": 2.3815,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.17329910141206675,
|
951 |
+
"grad_norm": 0.33132505416870117,
|
952 |
+
"learning_rate": 4.9983387497140006e-05,
|
953 |
+
"loss": 2.3548,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.17458279845956354,
|
958 |
+
"grad_norm": 0.32891082763671875,
|
959 |
+
"learning_rate": 4.998242476286601e-05,
|
960 |
+
"loss": 2.5308,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.17586649550706032,
|
965 |
+
"grad_norm": 0.331152081489563,
|
966 |
+
"learning_rate": 4.998143492220592e-05,
|
967 |
+
"loss": 2.3858,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.17715019255455713,
|
972 |
+
"grad_norm": 0.31813687086105347,
|
973 |
+
"learning_rate": 4.9980417976233735e-05,
|
974 |
+
"loss": 2.3136,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.17843388960205392,
|
979 |
+
"grad_norm": 0.3268696069717407,
|
980 |
+
"learning_rate": 4.9979373926052865e-05,
|
981 |
+
"loss": 2.3133,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.1797175866495507,
|
986 |
+
"grad_norm": 0.3389696180820465,
|
987 |
+
"learning_rate": 4.997830277279612e-05,
|
988 |
+
"loss": 2.3983,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.1810012836970475,
|
993 |
+
"grad_norm": 0.3515508770942688,
|
994 |
+
"learning_rate": 4.997720451762572e-05,
|
995 |
+
"loss": 2.4848,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.1822849807445443,
|
1000 |
+
"grad_norm": 0.3302924335002899,
|
1001 |
+
"learning_rate": 4.997607916173329e-05,
|
1002 |
+
"loss": 2.3037,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.18356867779204109,
|
1007 |
+
"grad_norm": 0.3332863450050354,
|
1008 |
+
"learning_rate": 4.997492670633987e-05,
|
1009 |
+
"loss": 2.3563,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.18485237483953787,
|
1014 |
+
"grad_norm": 0.3398495614528656,
|
1015 |
+
"learning_rate": 4.997374715269589e-05,
|
1016 |
+
"loss": 2.4056,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.18613607188703465,
|
1021 |
+
"grad_norm": 0.3376169502735138,
|
1022 |
+
"learning_rate": 4.9972540502081184e-05,
|
1023 |
+
"loss": 2.3751,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.18741976893453144,
|
1028 |
+
"grad_norm": 0.33639830350875854,
|
1029 |
+
"learning_rate": 4.9971306755804995e-05,
|
1030 |
+
"loss": 2.432,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.18870346598202825,
|
1035 |
+
"grad_norm": 0.410265177488327,
|
1036 |
+
"learning_rate": 4.9970045915205954e-05,
|
1037 |
+
"loss": 2.3647,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.18998716302952504,
|
1042 |
+
"grad_norm": 0.31853362917900085,
|
1043 |
+
"learning_rate": 4.99687579816521e-05,
|
1044 |
+
"loss": 2.4224,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.19127086007702182,
|
1049 |
+
"grad_norm": 0.3495614230632782,
|
1050 |
+
"learning_rate": 4.9967442956540863e-05,
|
1051 |
+
"loss": 2.3961,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.1925545571245186,
|
1056 |
+
"grad_norm": 0.33301132917404175,
|
1057 |
+
"learning_rate": 4.996610084129908e-05,
|
1058 |
+
"loss": 2.359,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.19383825417201542,
|
1063 |
+
"grad_norm": 0.3186255395412445,
|
1064 |
+
"learning_rate": 4.996473163738295e-05,
|
1065 |
+
"loss": 2.4488,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.1951219512195122,
|
1070 |
+
"grad_norm": 0.3374113142490387,
|
1071 |
+
"learning_rate": 4.996333534627809e-05,
|
1072 |
+
"loss": 2.4019,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.196405648267009,
|
1077 |
+
"grad_norm": 0.33905014395713806,
|
1078 |
+
"learning_rate": 4.996191196949952e-05,
|
1079 |
+
"loss": 2.3272,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.19768934531450577,
|
1084 |
+
"grad_norm": 0.3546963036060333,
|
1085 |
+
"learning_rate": 4.996046150859161e-05,
|
1086 |
+
"loss": 2.4338,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.19897304236200256,
|
1091 |
+
"grad_norm": 0.35965755581855774,
|
1092 |
+
"learning_rate": 4.9958983965128145e-05,
|
1093 |
+
"loss": 2.3634,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.20025673940949937,
|
1098 |
+
"grad_norm": 0.3362196385860443,
|
1099 |
+
"learning_rate": 4.995747934071229e-05,
|
1100 |
+
"loss": 2.4457,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.20154043645699615,
|
1105 |
+
"grad_norm": 0.37214434146881104,
|
1106 |
+
"learning_rate": 4.995594763697657e-05,
|
1107 |
+
"loss": 2.3714,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.20282413350449294,
|
1112 |
+
"grad_norm": 0.3538600206375122,
|
1113 |
+
"learning_rate": 4.995438885558294e-05,
|
1114 |
+
"loss": 2.4338,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.20410783055198972,
|
1119 |
+
"grad_norm": 0.3853035569190979,
|
1120 |
+
"learning_rate": 4.995280299822268e-05,
|
1121 |
+
"loss": 2.4036,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.20539152759948653,
|
1126 |
+
"grad_norm": 0.35037294030189514,
|
1127 |
+
"learning_rate": 4.9951190066616495e-05,
|
1128 |
+
"loss": 2.3846,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.20667522464698332,
|
1133 |
+
"grad_norm": 0.3986567556858063,
|
1134 |
+
"learning_rate": 4.994955006251443e-05,
|
1135 |
+
"loss": 2.4405,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.2079589216944801,
|
1140 |
+
"grad_norm": 0.385637491941452,
|
1141 |
+
"learning_rate": 4.994788298769593e-05,
|
1142 |
+
"loss": 2.3237,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.2092426187419769,
|
1147 |
+
"grad_norm": 0.34437429904937744,
|
1148 |
+
"learning_rate": 4.994618884396979e-05,
|
1149 |
+
"loss": 2.3477,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.21052631578947367,
|
1154 |
+
"grad_norm": 0.34156107902526855,
|
1155 |
+
"learning_rate": 4.99444676331742e-05,
|
1156 |
+
"loss": 2.3576,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.21181001283697048,
|
1161 |
+
"grad_norm": 0.33888015151023865,
|
1162 |
+
"learning_rate": 4.99427193571767e-05,
|
1163 |
+
"loss": 2.311,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.21309370988446727,
|
1168 |
+
"grad_norm": 0.34711146354675293,
|
1169 |
+
"learning_rate": 4.99409440178742e-05,
|
1170 |
+
"loss": 2.293,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.21437740693196405,
|
1175 |
+
"grad_norm": 0.30586686730384827,
|
1176 |
