NyxKrage commited on
Commit
3fc96b1
·
verified ·
1 Parent(s): e412272

Training in progress, step 390, checkpoint

Browse files
Files changed (31) hide show
  1. checkpoint-390/README.md +202 -0
  2. checkpoint-390/adapter_config.json +34 -0
  3. checkpoint-390/adapter_model.safetensors +3 -0
  4. checkpoint-390/added_tokens.json +24 -0
  5. checkpoint-390/global_step390/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-390/global_step390/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-390/global_step390/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-390/global_step390/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-390/global_step390/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-390/global_step390/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-390/global_step390/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-390/global_step390/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-390/global_step390/mp_rank_00_model_states.pt +3 -0
  14. checkpoint-390/latest +1 -0
  15. checkpoint-390/merges.txt +0 -0
  16. checkpoint-390/rng_state_0.pth +3 -0
  17. checkpoint-390/rng_state_1.pth +3 -0
  18. checkpoint-390/rng_state_2.pth +3 -0
  19. checkpoint-390/rng_state_3.pth +3 -0
  20. checkpoint-390/rng_state_4.pth +3 -0
  21. checkpoint-390/rng_state_5.pth +3 -0
  22. checkpoint-390/rng_state_6.pth +3 -0
  23. checkpoint-390/rng_state_7.pth +3 -0
  24. checkpoint-390/scheduler.pt +3 -0
  25. checkpoint-390/special_tokens_map.json +31 -0
  26. checkpoint-390/tokenizer.json +3 -0
  27. checkpoint-390/tokenizer_config.json +207 -0
  28. checkpoint-390/trainer_state.json +2763 -0
  29. checkpoint-390/training_args.bin +3 -0
  30. checkpoint-390/vocab.json +0 -0
  31. checkpoint-390/zero_to_fp32.py +604 -0
checkpoint-390/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-7B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-390/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 256,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "v_proj",
25
+ "gate_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-390/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e55d353f890722b24dcc749c63e5bb000b3e10447a4ed77ffe070d138c97047
3
+ size 1291899552
checkpoint-390/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-390/global_step390/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1a2d9e3a35a00d90ee041a1e23aa784e618e204d48839313bb5cd809ede5b01
3
+ size 486977360
checkpoint-390/global_step390/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b030a033910635a3580f971be5f0ffb92c7387e27f0b0726f86471323f28cc
3
+ size 486976656
checkpoint-390/global_step390/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0018a43b4a4cc71ed6a0b3b19d57e968f28ce7488ab78b31553d209845a8bc6b
3
+ size 486977360
checkpoint-390/global_step390/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07f66f55921008cac46882572a58e9613791b297c9e85547a720a966f70a5c0f
3
+ size 486976720
checkpoint-390/global_step390/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a3bf79bd2a50f703d15ece3661242b0a992c8a3434c2343b8e3220bffb826b7
3
+ size 486977424
checkpoint-390/global_step390/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29d00f135b4c46de54593ef051ebcbbf8476f5ebb825fbcd417a8b1b44a76db8
3
+ size 486976720
checkpoint-390/global_step390/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e69057af32b0d7c261cecaa1c83b0cc4b4b80409eed8cf0981298bb1c073444f
3
+ size 486977424
checkpoint-390/global_step390/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2903a044fa81dc5c74e1b953bdec8d265321ac5b2a6e2f0f2b7aef5f6cbb8afd
3
+ size 486976720
checkpoint-390/global_step390/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e52cf1f5919a9369e59823ff311c4f29e37bd93726574672338ac034a6b4065
3
+ size 1292148716
checkpoint-390/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step390
checkpoint-390/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-390/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df0da5d7893d8985ac0b37f21418371d5f43b31ca998e5ef5d956eb7721e1c4
3
+ size 15920
checkpoint-390/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75b2962821a01989d2355addf71932157eb5745cca131c6ff07c7b38d5515500
3
+ size 15920
checkpoint-390/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bf379ae713e6d57a203769736218565a44b1ed31e2304ede567be3a6b83906a
3
+ size 15920
checkpoint-390/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db1f07e27767707cd34232950584bdff543ea565425a1b4a42506f5d380be936
3
+ size 15920
checkpoint-390/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:470295537efe8f20c574d5654029090e3aba95098e4d0a2f236c6e2d4ed8e317
3
+ size 15920
checkpoint-390/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:458e24735b991cd82987cffff573337faed762cdfedf9e41b7f0b39ea3ffa315
3
+ size 15920
checkpoint-390/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4c6ba64cfdd942048b7c7b1924040b350b930cef352dc92474b01da1ffb2dc3
3
+ size 15920
checkpoint-390/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8d43516d74621a021d9335fcffda1d72d1487aed647bcda64a3e6e8cc21a16e
3
+ size 15920
checkpoint-390/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ffc0e4f845ac15b7e569e192ff922d4c8f2553f7ce35bcf9f33f4a936ce7268
3
+ size 1064
checkpoint-390/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-390/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-390/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-390/trainer_state.json ADDED
@@ -0,0 +1,2763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5006418485237484,
5
+ "eval_steps": 500,
6
+ "global_step": 390,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0012836970474967907,
13
+ "grad_norm": 0.9255548715591431,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 2.8985,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0025673940949935813,
20
+ "grad_norm": 0.7692601680755615,
21
+ "learning_rate": 1.0000000000000002e-06,
22
+ "loss": 2.9774,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0038510911424903724,
27
+ "grad_norm": 0.7884671092033386,
28
+ "learning_rate": 1.5e-06,
29
+ "loss": 2.9898,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.005134788189987163,
34
+ "grad_norm": 0.8319393396377563,
35
+ "learning_rate": 2.0000000000000003e-06,
36
+ "loss": 2.9573,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.006418485237483954,
41
+ "grad_norm": 0.822285532951355,
42
+ "learning_rate": 2.5e-06,
43
+ "loss": 2.9316,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.007702182284980745,
48
+ "grad_norm": 0.7564650774002075,
49
+ "learning_rate": 3e-06,
50
+ "loss": 2.9537,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.008985879332477536,
55
+ "grad_norm": 0.9220781922340393,
56
+ "learning_rate": 3.5000000000000004e-06,
57
+ "loss": 2.9826,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.010269576379974325,
62
+ "grad_norm": 0.7977064847946167,
63
+ "learning_rate": 4.000000000000001e-06,
64
+ "loss": 2.8548,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.011553273427471117,
69
+ "grad_norm": 0.6889916658401489,
70
+ "learning_rate": 4.5e-06,
71
+ "loss": 2.9936,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.012836970474967908,
76
+ "grad_norm": 0.9777728915214539,
77
+ "learning_rate": 5e-06,
78
+ "loss": 2.9578,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.014120667522464698,
83
+ "grad_norm": 0.8187949061393738,
84
+ "learning_rate": 5.500000000000001e-06,
85
+ "loss": 2.9442,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.01540436456996149,
90
+ "grad_norm": 0.7016908526420593,
91
+ "learning_rate": 6e-06,
92
+ "loss": 2.9299,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.01668806161745828,
97
+ "grad_norm": 0.6974747180938721,
98
+ "learning_rate": 6.5000000000000004e-06,
99
+ "loss": 2.9699,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.01797175866495507,
104
+ "grad_norm": 0.8423139452934265,
105
+ "learning_rate": 7.000000000000001e-06,
106
+ "loss": 2.8706,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.019255455712451863,
111
+ "grad_norm": 0.8017705082893372,
112
+ "learning_rate": 7.5e-06,
113
+ "loss": 2.8443,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.02053915275994865,
118
+ "grad_norm": 0.9362208247184753,
119
+ "learning_rate": 8.000000000000001e-06,
120
+ "loss": 2.872,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.021822849807445442,
125