+
"learning_rate": 4.993914161719297e-05,
|
1177 |
+
"loss": 2.479,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.21566110397946084,
|
1182 |
+
"grad_norm": 0.4145469069480896,
|
1183 |
+
"learning_rate": 4.993731215708866e-05,
|
1184 |
+
"loss": 2.2754,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.21694480102695765,
|
1189 |
+
"grad_norm": 0.6243994235992432,
|
1190 |
+
"learning_rate": 4.993545563954626e-05,
|
1191 |
+
"loss": 2.3751,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.21822849807445444,
|
1196 |
+
"grad_norm": 0.3301653265953064,
|
1197 |
+
"learning_rate": 4.993357206658011e-05,
|
1198 |
+
"loss": 2.6124,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.21951219512195122,
|
1203 |
+
"grad_norm": 0.337147980928421,
|
1204 |
+
"learning_rate": 4.993166144023396e-05,
|
1205 |
+
"loss": 2.3946,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.220795892169448,
|
1210 |
+
"grad_norm": 0.3796294033527374,
|
1211 |
+
"learning_rate": 4.9929723762580835e-05,
|
1212 |
+
"loss": 2.3314,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.2220795892169448,
|
1217 |
+
"grad_norm": 0.4021480679512024,
|
1218 |
+
"learning_rate": 4.9927759035723175e-05,
|
1219 |
+
"loss": 2.3035,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.2233632862644416,
|
1224 |
+
"grad_norm": 0.3196207582950592,
|
1225 |
+
"learning_rate": 4.992576726179274e-05,
|
1226 |
+
"loss": 2.4047,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.2246469833119384,
|
1231 |
+
"grad_norm": 0.31279096007347107,
|
1232 |
+
"learning_rate": 4.992374844295064e-05,
|
1233 |
+
"loss": 2.4409,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.22593068035943517,
|
1238 |
+
"grad_norm": 0.3068607747554779,
|
1239 |
+
"learning_rate": 4.992170258138732e-05,
|
1240 |
+
"loss": 2.4109,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.22721437740693196,
|
1245 |
+
"grad_norm": 0.35363098978996277,
|
1246 |
+
"learning_rate": 4.991962967932258e-05,
|
1247 |
+
"loss": 2.4083,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.22849807445442877,
|
1252 |
+
"grad_norm": 0.33908936381340027,
|
1253 |
+
"learning_rate": 4.9917529739005574e-05,
|
1254 |
+
"loss": 2.4129,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.22978177150192555,
|
1259 |
+
"grad_norm": 0.32510805130004883,
|
1260 |
+
"learning_rate": 4.991540276271476e-05,
|
1261 |
+
"loss": 2.3163,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.23106546854942234,
|
1266 |
+
"grad_norm": 0.32639047503471375,
|
1267 |
+
"learning_rate": 4.991324875275794e-05,
|
1268 |
+
"loss": 2.3567,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.23234916559691912,
|
1273 |
+
"grad_norm": 0.3410406708717346,
|
1274 |
+
"learning_rate": 4.991106771147227e-05,
|
1275 |
+
"loss": 2.4137,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.2336328626444159,
|
1280 |
+
"grad_norm": 0.3334997892379761,
|
1281 |
+
"learning_rate": 4.990885964122421e-05,
|
1282 |
+
"loss": 2.3994,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.23491655969191272,
|
1287 |
+
"grad_norm": 0.3203848600387573,
|
1288 |
+
"learning_rate": 4.990662454440956e-05,
|
1289 |
+
"loss": 2.4259,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.2362002567394095,
|
1294 |
+
"grad_norm": 0.34999069571495056,
|
1295 |
+
"learning_rate": 4.9904362423453446e-05,
|
1296 |
+
"loss": 2.413,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.2374839537869063,
|
1301 |
+
"grad_norm": 0.3413456678390503,
|
1302 |
+
"learning_rate": 4.990207328081029e-05,
|
1303 |
+
"loss": 2.3749,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.23876765083440307,
|
1308 |
+
"grad_norm": 0.3702191114425659,
|
1309 |
+
"learning_rate": 4.989975711896388e-05,
|
1310 |
+
"loss": 2.4309,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.24005134788189988,
|
1315 |
+
"grad_norm": 0.3365226089954376,
|
1316 |
+
"learning_rate": 4.989741394042727e-05,
|
1317 |
+
"loss": 2.3708,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.24133504492939667,
|
1322 |
+
"grad_norm": 0.36596447229385376,
|
1323 |
+
"learning_rate": 4.989504374774288e-05,
|
1324 |
+
"loss": 2.4387,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.24261874197689345,
|
1329 |
+
"grad_norm": 0.3280293941497803,
|
1330 |
+
"learning_rate": 4.9892646543482377e-05,
|
1331 |
+
"loss": 2.498,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.24390243902439024,
|
1336 |
+
"grad_norm": 0.35989147424697876,
|
1337 |
+
"learning_rate": 4.989022233024681e-05,
|
1338 |
+
"loss": 2.4993,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.24518613607188702,
|
1343 |
+
"grad_norm": 0.3124522268772125,
|
1344 |
+
"learning_rate": 4.988777111066646e-05,
|
1345 |
+
"loss": 2.3186,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.24646983311938384,
|
1350 |
+
"grad_norm": 0.32323285937309265,
|
1351 |
+
"learning_rate": 4.988529288740096e-05,
|
1352 |
+
"loss": 2.3859,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.24775353016688062,
|
1357 |
+
"grad_norm": 0.33156561851501465,
|
1358 |
+
"learning_rate": 4.988278766313922e-05,
|
1359 |
+
"loss": 2.3271,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.2490372272143774,
|
1364 |
+
"grad_norm": 0.32494014501571655,
|
1365 |
+
"learning_rate": 4.9880255440599476e-05,
|
1366 |
+
"loss": 2.4023,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.2503209242618742,
|
1371 |
+
"grad_norm": 0.3906209468841553,
|
1372 |
+
"learning_rate": 4.987769622252921e-05,
|
1373 |
+
"loss": 2.4245,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.251604621309371,
|
1378 |
+
"grad_norm": 0.3735322952270508,
|
1379 |
+
"learning_rate": 4.987511001170523e-05,
|
1380 |
+
"loss": 2.4883,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.25288831835686776,
|
1385 |
+
"grad_norm": 0.30935361981391907,
|
1386 |
+
"learning_rate": 4.987249681093362e-05,
|
1387 |
+
"loss": 2.5118,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.25417201540436457,
|
1392 |
+
"grad_norm": 0.34933099150657654,
|
1393 |
+
"learning_rate": 4.986985662304976e-05,
|
1394 |
+
"loss": 2.3138,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.2554557124518614,
|
1399 |
+
"grad_norm": 0.3328215777873993,
|
1400 |
+
"learning_rate": 4.9867189450918294e-05,
|
1401 |
+
"loss": 2.4475,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.25673940949935814,