+ "grad_norm": 1.013128638267517,
126
+ "learning_rate": 8.500000000000002e-06,
127
+ "loss": 2.797,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.023106546854942234,
132
+ "grad_norm": 1.255325436592102,
133
+ "learning_rate": 9e-06,
134
+ "loss": 2.8109,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.024390243902439025,
139
+ "grad_norm": 1.1081339120864868,
140
+ "learning_rate": 9.5e-06,
141
+ "loss": 2.6742,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.025673940949935817,
146
+ "grad_norm": 0.8878622651100159,
147
+ "learning_rate": 1e-05,
148
+ "loss": 2.7251,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.026957637997432605,
153
+ "grad_norm": 0.894791305065155,
154
+ "learning_rate": 1.05e-05,
155
+ "loss": 2.7127,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.028241335044929396,
160
+ "grad_norm": 0.6742448806762695,
161
+ "learning_rate": 1.1000000000000001e-05,
162
+ "loss": 2.6842,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.029525032092426188,
167
+ "grad_norm": 0.6250098943710327,
168
+ "learning_rate": 1.1500000000000002e-05,
169
+ "loss": 2.6476,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.03080872913992298,
174
+ "grad_norm": 0.6331678032875061,
175
+ "learning_rate": 1.2e-05,
176
+ "loss": 2.6339,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.03209242618741977,
181
+ "grad_norm": 0.4726584255695343,
182
+ "learning_rate": 1.25e-05,
183
+ "loss": 2.5994,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.03337612323491656,
188
+ "grad_norm": 0.46077489852905273,
189
+ "learning_rate": 1.3000000000000001e-05,
190
+ "loss": 2.5545,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.03465982028241335,
195
+ "grad_norm": 0.5746111273765564,
196
+ "learning_rate": 1.3500000000000001e-05,
197
+ "loss": 2.5542,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.03594351732991014,
202
+ "grad_norm": 0.47136253118515015,
203
+ "learning_rate": 1.4000000000000001e-05,
204
+ "loss": 2.6138,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.037227214377406934,
209
+ "grad_norm": 0.5951219797134399,
210
+ "learning_rate": 1.45e-05,
211
+ "loss": 2.5941,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.038510911424903725,
216
+ "grad_norm": 0.48593708872795105,
217
+ "learning_rate": 1.5e-05,
218
+ "loss": 2.5751,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.03979460847240052,
223
+ "grad_norm": 0.482264906167984,
224
+ "learning_rate": 1.55e-05,
225
+ "loss": 2.5689,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.0410783055198973,
230
+ "grad_norm": 0.4937015175819397,
231
+ "learning_rate": 1.6000000000000003e-05,
232
+ "loss": 2.5559,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.04236200256739409,
237
+ "grad_norm": 0.5136978030204773,
238
+ "learning_rate": 1.65e-05,
239
+ "loss": 2.5274,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.043645699614890884,
244
+ "grad_norm": 0.40434661507606506,
245
+ "learning_rate": 1.7000000000000003e-05,
246
+ "loss": 2.4391,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.044929396662387676,
251
+ "grad_norm": 0.49542951583862305,
252
+ "learning_rate": 1.75e-05,
253
+ "loss": 2.5738,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.04621309370988447,
258
+ "grad_norm": 0.4381186366081238,
259
+ "learning_rate": 1.8e-05,
260
+ "loss": 2.5095,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.04749679075738126,
265
+ "grad_norm": 0.486103892326355,
266
+ "learning_rate": 1.85e-05,
267
+ "loss": 2.6173,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.04878048780487805,
272
+ "grad_norm": 0.4313197135925293,
273
+ "learning_rate": 1.9e-05,
274
+ "loss": 2.4951,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.05006418485237484,
279
+ "grad_norm": 0.4211004078388214,
280
+ "learning_rate": 1.9500000000000003e-05,
281
+ "loss": 2.5469,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.051347881899871634,
286
+ "grad_norm": 0.44780072569847107,
287
+ "learning_rate": 2e-05,
288
+ "loss": 2.4437,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.05263157894736842,
293
+ "grad_norm": 0.44611668586730957,
294
+ "learning_rate": 2.05e-05,
295