|
1406 |
+
"grad_norm": 0.3271300494670868,
|
1407 |
+
"learning_rate": 4.986449529743314e-05,
|
1408 |
+
"loss": 2.4156,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.25802310654685495,
|
1413 |
+
"grad_norm": 0.296889990568161,
|
1414 |
+
"learning_rate": 4.9861774165517536e-05,
|
1415 |
+
"loss": 2.4117,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.2593068035943517,
|
1420 |
+
"grad_norm": 0.31897205114364624,
|
1421 |
+
"learning_rate": 4.9859026058123925e-05,
|
1422 |
+
"loss": 2.4637,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.2605905006418485,
|
1427 |
+
"grad_norm": 0.320688933134079,
|
1428 |
+
"learning_rate": 4.985625097823408e-05,
|
1429 |
+
"loss": 2.3865,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.26187419768934533,
|
1434 |
+
"grad_norm": 0.29705896973609924,
|
1435 |
+
"learning_rate": 4.985344892885899e-05,
|
1436 |
+
"loss": 2.365,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.2631578947368421,
|
1441 |
+
"grad_norm": 0.32413363456726074,
|
1442 |
+
"learning_rate": 4.985061991303895e-05,
|
1443 |
+
"loss": 2.4379,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.2644415917843389,
|
1448 |
+
"grad_norm": 0.38111138343811035,
|
1449 |
+
"learning_rate": 4.984776393384348e-05,
|
1450 |
+
"loss": 2.4303,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.26572528883183566,
|
1455 |
+
"grad_norm": 0.34943342208862305,
|
1456 |
+
"learning_rate": 4.984488099437138e-05,
|
1457 |
+
"loss": 2.3508,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.26700898587933247,
|
1462 |
+
"grad_norm": 0.34694743156433105,
|
1463 |
+
"learning_rate": 4.984197109775068e-05,
|
1464 |
+
"loss": 2.4488,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.2682926829268293,
|
1469 |
+
"grad_norm": 0.3251892626285553,
|
1470 |
+
"learning_rate": 4.983903424713868e-05,
|
1471 |
+
"loss": 2.4187,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.26957637997432604,
|
1476 |
+
"grad_norm": 0.34391969442367554,
|
1477 |
+
"learning_rate": 4.9836070445721924e-05,
|
1478 |
+
"loss": 2.4723,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.27086007702182285,
|
1483 |
+
"grad_norm": 0.32182154059410095,
|
1484 |
+
"learning_rate": 4.983307969671617e-05,
|
1485 |
+
"loss": 2.4282,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.27214377406931967,
|
1490 |
+
"grad_norm": 0.3486088514328003,
|
1491 |
+
"learning_rate": 4.983006200336645e-05,
|
1492 |
+
"loss": 2.4411,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.2734274711168164,
|
1497 |
+
"grad_norm": 0.3152271807193756,
|
1498 |
+
"learning_rate": 4.9827017368947e-05,
|
1499 |
+
"loss": 2.3362,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.27471116816431324,
|
1504 |
+
"grad_norm": 0.30361658334732056,
|
1505 |
+
"learning_rate": 4.982394579676133e-05,
|
1506 |
+
"loss": 2.34,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.27599486521181,
|
1511 |
+
"grad_norm": 0.3163071274757385,
|
1512 |
+
"learning_rate": 4.9820847290142135e-05,
|
1513 |
+
"loss": 2.3996,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.2772785622593068,
|
1518 |
+
"grad_norm": 0.319831907749176,
|
1519 |
+
"learning_rate": 4.981772185245135e-05,
|
1520 |
+
"loss": 2.352,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.2785622593068036,
|
1525 |
+
"grad_norm": 0.34143316745758057,
|
1526 |
+
"learning_rate": 4.981456948708014e-05,
|
1527 |
+
"loss": 2.2837,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.2798459563543004,
|
1532 |
+
"grad_norm": 0.3066380023956299,
|
1533 |
+
"learning_rate": 4.981139019744887e-05,
|
1534 |
+
"loss": 2.3848,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.2811296534017972,
|
1539 |
+
"grad_norm": 0.32719743251800537,
|
1540 |
+
"learning_rate": 4.9808183987007136e-05,
|
1541 |
+
"loss": 2.3845,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.28241335044929394,
|
1546 |
+
"grad_norm": 0.384798526763916,
|
1547 |
+
"learning_rate": 4.980495085923372e-05,
|
1548 |
+
"loss": 2.3767,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.28369704749679076,
|
1553 |
+
"grad_norm": 0.4263782799243927,
|
1554 |
+
"learning_rate": 4.980169081763665e-05,
|
1555 |
+
"loss": 2.3342,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.28498074454428757,
|
1560 |
+
"grad_norm": 0.3271712064743042,
|
1561 |
+
"learning_rate": 4.979840386575311e-05,
|
1562 |
+
"loss": 2.4539,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.2862644415917843,
|
1567 |
+
"grad_norm": 0.35880088806152344,
|
1568 |
+
"learning_rate": 4.97950900071495e-05,
|
1569 |
+
"loss": 2.3488,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.28754813863928114,
|
1574 |
+
"grad_norm": 0.30669230222702026,
|
1575 |
+
"learning_rate": 4.9791749245421434e-05,
|
1576 |
+
"loss": 2.4084,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.2888318356867779,
|
1581 |
+
"grad_norm": 0.34398922324180603,
|
1582 |
+
"learning_rate": 4.9788381584193684e-05,
|
1583 |
+
"loss": 2.3226,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.2901155327342747,
|
1588 |
+
"grad_norm": 0.3699093163013458,
|
1589 |
+
"learning_rate": 4.9784987027120236e-05,
|
1590 |
+
"loss": 2.3608,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.2913992297817715,
|
1595 |
+
"grad_norm": 0.3445926010608673,
|
1596 |
+
"learning_rate": 4.978156557788424e-05,
|
1597 |
+
"loss": 2.3771,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.2926829268292683,
|
1602 |
+
"grad_norm": 0.33999142050743103,
|
1603 |
+
"learning_rate": 4.977811724019802e-05,
|
1604 |
+
"loss": 2.3541,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.2939666238767651,
|
1609 |
+
"grad_norm": 0.3054107427597046,
|
1610 |
+
"learning_rate": 4.9774642017803106e-05,
|
1611 |
+
"loss": 2.4764,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.2952503209242619,
|
1616 |
+
"grad_norm": 0.3072315454483032,
|
1617 |
+
"learning_rate": 4.977113991447017e-05,
|
1618 |
+
"loss": 2.3055,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.29653401797175866,
|
1623 |
+
"grad_norm": 0.3254982531070709,
|
1624 |
+
"learning_rate": 4.9767610933999055e-05,
|
1625 |
+
"loss": 2.4659,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.29781771501925547,
|
1630 |
+
"grad_norm": 0.2930049002170563,
|
1631 |
+
"learning_rate": 4.976405508021877e-05,
|
1632 |
+
"loss": 2.3313,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.2991014120667522,
|
1637 |
+
"grad_norm": 0.30119720101356506,
|
1638 |
+
"learning_rate": 4.976047235698747e-05,
|
1639 |
+
"loss": 2.2981,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.30038510911424904,
|
1644 |
+
"grad_norm": 0.30038225650787354,
|
1645 |
+
"learning_rate": 4.9756862768192504e-05,
|
1646 |
+
"loss": 2.2864,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.30166880616174585,
|
1651 |
+
"grad_norm": 0.29573819041252136,
|
1652 |
+
"learning_rate": 4.975322631775032e-05,
|
1653 |
+
"loss": 2.3508,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.3029525032092426,
|
1658 |
+
"grad_norm": 0.316169798374176,
|
1659 |
+
"learning_rate": 4.9749563009606534e-05,
|
1660 |
+
"loss": 2.3648,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.3042362002567394,
|
1665 |
+
"grad_norm": 0.3109273910522461,
|
1666 |
+
"learning_rate": 4.9745872847735894e-05,
|
1667 |
+
"loss": 2.5141,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.3055198973042362,
|
1672 |
+
"grad_norm": 0.34613820910453796,
|
1673 |
+
"learning_rate": 4.974215583614232e-05,
|
1674 |
+
"loss": 2.333,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.306803594351733,
|
1679 |
+
"grad_norm": 0.34924328327178955,
|
1680 |
+
"learning_rate": 4.9738411978858814e-05,
|
1681 |
+
"loss": 2.4158,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.3080872913992298,
|
1686 |
+
"grad_norm": 0.2984835207462311,
|
1687 |
+
"learning_rate": 4.9734641279947535e-05,
|
1688 |
+
"loss": 2.3817,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.30937098844672656,
|
1693 |
+
"grad_norm": 0.3265876770019531,
|
1694 |
+
"learning_rate": 4.9730843743499764e-05,
|
1695 |
+
"loss": 2.4202,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.31065468549422337,
|
1700 |
+
"grad_norm": 0.31205374002456665,
|
1701 |
+
"learning_rate": 4.9727019373635895e-05,
|
1702 |
+
"loss": 2.3492,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.3119383825417201,
|
1707 |
+
"grad_norm": 0.3619811534881592,
|
1708 |
+
"learning_rate": 4.972316817450544e-05,
|
1709 |
+
"loss": 2.481,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.31322207958921694,
|
1714 |
+
"grad_norm": 0.4126303791999817,
|
1715 |
+
"learning_rate": 4.9719290150287026e-05,
|
1716 |
+
"loss": 2.2388,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.31450577663671375,
|
1721 |
+
"grad_norm": 0.34099090099334717,
|
1722 |
+
"learning_rate": 4.971538530518836e-05,
|
1723 |
+
"loss": 2.4,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.3157894736842105,
|
1728 |
+
"grad_norm": 0.32491570711135864,
|
1729 |
+
"learning_rate": 4.971145364344628e-05,
|
1730 |
+
"loss": 2.3854,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.3170731707317073,
|
1735 |
+
"grad_norm": 0.340457022190094,
|
1736 |
+
"learning_rate": 4.970749516932672e-05,
|
1737 |
+
"loss": 2.4011,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.31835686777920413,
|
1742 |
+
"grad_norm": 0.33701422810554504,
|
1743 |
+
"learning_rate": 4.97035098871247e-05,
|
1744 |
+
"loss": 2.4188,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.3196405648267009,
|
1749 |
+
"grad_norm": 0.3307265341281891,
|
1750 |
+
"learning_rate": 4.969949780116431e-05,
|
1751 |
+
"loss": 2.4553,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.3209242618741977,
|
1756 |
+
"grad_norm": 0.38966116309165955,
|
1757 |
+
"learning_rate": 4.969545891579873e-05,
|
1758 |
+
"loss": 2.3657,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.32220795892169446,
|
1763 |
+
"grad_norm": 0.36796143651008606,
|
1764 |
+
"learning_rate": 4.969139323541025e-05,
|
1765 |
+
"loss": 2.3044,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.32349165596919127,
|
1770 |
+
"grad_norm": 0.32584547996520996,
|
1771 |
+
"learning_rate": 4.968730076441017e-05,
|
1772 |
+
"loss": 2.4064,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.3247753530166881,
|
1777 |
+
"grad_norm": 0.3360714316368103,
|
1778 |
+
"learning_rate": 4.968318150723893e-05,
|
1779 |
+
"loss": 2.4243,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.32605905006418484,
|
1784 |
+
"grad_norm": 0.3058249056339264,
|
1785 |
+
"learning_rate": 4.9679035468365986e-05,
|
1786 |
+
"loss": 2.3598,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.32734274711168165,
|
1791 |
+
"grad_norm": 0.32182779908180237,
|
1792 |
+
"learning_rate": 4.9674862652289865e-05,
|
1793 |
+
"loss": 2.3469,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.3286264441591784,
|
1798 |
+
"grad_norm": 0.39011824131011963,
|
1799 |
+
"learning_rate": 4.967066306353816e-05,
|
1800 |
+
"loss": 2.4215,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.3299101412066752,
|
1805 |
+
"grad_norm": 0.3215901553630829,
|
1806 |
+
"learning_rate": 4.966643670666748e-05,
|
1807 |
+
"loss": 2.396,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.33119383825417203,
|
1812 |
+
"grad_norm": 0.3239218592643738,
|
1813 |
+
"learning_rate": 4.9662183586263514e-05,
|
1814 |
+
"loss": 2.4271,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.3324775353016688,
|
1819 |
+
"grad_norm": 0.33229637145996094,
|
1820 |
+
"learning_rate": 4.965790370694097e-05,
|
1821 |
+
"loss": 2.4345,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.3337612323491656,
|
1826 |
+
"grad_norm": 0.36766308546066284,
|
1827 |
+
"learning_rate": 4.9653597073343594e-05,
|
1828 |
+
"loss": 2.4257,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.33504492939666236,
|
1833 |
+
"grad_norm": 0.33887600898742676,
|
1834 |
+
"learning_rate": 4.964926369014417e-05,
|
1835 |
+
"loss": 2.4391,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.3363286264441592,
|
1840 |
+
"grad_norm": 0.3224686086177826,
|
1841 |
+
"learning_rate": 4.964490356204449e-05,
|
1842 |
+
"loss": 2.3664,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.337612323491656,
|
1847 |
+
"grad_norm": 0.3371565341949463,
|
1848 |
+
"learning_rate": 4.964051669377538e-05,
|
1849 |
+
"loss": 2.4992,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.33889602053915274,
|
1854 |
+
"grad_norm": 0.3373253345489502,
|
1855 |
+
"learning_rate": 4.963610309009665e-05,
|
1856 |
+
"loss": 2.3509,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.34017971758664955,
|
1861 |
+