+ "loss": 2.4795,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.05391527599486521,
300
+ "grad_norm": 0.4598286747932434,
301
+ "learning_rate": 2.1e-05,
302
+ "loss": 2.4786,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.055198973042362,
307
+ "grad_norm": 0.4416978061199188,
308
+ "learning_rate": 2.15e-05,
309
+ "loss": 2.453,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.05648267008985879,
314
+ "grad_norm": 0.4136359989643097,
315
+ "learning_rate": 2.2000000000000003e-05,
316
+ "loss": 2.4975,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.057766367137355584,
321
+ "grad_norm": 0.44032955169677734,
322
+ "learning_rate": 2.25e-05,
323
+ "loss": 2.411,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.059050064184852376,
328
+ "grad_norm": 0.49505728483200073,
329
+ "learning_rate": 2.3000000000000003e-05,
330
+ "loss": 2.5049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.06033376123234917,
335
+ "grad_norm": 0.43698814511299133,
336
+ "learning_rate": 2.35e-05,
337
+ "loss": 2.5828,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.06161745827984596,
342
+ "grad_norm": 0.44550350308418274,
343
+ "learning_rate": 2.4e-05,
344
+ "loss": 2.4326,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.06290115532734275,
349
+ "grad_norm": 0.38959425687789917,
350
+ "learning_rate": 2.45e-05,
351
+ "loss": 2.4684,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.06418485237483953,
356
+ "grad_norm": 0.4324244260787964,
357
+ "learning_rate": 2.5e-05,
358
+ "loss": 2.4496,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.06546854942233633,
363
+ "grad_norm": 0.4213118553161621,
364
+ "learning_rate": 2.5500000000000003e-05,
365
+ "loss": 2.4742,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.06675224646983312,
370
+ "grad_norm": 0.5279268622398376,
371
+ "learning_rate": 2.6000000000000002e-05,
372
+ "loss": 2.4222,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.06803594351732992,
377
+ "grad_norm": 0.40476322174072266,
378
+ "learning_rate": 2.6500000000000004e-05,
379
+ "loss": 2.4224,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.0693196405648267,
384
+ "grad_norm": 0.6938806176185608,
385
+ "learning_rate": 2.7000000000000002e-05,
386
+ "loss": 2.4194,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.07060333761232349,
391
+ "grad_norm": 0.43899399042129517,
392
+ "learning_rate": 2.7500000000000004e-05,
393
+ "loss": 2.4288,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.07188703465982028,
398
+ "grad_norm": 0.3968575596809387,
399
+ "learning_rate": 2.8000000000000003e-05,
400
+ "loss": 2.3968,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.07317073170731707,
405
+ "grad_norm": 0.6113290786743164,
406
+ "learning_rate": 2.8499999999999998e-05,
407
+ "loss": 2.3924,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.07445442875481387,
412
+ "grad_norm": 0.35704493522644043,
413
+ "learning_rate": 2.9e-05,
414
+ "loss": 2.4004,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.07573812580231065,
419
+ "grad_norm": 0.3809000551700592,
420
+ "learning_rate": 2.95e-05,
421
+ "loss": 2.4303,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.07702182284980745,
426
+ "grad_norm": 0.4394189715385437,
427
+ "learning_rate": 3e-05,
428
+ "loss": 2.4716,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.07830551989730423,
433
+ "grad_norm": 0.4325893521308899,
434
+ "learning_rate": 3.05e-05,
435
+ "loss": 2.4715,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.07958921694480103,
440
+ "grad_norm": 0.3560517728328705,
441
+ "learning_rate": 3.1e-05,
442
+ "loss": 2.4745,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.08087291399229782,
447
+ "grad_norm": 0.37922918796539307,
448
+ "learning_rate": 3.15e-05,
449
+ "loss": 2.4789,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.0821566110397946,
454
+ "grad_norm": 0.3665093779563904,
455
+ "learning_rate": 3.2000000000000005e-05,
456
+ "loss": 2.4829,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.0834403080872914,
461
+ "grad_norm": 0.38106483221054077,
462
+ "learning_rate": 3.2500000000000004e-05,
463
+ "loss": 2.4203,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.08472400513478819,
468