"grad_norm": 0.34519249200820923,
|
1862 |
+
"learning_rate": 4.963166275579717e-05,
|
1863 |
+
"loss": 2.4388,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.34146341463414637,
|
1868 |
+
"grad_norm": 0.3187866806983948,
|
1869 |
+
"learning_rate": 4.9627195695694774e-05,
|
1870 |
+
"loss": 2.4655,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.3427471116816431,
|
1875 |
+
"grad_norm": 0.31844937801361084,
|
1876 |
+
"learning_rate": 4.962270191463629e-05,
|
1877 |
+
"loss": 2.4097,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.34403080872913994,
|
1882 |
+
"grad_norm": 0.359625905752182,
|
1883 |
+
"learning_rate": 4.9618181417497566e-05,
|
1884 |
+
"loss": 2.4364,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.3453145057766367,
|
1889 |
+
"grad_norm": 0.3335789740085602,
|
1890 |
+
"learning_rate": 4.961363420918342e-05,
|
1891 |
+
"loss": 2.2316,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.3465982028241335,
|
1896 |
+
"grad_norm": 0.3209823668003082,
|
1897 |
+
"learning_rate": 4.960906029462766e-05,
|
1898 |
+
"loss": 2.4698,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.3478818998716303,
|
1903 |
+
"grad_norm": 0.3264525532722473,
|
1904 |
+
"learning_rate": 4.960445967879307e-05,
|
1905 |
+
"loss": 2.3222,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.3491655969191271,
|
1910 |
+
"grad_norm": 0.29652708768844604,
|
1911 |
+
"learning_rate": 4.959983236667138e-05,
|
1912 |
+
"loss": 2.3258,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.3504492939666239,
|
1917 |
+
"grad_norm": 0.35058003664016724,
|
1918 |
+
"learning_rate": 4.959517836328333e-05,
|
1919 |
+
"loss": 2.3009,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.35173299101412064,
|
1924 |
+
"grad_norm": 0.29893478751182556,
|
1925 |
+
"learning_rate": 4.959049767367859e-05,
|
1926 |
+
"loss": 2.463,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.35301668806161746,
|
1931 |
+
"grad_norm": 0.3114057183265686,
|
1932 |
+
"learning_rate": 4.95857903029358e-05,
|
1933 |
+
"loss": 2.2757,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.35430038510911427,
|
1938 |
+
"grad_norm": 0.3837164640426636,
|
1939 |
+
"learning_rate": 4.958105625616253e-05,
|
1940 |
+
"loss": 2.445,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.355584082156611,
|
1945 |
+
"grad_norm": 0.3195387125015259,
|
1946 |
+
"learning_rate": 4.957629553849532e-05,
|
1947 |
+
"loss": 2.4823,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.35686777920410784,
|
1952 |
+
"grad_norm": 0.37014302611351013,
|
1953 |
+
"learning_rate": 4.957150815509963e-05,
|
1954 |
+
"loss": 2.3322,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.3581514762516046,
|
1959 |
+
"grad_norm": 0.28935369849205017,
|
1960 |
+
"learning_rate": 4.9566694111169853e-05,
|
1961 |
+
"loss": 2.4336,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.3594351732991014,
|
1966 |
+
"grad_norm": 0.3155868351459503,
|
1967 |
+
"learning_rate": 4.956185341192933e-05,
|
1968 |
+
"loss": 2.4691,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.3607188703465982,
|
1973 |
+
"grad_norm": 0.33008038997650146,
|
1974 |
+
"learning_rate": 4.955698606263028e-05,
|
1975 |
+
"loss": 2.3331,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.362002567394095,
|
1980 |
+
"grad_norm": 0.3546096086502075,
|
1981 |
+
"learning_rate": 4.95520920685539e-05,
|
1982 |
+
"loss": 2.4626,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.3632862644415918,
|
1987 |
+
"grad_norm": 0.3569015562534332,
|
1988 |
+
"learning_rate": 4.954717143501024e-05,
|
1989 |
+
"loss": 2.4165,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.3645699614890886,
|
1994 |
+
"grad_norm": 0.2979843318462372,
|
1995 |
+
"learning_rate": 4.954222416733829e-05,
|
1996 |
+
"loss": 2.3322,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.36585365853658536,
|
2001 |
+
"grad_norm": 0.43857890367507935,
|
2002 |
+
"learning_rate": 4.953725027090591e-05,
|
2003 |
+
"loss": 2.3168,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.36713735558408217,
|
2008 |
+
"grad_norm": 0.32624951004981995,
|
2009 |
+
"learning_rate": 4.953224975110988e-05,
|
2010 |
+
"loss": 2.3685,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.3684210526315789,
|
2015 |
+
"grad_norm": 0.3195008933544159,
|
2016 |
+
"learning_rate": 4.9527222613375855e-05,
|
2017 |
+
"loss": 2.4137,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.36970474967907574,
|
2022 |
+
"grad_norm": 0.362567663192749,
|
2023 |
+
"learning_rate": 4.952216886315837e-05,
|
2024 |
+
"loss": 2.2978,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.37098844672657255,
|
2029 |
+
"grad_norm": 0.31306540966033936,
|
2030 |
+
"learning_rate": 4.951708850594083e-05,
|
2031 |
+
"loss": 2.4381,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.3722721437740693,
|
2036 |
+
"grad_norm": 0.3275150954723358,
|
2037 |
+
"learning_rate": 4.951198154723552e-05,
|
2038 |
+
"loss": 2.3528,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.3735558408215661,
|
2043 |
+
"grad_norm": 0.32541584968566895,
|
2044 |
+
"learning_rate": 4.9506847992583586e-05,
|
2045 |
+
"loss": 2.5023,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.3748395378690629,
|
2050 |
+
"grad_norm": 0.3278298079967499,
|
2051 |
+
"learning_rate": 4.9501687847555016e-05,
|
2052 |
+
"loss": 2.3745,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.3761232349165597,
|
2057 |
+
"grad_norm": 0.3163221776485443,
|
2058 |
+
"learning_rate": 4.949650111774868e-05,
|
2059 |
+
"loss": 2.3451,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.3774069319640565,
|
2064 |
+
"grad_norm": 0.30997052788734436,
|
2065 |
+
"learning_rate": 4.9491287808792265e-05,
|
2066 |
+
"loss": 2.3976,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.37869062901155326,
|
2071 |
+
"grad_norm": 0.3496086597442627,
|
2072 |
+
"learning_rate": 4.948604792634229e-05,
|
2073 |
+
"loss": 2.4361,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.37997432605905007,
|
2078 |
+
"grad_norm": 0.3483693599700928,
|
2079 |
+
"learning_rate": 4.948078147608416e-05,
|
2080 |
+
"loss": 2.4022,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.38125802310654683,
|
2085 |
+
"grad_norm": 0.3135087490081787,
|
2086 |
+
"learning_rate": 4.947548846373204e-05,
|
2087 |
+
"loss": 2.3585,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.38254172015404364,