+ "grad_norm": 0.5111002326011658,
469
+ "learning_rate": 3.3e-05,
470
+ "loss": 2.3302,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.08600770218228498,
475
+ "grad_norm": 0.37738922238349915,
476
+ "learning_rate": 3.35e-05,
477
+ "loss": 2.4991,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.08729139922978177,
482
+ "grad_norm": 0.34703031182289124,
483
+ "learning_rate": 3.4000000000000007e-05,
484
+ "loss": 2.4224,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.08857509627727857,
489
+ "grad_norm": 0.48427700996398926,
490
+ "learning_rate": 3.45e-05,
491
+ "loss": 2.3946,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.08985879332477535,
496
+ "grad_norm": 0.360221266746521,
497
+ "learning_rate": 3.5e-05,
498
+ "loss": 2.4853,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.09114249037227215,
503
+ "grad_norm": 0.4006412625312805,
504
+ "learning_rate": 3.55e-05,
505
+ "loss": 2.4654,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.09242618741976893,
510
+ "grad_norm": 0.3662618398666382,
511
+ "learning_rate": 3.6e-05,
512
+ "loss": 2.434,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.09370988446726572,
517
+ "grad_norm": 0.3694933354854584,
518
+ "learning_rate": 3.65e-05,
519
+ "loss": 2.4194,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.09499358151476252,
524
+ "grad_norm": 0.34268808364868164,
525
+ "learning_rate": 3.7e-05,
526
+ "loss": 2.4922,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.0962772785622593,
531
+ "grad_norm": 0.3664718270301819,
532
+ "learning_rate": 3.7500000000000003e-05,
533
+ "loss": 2.4083,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.0975609756097561,
538
+ "grad_norm": 0.3909706473350525,
539
+ "learning_rate": 3.8e-05,
540
+ "loss": 2.4546,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.09884467265725289,
545
+ "grad_norm": 0.36276674270629883,
546
+ "learning_rate": 3.85e-05,
547
+ "loss": 2.5313,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.10012836970474968,
552
+ "grad_norm": 0.34822535514831543,
553
+ "learning_rate": 3.9000000000000006e-05,
554
+ "loss": 2.4833,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.10141206675224647,
559
+ "grad_norm": 0.37480583786964417,
560
+ "learning_rate": 3.9500000000000005e-05,
561
+ "loss": 2.449,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.10269576379974327,
566
+ "grad_norm": 0.3415388762950897,
567
+ "learning_rate": 4e-05,
568
+ "loss": 2.3953,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.10397946084724005,
573
+ "grad_norm": 0.3487205505371094,
574
+ "learning_rate": 4.05e-05,
575
+ "loss": 2.4469,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.10526315789473684,
580
+ "grad_norm": 0.5083756446838379,
581
+ "learning_rate": 4.1e-05,
582
+ "loss": 2.3423,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.10654685494223363,
587
+ "grad_norm": 0.3747817575931549,
588
+ "learning_rate": 4.15e-05,
589
+ "loss": 2.3919,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.10783055198973042,
594
+ "grad_norm": 0.39472389221191406,
595
+ "learning_rate": 4.2e-05,
596
+ "loss": 2.5431,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.10911424903722722,
601
+ "grad_norm": 0.36542952060699463,
602
+ "learning_rate": 4.25e-05,
603
+ "loss": 2.3858,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.110397946084724,
608
+ "grad_norm": 0.34629878401756287,
609
+ "learning_rate": 4.3e-05,
610
+ "loss": 2.3528,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.1116816431322208,
615
+ "grad_norm": 0.36755290627479553,
616
+ "learning_rate": 4.35e-05,
617
+ "loss": 2.5329,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.11296534017971759,
622
+ "grad_norm": 0.3599033057689667,
623
+ "learning_rate": 4.4000000000000006e-05,
624
+ "loss": 2.4971,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.11424903722721438,
629
+ "grad_norm": 0.3730204701423645,
630
+ "learning_rate": 4.4500000000000004e-05,
631
+ "loss": 2.4082,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.11553273427471117,
636
+ "grad_norm": 0.3773551881313324,
637
+ "learning_rate": 4.5e-05,
638
+ "loss": 2.3393,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.11681643132220795,
643
+ "grad_norm": 0.36052408814430237,
644
+ "learning_rate": 4.55e-05,
645
+ "loss": 2.3799,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.11810012836970475,
650
+ "grad_norm": 0.32685768604278564,
651
+ "learning_rate": 4.600000000000001e-05,
652
+ "loss": 2.4284,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.11938382541720154,
657
+ "grad_norm": 0.36063292622566223,
658
+ "learning_rate": 4.6500000000000005e-05,
659
+ "loss": 2.3903,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.12066752246469833,
664
+ "grad_norm": 0.3656150698661804,
665
+ "learning_rate": 4.7e-05,
666
+ "loss": 2.4378,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.12195121951219512,
671
+ "grad_norm": 0.3563483655452728,
672
+ "learning_rate": 4.75e-05,
673
+ "loss": 2.4082,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.12323491655969192,
678
+ "grad_norm": 0.35744163393974304,
679
+ "learning_rate": 4.8e-05,
680
+ "loss": 2.3979,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.1245186136071887,
685
+ "grad_norm": 0.3400294780731201,
686
+ "learning_rate": 4.85e-05,
687
+ "loss": 2.4419,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.1258023106546855,
692
+ "grad_norm": 0.3691268265247345,
693
+ "learning_rate": 4.9e-05,
694
+ "loss": 2.4671,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.12708600770218229,
699
+ "grad_norm": 0.3483717739582062,
700
+ "learning_rate": 4.9500000000000004e-05,
701
+ "loss": 2.3947,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.12836970474967907,
706
+ "grad_norm": 0.3494178354740143,
707
+ "learning_rate": 5e-05,
708
+ "loss": 2.4063,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.12965340179717585,
713
+ "grad_norm": 0.3814634680747986,
714
+ "learning_rate": 4.9999986437272225e-05,
715
+ "loss": 2.4832,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.13093709884467267,
720
+ "grad_norm": 0.378907710313797,
721
+ "learning_rate": 4.999994574910364e-05,
722
+ "loss": 2.3272,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.13222079589216945,
727
+ "grad_norm": 0.3730032444000244,
728
+ "learning_rate": 4.999987793553836e-05,
729
+ "loss": 2.3965,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.13350449293966624,
734
+ "grad_norm": 0.3670955002307892,
735
+ "learning_rate": 4.9999782996649994e-05,
736
+ "loss": 2.4565,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.13478818998716302,
741
+ "grad_norm": 0.36450427770614624,
742
+ "learning_rate": 4.999966093254153e-05,
743
+ "loss": 2.5079,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.13607188703465983,
748
+ "grad_norm": 0.38658779859542847,
749
+ "learning_rate": 4.9999511743345426e-05,
750
+ "loss": 2.4775,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.13735558408215662,
755
+ "grad_norm": 0.33551573753356934,
756
+ "learning_rate": 4.999933542922354e-05,
757
+ "loss": 2.461,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.1386392811296534,
762
+ "grad_norm": 0.3854399025440216,
763
+ "learning_rate": 4.999913199036719e-05,
764
+ "loss": 2.4075,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.1399229781771502,
769
+ "grad_norm": 0.3932352364063263,
770
+ "learning_rate": 4.9998901426997104e-05,
771
+ "loss": 2.4311,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.14120667522464697,
776
+ "grad_norm": 0.3379668593406677,
777
+ "learning_rate": 4.999864373936345e-05,
778
+ "loss": 2.5016,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.14249037227214378,
783
+ "grad_norm": 0.32840296626091003,
784
+ "learning_rate": 4.9998358927745826e-05,
785
+ "loss": 2.3176,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.14377406931964057,
790
+ "grad_norm": 0.3191027343273163,
791
+ "learning_rate": 4.999804699245325e-05,
792
+ "loss": 2.4007,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.14505776636713735,
797
+ "grad_norm": 0.3358600437641144,
798
+ "learning_rate": 4.999770793382418e-05,
799
+ "loss": 2.3724,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.14634146341463414,
804
+ "grad_norm": 0.335860937833786,
805
+ "learning_rate": 4.99973417522265e-05,
806
+ "loss": 2.3479,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.14762516046213095,