|
2092 |
+
"grad_norm": 0.323482871055603,
|
2093 |
+
"learning_rate": 4.947016889502895e-05,
|
2094 |
+
"loss": 2.3958,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.38382541720154045,
|
2099 |
+
"grad_norm": 0.3020581901073456,
|
2100 |
+
"learning_rate": 4.946482277574673e-05,
|
2101 |
+
"loss": 2.2809,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.3851091142490372,
|
2106 |
+
"grad_norm": 0.31288352608680725,
|
2107 |
+
"learning_rate": 4.9459450111686e-05,
|
2108 |
+
"loss": 2.3526,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.386392811296534,
|
2113 |
+
"grad_norm": 0.31495004892349243,
|
2114 |
+
"learning_rate": 4.945405090867621e-05,
|
2115 |
+
"loss": 2.4462,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.38767650834403083,
|
2120 |
+
"grad_norm": 0.3513999581336975,
|
2121 |
+
"learning_rate": 4.94486251725756e-05,
|
2122 |
+
"loss": 2.3795,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.3889602053915276,
|
2127 |
+
"grad_norm": 0.33559510111808777,
|
2128 |
+
"learning_rate": 4.944317290927117e-05,
|
2129 |
+
"loss": 2.3002,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.3902439024390244,
|
2134 |
+
"grad_norm": 0.3153408467769623,
|
2135 |
+
"learning_rate": 4.943769412467875e-05,
|
2136 |
+
"loss": 2.437,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.39152759948652116,
|
2141 |
+
"grad_norm": 0.3177226781845093,
|
2142 |
+
"learning_rate": 4.943218882474291e-05,
|
2143 |
+
"loss": 2.3447,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.392811296534018,
|
2148 |
+
"grad_norm": 0.3815303146839142,
|
2149 |
+
"learning_rate": 4.9426657015436994e-05,
|
2150 |
+
"loss": 2.3584,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.3940949935815148,
|
2155 |
+
"grad_norm": 0.34336403012275696,
|
2156 |
+
"learning_rate": 4.9421098702763126e-05,
|
2157 |
+
"loss": 2.2979,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.39537869062901154,
|
2162 |
+
"grad_norm": 0.33281055092811584,
|
2163 |
+
"learning_rate": 4.941551389275217e-05,
|
2164 |
+
"loss": 2.4152,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.39666238767650835,
|
2169 |
+
"grad_norm": 0.3309512138366699,
|
2170 |
+
"learning_rate": 4.9409902591463756e-05,
|
2171 |
+
"loss": 2.361,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.3979460847240051,
|
2176 |
+
"grad_norm": 0.3044840097427368,
|
2177 |
+
"learning_rate": 4.940426480498623e-05,
|
2178 |
+
"loss": 2.3172,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.3992297817715019,
|
2183 |
+
"grad_norm": 0.32050418853759766,
|
2184 |
+
"learning_rate": 4.939860053943671e-05,
|
2185 |
+
"loss": 2.374,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.40051347881899874,
|
2190 |
+
"grad_norm": 0.36678293347358704,
|
2191 |
+
"learning_rate": 4.939290980096103e-05,
|
2192 |
+
"loss": 2.3529,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.4017971758664955,
|
2197 |
+
"grad_norm": 0.32348355650901794,
|
2198 |
+
"learning_rate": 4.9387192595733734e-05,
|
2199 |
+
"loss": 2.4048,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.4030808729139923,
|
2204 |
+
"grad_norm": 0.3086166977882385,
|
2205 |
+
"learning_rate": 4.938144892995809e-05,
|
2206 |
+
"loss": 2.4091,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.40436456996148906,
|
2211 |
+
"grad_norm": 0.31869277358055115,
|
2212 |
+
"learning_rate": 4.937567880986609e-05,
|
2213 |
+
"loss": 2.3594,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.4056482670089859,
|
2218 |
+
"grad_norm": 0.317147821187973,
|
2219 |
+
"learning_rate": 4.936988224171842e-05,
|
2220 |
+
"loss": 2.2666,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.4069319640564827,
|
2225 |
+
"grad_norm": 0.32587262988090515,
|
2226 |
+
"learning_rate": 4.936405923180446e-05,
|
2227 |
+
"loss": 2.317,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.40821566110397944,
|
2232 |
+
"grad_norm": 0.3181535005569458,
|
2233 |
+
"learning_rate": 4.935820978644228e-05,
|
2234 |
+
"loss": 2.3611,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.40949935815147626,
|
2239 |
+
"grad_norm": 0.31699231266975403,
|
2240 |
+
"learning_rate": 4.9352333911978625e-05,
|
2241 |
+
"loss": 2.4676,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.41078305519897307,
|
2246 |
+
"grad_norm": 0.35386183857917786,
|
2247 |
+
"learning_rate": 4.9346431614788945e-05,
|
2248 |
+
"loss": 2.3525,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.4120667522464698,
|
2253 |
+
"grad_norm": 0.3134053647518158,
|
2254 |
+
"learning_rate": 4.934050290127733e-05,
|
2255 |
+
"loss": 2.4045,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.41335044929396664,
|
2260 |
+
"grad_norm": 0.3209103047847748,
|
2261 |
+
"learning_rate": 4.933454777787654e-05,
|
2262 |
+
"loss": 2.3606,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.4146341463414634,
|
2267 |
+
"grad_norm": 0.3191809356212616,
|
2268 |
+
"learning_rate": 4.9328566251048e-05,
|
2269 |
+
"loss": 2.4551,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.4159178433889602,
|
2274 |
+
"grad_norm": 0.2983877658843994,
|
2275 |
+
"learning_rate": 4.9322558327281773e-05,
|
2276 |
+
"loss": 2.3299,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.417201540436457,
|
2281 |
+
"grad_norm": 0.3376917541027069,
|
2282 |
+
"learning_rate": 4.931652401309655e-05,
|
2283 |
+
"loss": 2.3599,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.4184852374839538,
|
2288 |
+
"grad_norm": 0.36222752928733826,
|
2289 |
+
"learning_rate": 4.93104633150397e-05,
|
2290 |
+
"loss": 2.4432,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.4197689345314506,
|
2295 |
+
"grad_norm": 0.2962850034236908,
|
2296 |
+
"learning_rate": 4.930437623968718e-05,
|
2297 |
+
"loss": 2.3965,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.42105263157894735,
|
2302 |
+
"grad_norm": 0.32738175988197327,
|
2303 |
+
"learning_rate": 4.929826279364357e-05,
|
2304 |
+
"loss": 2.3276,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.42233632862644416,
|
2309 |
+
"grad_norm": 0.3119535446166992,
|
2310 |
+
"learning_rate": 4.929212298354207e-05,
|
2311 |
+
"loss": 2.3639,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.42362002567394097,
|
2316 |
+
"grad_norm": 0.3193548321723938,
|
2317 |
+
"learning_rate": 4.9285956816044486e-05,
|
2318 |
+
"loss": 2.4468,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.4249037227214377,
|
2323 |
+
"grad_norm": 0.32102808356285095,
|
2324 |
+
"learning_rate": 4.927976429784124e-05,
|
2325 |
+
"loss": 2.422,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.42618741976893454,
|
2330 |
+
"grad_norm": 0.3115790784358978,
|
2331 |
+
"learning_rate": 4.92735454356513e-05,
|
2332 |
+
"loss": 2.2948,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.4274711168164313,
|
2337 |
+
"grad_norm": 0.320351243019104,
|
2338 |
+
"learning_rate": 4.926730023622227e-05,
|
2339 |
+
"loss": 2.3466,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.4287548138639281,
|
2344 |
+
"grad_norm": 0.30213356018066406,
|
2345 |
+
"learning_rate": 4.926102870633029e-05,
|
2346 |
+
"loss": 2.3773,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.4300385109114249,
|
2351 |
+
"grad_norm": 0.3080739676952362,
|
2352 |
+
"learning_rate": 4.925473085278008e-05,
|
2353 |
+
"loss": 2.3822,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.4313222079589217,
|
2358 |
+
"grad_norm": 0.3327421545982361,
|
2359 |
+
"learning_rate": 4.924840668240495e-05,
|
2360 |
+
"loss": 2.4326,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.4326059050064185,
|
2365 |
+
"grad_norm": 0.34913370013237,
|
2366 |
+
"learning_rate": 4.924205620206671e-05,
|
2367 |
+
"loss": 2.4491,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.4338896020539153,
|
2372 |
+
"grad_norm": 0.3061310946941376,
|
2373 |
+
"learning_rate": 4.923567941865577e-05,
|
2374 |
+
"loss": 2.3727,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.43517329910141206,
|
2379 |
+
"grad_norm": 0.3259632885456085,
|
2380 |
+
"learning_rate": 4.9229276339091034e-05,
|
2381 |
+
"loss": 2.3775,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.43645699614890887,
|
2386 |
+
"grad_norm": 0.29085099697113037,
|
2387 |
+
"learning_rate": 4.922284697031999e-05,
|
2388 |
+
"loss": 2.3427,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.43774069319640563,
|
2393 |
+
"grad_norm": 0.30840590596199036,
|
2394 |
+
"learning_rate": 4.921639131931859e-05,
|
2395 |
+
"loss": 2.367,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.43902439024390244,
|
2400 |
+
"grad_norm": 0.32114389538764954,
|
2401 |
+
"learning_rate": 4.920990939309135e-05,
|
2402 |
+
"loss": 2.4625,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.44030808729139925,
|
2407 |
+
"grad_norm": 0.3091549873352051,
|
2408 |
+
"learning_rate": 4.920340119867127e-05,
|
2409 |
+
"loss": 2.3571,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.441591784338896,
|
2414 |
+
"grad_norm": 0.2978641092777252,
|
2415 |
+
"learning_rate": 4.919686674311987e-05,
|
2416 |
+
"loss": 2.3033,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.4428754813863928,
|
2421 |
+
"grad_norm": 0.33106520771980286,
|
2422 |
+
"learning_rate": 4.919030603352715e-05,
|
2423 |
+
"loss": 2.3276,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.4441591784338896,
|
2428 |
+
"grad_norm": 0.42283540964126587,
|
2429 |
+
"learning_rate": 4.918371907701159e-05,
|
2430 |
+
"loss": 2.3563,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.4454428754813864,
|
2435 |
+
"grad_norm": 0.32727953791618347,
|
2436 |
+
"learning_rate": 4.9177105880720173e-05,
|
2437 |
+
"loss": 2.3928,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.4467265725288832,
|
2442 |
+
"grad_norm": 0.3086586892604828,
|
2443 |
+
"learning_rate": 4.9170466451828326e-05,
|
2444 |
+
"loss": 2.2707,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.44801026957637996,
|
2449 |
+
"grad_norm": 0.28993648290634155,
|
2450 |
+
"learning_rate": 4.916380079753995e-05,
|
2451 |
+
"loss": 2.3582,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.4492939666238768,
|
2456 |
+
"grad_norm": 0.3154331147670746,
|
2457 |
+
"learning_rate": 4.9157108925087405e-05,
|
2458 |
+
"loss": 2.4003,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.45057766367137353,
|
2463 |
+
"grad_norm": 0.3312948942184448,
|
2464 |
+
"learning_rate": 4.9150390841731485e-05,
|
2465 |
+
"loss": 2.3955,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.45186136071887034,
|
2470 |
+
"grad_norm": 0.30381128191947937,
|
2471 |
+
"learning_rate": 4.914364655476146e-05,
|
2472 |
+
"loss": 2.3737,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.45314505776636715,
|
2477 |
+
"grad_norm": 0.30618736147880554,
|
2478 |
+
"learning_rate": 4.9136876071494976e-05,
|
2479 |
+
"loss": 2.3602,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.4544287548138639,
|
2484 |
+
"grad_norm": 0.3091343343257904,
|
2485 |
+
"learning_rate": 4.913007939927814e-05,
|
2486 |
+
"loss": 2.4564,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.4557124518613607,
|
2491 |
+
"grad_norm": 0.311162531375885,
|
2492 |
+
"learning_rate": 4.912325654548546e-05,
|
2493 |
+
"loss": 2.3133,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.45699614890885754,
|
2498 |
+
"grad_norm": 0.33965715765953064,
|
2499 |
+
"learning_rate": 4.911640751751988e-05,
|
2500 |
+
"loss": 2.4312,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.4582798459563543,
|
2505 |
+
"grad_norm": 0.3162749111652374,
|
2506 |
+
"learning_rate": 4.910953232281269e-05,
|
2507 |
+
"loss": 2.3438,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.4595635430038511,
|
2512 |
+
"grad_norm": 0.32984068989753723,
|
2513 |
+
"learning_rate": 4.910263096882362e-05,
|
2514 |
+
"loss": 2.3823,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.46084724005134786,
|
2519 |
+
"grad_norm": 0.30816513299942017,
|
2520 |
+
"learning_rate": 4.909570346304076e-05,
|
2521 |
+
"loss": 2.445,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.4621309370988447,
|
2526 |
+
"grad_norm": 0.2928940951824188,
|
2527 |
+
"learning_rate": 4.908874981298057e-05,
|
2528 |
+
"loss": 2.4538,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.4634146341463415,
|
2533 |
+
"grad_norm": 0.32563963532447815,
|
2534 |
+
"learning_rate": 4.9081770026187914e-05,
|
2535 |
+
"loss": 2.292,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.46469833119383824,
|
2540 |
+
"grad_norm": 0.29584982991218567,
|
2541 |
+
"learning_rate": 4.907476411023596e-05,
|
2542 |
+
"loss": 2.4046,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.46598202824133506,
|
2547 |
+