811
+ "grad_norm": 0.34540730714797974,
812
+ "learning_rate": 4.999694844805753e-05,
813
+ "loss": 2.3675,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.14890885750962773,
818
+ "grad_norm": 0.3298475742340088,
819
+ "learning_rate": 4.999652802174402e-05,
820
+ "loss": 2.3948,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.15019255455712452,
825
+ "grad_norm": 0.3612127900123596,
826
+ "learning_rate": 4.999608047374211e-05,
827
+ "loss": 2.3855,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.1514762516046213,
832
+ "grad_norm": 0.4185655415058136,
833
+ "learning_rate": 4.9995605804537426e-05,
834
+ "loss": 2.4015,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.1527599486521181,
839
+ "grad_norm": 0.3759553134441376,
840
+ "learning_rate": 4.9995104014644986e-05,
841
+ "loss": 2.4483,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.1540436456996149,
846
+ "grad_norm": 0.35989564657211304,
847
+ "learning_rate": 4.999457510460923e-05,
848
+ "loss": 2.4974,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.15532734274711169,
853
+ "grad_norm": 0.3161202073097229,
854
+ "learning_rate": 4.999401907500405e-05,
855
+ "loss": 2.3712,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.15661103979460847,
860
+ "grad_norm": 0.3105814456939697,
861
+ "learning_rate": 4.999343592643274e-05,
862
+ "loss": 2.4311,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.15789473684210525,
867
+ "grad_norm": 0.3236968517303467,
868
+ "learning_rate": 4.9992825659528024e-05,
869
+ "loss": 2.5536,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.15917843388960207,
874
+ "grad_norm": 0.3107609748840332,
875
+ "learning_rate": 4.9992188274952064e-05,
876
+ "loss": 2.3922,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.16046213093709885,
881
+ "grad_norm": 0.39889928698539734,
882
+ "learning_rate": 4.999152377339642e-05,
883
+ "loss": 2.3488,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.16174582798459564,
888
+ "grad_norm": 0.379323273897171,
889
+ "learning_rate": 4.99908321555821e-05,
890
+ "loss": 2.5278,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.16302952503209242,
895
+ "grad_norm": 0.35020819306373596,
896
+ "learning_rate": 4.999011342225952e-05,
897
+ "loss": 2.3139,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.1643132220795892,
902
+ "grad_norm": 0.34851884841918945,
903
+ "learning_rate": 4.998936757420851e-05,
904
+ "loss": 2.3495,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.16559691912708602,
909
+ "grad_norm": 0.3453572392463684,
910
+ "learning_rate": 4.9988594612238336e-05,
911
+ "loss": 2.4128,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.1668806161745828,
916
+ "grad_norm": 0.34227538108825684,
917
+ "learning_rate": 4.998779453718768e-05,
918
+ "loss": 2.3419,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.1681643132220796,
923
+ "grad_norm": 0.3947238028049469,
924
+ "learning_rate": 4.998696734992462e-05,
925
+ "loss": 2.3941,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.16944801026957637,
930
+ "grad_norm": 0.306533545255661,
931
+ "learning_rate": 4.998611305134669e-05,
932
+ "loss": 2.4645,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.17073170731707318,
937
+ "grad_norm": 0.35172709822654724,
938
+ "learning_rate": 4.998523164238082e-05,
939
+ "loss": 2.4407,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.17201540436456997,
944
+ "grad_norm": 0.34511688351631165,
945
+ "learning_rate": 4.9984323123983334e-05,
946
+ "loss": 2.3815,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.17329910141206675,
951
+ "grad_norm": 0.33132505416870117,
952
+ "learning_rate": 4.9983387497140006e-05,
953
+ "loss": 2.3548,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.17458279845956354,
958
+ "grad_norm": 0.32891082763671875,
959
+ "learning_rate": 4.998242476286601e-05,
960
+ "loss": 2.5308,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.17586649550706032,
965
+ "grad_norm": 0.331152081489563,
966
+ "learning_rate": 4.998143492220592e-05,
967
+ "loss": 2.3858,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.17715019255455713,
972
+ "grad_norm": 0.31813687086105347,
973