"grad_norm": 0.3291500210762024,
|
2548 |
+
"learning_rate": 4.906773207272626e-05,
|
2549 |
+
"loss": 2.3186,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.4672657252888318,
|
2554 |
+
"grad_norm": 0.3066290020942688,
|
2555 |
+
"learning_rate": 4.9060673921288716e-05,
|
2556 |
+
"loss": 2.3266,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.4685494223363286,
|
2561 |
+
"grad_norm": 0.3005695939064026,
|
2562 |
+
"learning_rate": 4.905358966358153e-05,
|
2563 |
+
"loss": 2.3712,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.46983311938382544,
|
2568 |
+
"grad_norm": 0.32391899824142456,
|
2569 |
+
"learning_rate": 4.904647930729128e-05,
|
2570 |
+
"loss": 2.3514,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.4711168164313222,
|
2575 |
+
"grad_norm": 0.2915700078010559,
|
2576 |
+
"learning_rate": 4.903934286013281e-05,
|
2577 |
+
"loss": 2.4646,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.472400513478819,
|
2582 |
+
"grad_norm": 0.34920045733451843,
|
2583 |
+
"learning_rate": 4.90321803298493e-05,
|
2584 |
+
"loss": 2.3287,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.47368421052631576,
|
2589 |
+
"grad_norm": 0.2955242395401001,
|
2590 |
+
"learning_rate": 4.902499172421222e-05,
|
2591 |
+
"loss": 2.3654,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.4749679075738126,
|
2596 |
+
"grad_norm": 0.3305751085281372,
|
2597 |
+
"learning_rate": 4.901777705102135e-05,
|
2598 |
+
"loss": 2.4419,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.4762516046213094,
|
2603 |
+
"grad_norm": 0.30396509170532227,
|
2604 |
+
"learning_rate": 4.9010536318104734e-05,
|
2605 |
+
"loss": 2.3576,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.47753530166880614,
|
2610 |
+
"grad_norm": 0.2961418330669403,
|
2611 |
+
"learning_rate": 4.9003269533318704e-05,
|
2612 |
+
"loss": 2.3039,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.47881899871630296,
|
2617 |
+
"grad_norm": 0.35183992981910706,
|
2618 |
+
"learning_rate": 4.899597670454785e-05,
|
2619 |
+
"loss": 2.3333,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.48010269576379977,
|
2624 |
+
"grad_norm": 0.297158420085907,
|
2625 |
+
"learning_rate": 4.8988657839705024e-05,
|
2626 |
+
"loss": 2.3514,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.4813863928112965,
|
2631 |
+
"grad_norm": 0.3379060626029968,
|
2632 |
+
"learning_rate": 4.8981312946731325e-05,
|
2633 |
+
"loss": 2.2811,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.48267008985879334,
|
2638 |
+
"grad_norm": 0.34060969948768616,
|
2639 |
+
"learning_rate": 4.897394203359611e-05,
|
2640 |
+
"loss": 2.4123,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.4839537869062901,
|
2645 |
+
"grad_norm": 0.3308861255645752,
|
2646 |
+
"learning_rate": 4.896654510829694e-05,
|
2647 |
+
"loss": 2.4262,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.4852374839537869,
|
2652 |
+
"grad_norm": 0.3043263852596283,
|
2653 |
+
"learning_rate": 4.8959122178859616e-05,
|
2654 |
+
"loss": 2.4291,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.4865211810012837,
|
2659 |
+
"grad_norm": 0.32594412565231323,
|
2660 |
+
"learning_rate": 4.8951673253338156e-05,
|
2661 |
+
"loss": 2.3679,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.4878048780487805,
|
2666 |
+
"grad_norm": 0.3090050220489502,
|
2667 |
+
"learning_rate": 4.894419833981478e-05,
|
2668 |
+
"loss": 2.3933,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.4890885750962773,
|
2673 |
+
"grad_norm": 0.3234407901763916,
|
2674 |
+
"learning_rate": 4.8936697446399896e-05,
|
2675 |
+
"loss": 2.3156,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.49037227214377405,
|
2680 |
+
"grad_norm": 0.3294239938259125,
|
2681 |
+
"learning_rate": 4.892917058123212e-05,
|
2682 |
+
"loss": 2.357,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.49165596919127086,
|
2687 |
+
"grad_norm": 0.33215636014938354,
|
2688 |
+
"learning_rate": 4.8921617752478235e-05,
|
2689 |
+
"loss": 2.4386,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.49293966623876767,
|
2694 |
+
"grad_norm": 0.30511781573295593,
|
2695 |
+
"learning_rate": 4.89140389683332e-05,
|
2696 |
+
"loss": 2.4283,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.4942233632862644,
|
2701 |
+
"grad_norm": 0.31070634722709656,
|
2702 |
+
"learning_rate": 4.890643423702013e-05,
|
2703 |
+
"loss": 2.3565,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.49550706033376124,
|
2708 |
+
"grad_norm": 0.3108975291252136,
|
2709 |
+
"learning_rate": 4.8898803566790296e-05,
|
2710 |
+
"loss": 2.3209,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.496790757381258,
|
2715 |
+
"grad_norm": 0.31348085403442383,
|
2716 |
+
"learning_rate": 4.889114696592312e-05,
|
2717 |
+
"loss": 2.3707,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.4980744544287548,
|
2722 |
+
"grad_norm": 0.3120376467704773,
|
2723 |
+
"learning_rate": 4.8883464442726146e-05,
|
2724 |
+
"loss": 2.3743,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.4993581514762516,
|
2729 |
+
"grad_norm": 0.3120869994163513,
|
2730 |
+
"learning_rate": 4.887575600553506e-05,
|
2731 |
+
"loss": 2.3501,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.5006418485237484,
|
2736 |
+
"grad_norm": 0.28657200932502747,
|
2737 |
+
"learning_rate": 4.886802166271364e-05,
|
2738 |
+
"loss": 2.365,
|
2739 |
+
"step": 390
|
2740 |
+
}
|
2741 |
+
],
|
2742 |
+
"logging_steps": 1,
|
2743 |
+
"max_steps": 3116,
|
2744 |
+
"num_input_tokens_seen": 0,
|
2745 |
+
"num_train_epochs": 4,
|
2746 |
+
"save_steps": 195,
|
2747 |
+
"stateful_callbacks": {
|
2748 |
+
"TrainerControl": {
|
2749 |
+
"args": {
|
2750 |
+
"should_epoch_stop": false,
|
2751 |
+
"should_evaluate": false,
|
2752 |
+
"should_log": false,
|
2753 |
+
"should_save": true,
|
2754 |
+
"should_training_stop": false
|
2755 |
+
},
|
2756 |
+
"attributes": {}
|
2757 |
+
}
|
2758 |
+
},
|
2759 |
+
"total_flos": 4.733457601218478e+18,
|
2760 |
+
"train_batch_size": 4,
|
2761 |
+
"trial_name": null,
|
2762 |
+
"trial_params": null
|
2763 |
+
}
|
checkpoint-390/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a98077399ec24ec1c4b81639fc3b1a9aa583b98269d8126c92d55b9add25889
|
3 |
+
size 7928
|
checkpoint-390/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-390/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|