+ "learning_rate": 4.9980417976233735e-05,
974
+ "loss": 2.3136,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.17843388960205392,
979
+ "grad_norm": 0.3268696069717407,
980
+ "learning_rate": 4.9979373926052865e-05,
981
+ "loss": 2.3133,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.1797175866495507,
986
+ "grad_norm": 0.3389696180820465,
987
+ "learning_rate": 4.997830277279612e-05,
988
+ "loss": 2.3983,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.1810012836970475,
993
+ "grad_norm": 0.3515508770942688,
994
+ "learning_rate": 4.997720451762572e-05,
995
+ "loss": 2.4848,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.1822849807445443,
1000
+ "grad_norm": 0.3302924335002899,
1001
+ "learning_rate": 4.997607916173329e-05,
1002
+ "loss": 2.3037,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.18356867779204109,
1007
+ "grad_norm": 0.3332863450050354,
1008
+ "learning_rate": 4.997492670633987e-05,
1009
+ "loss": 2.3563,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.18485237483953787,
1014
+ "grad_norm": 0.3398495614528656,
1015
+ "learning_rate": 4.997374715269589e-05,
1016
+ "loss": 2.4056,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.18613607188703465,
1021
+ "grad_norm": 0.3376169502735138,
1022
+ "learning_rate": 4.9972540502081184e-05,
1023
+ "loss": 2.3751,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.18741976893453144,
1028
+ "grad_norm": 0.33639830350875854,
1029
+ "learning_rate": 4.9971306755804995e-05,
1030
+ "loss": 2.432,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.18870346598202825,
1035
+ "grad_norm": 0.410265177488327,
1036
+ "learning_rate": 4.9970045915205954e-05,
1037
+ "loss": 2.3647,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.18998716302952504,
1042
+ "grad_norm": 0.31853362917900085,
1043
+ "learning_rate": 4.99687579816521e-05,
1044
+ "loss": 2.4224,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.19127086007702182,
1049
+ "grad_norm": 0.3495614230632782,
1050
+ "learning_rate": 4.9967442956540863e-05,
1051
+ "loss": 2.3961,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.1925545571245186,
1056
+ "grad_norm": 0.33301132917404175,
1057
+ "learning_rate": 4.996610084129908e-05,
1058
+ "loss": 2.359,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.19383825417201542,
1063
+ "grad_norm": 0.3186255395412445,
1064
+ "learning_rate": 4.996473163738295e-05,
1065
+ "loss": 2.4488,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.1951219512195122,
1070
+ "grad_norm": 0.3374113142490387,
1071
+ "learning_rate": 4.996333534627809e-05,
1072
+ "loss": 2.4019,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.196405648267009,
1077
+ "grad_norm": 0.33905014395713806,
1078
+ "learning_rate": 4.996191196949952e-05,
1079
+ "loss": 2.3272,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.19768934531450577,
1084
+ "grad_norm": 0.3546963036060333,
1085
+ "learning_rate": 4.996046150859161e-05,
1086
+ "loss": 2.4338,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.19897304236200256,
1091
+ "grad_norm": 0.35965755581855774,
1092
+ "learning_rate": 4.9958983965128145e-05,
1093
+ "loss": 2.3634,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.20025673940949937,
1098
+ "grad_norm": 0.3362196385860443,
1099
+ "learning_rate": 4.995747934071229e-05,
1100
+ "loss": 2.4457,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.20154043645699615,
1105
+ "grad_norm": 0.37214434146881104,
1106
+ "learning_rate": 4.995594763697657e-05,
1107
+ "loss": 2.3714,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.20282413350449294,
1112
+ "grad_norm": 0.3538600206375122,
1113
+ "learning_rate": 4.995438885558294e-05,
1114
+ "loss": 2.4338,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.20410783055198972,
1119
+ "grad_norm": 0.3853035569190979,
1120
+ "learning_rate": 4.995280299822268e-05,
1121
+ "loss": 2.4036,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.20539152759948653,
1126
+ "grad_norm": 0.35037294030189514,
1127
+ "learning_rate": 4.9951190066616495e-05,
1128
+ "loss": 2.3846,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.20667522464698332,
1133
+ "grad_norm": 0.3986567556858063,
1134
+ "learning_rate": 4.994955006251443e-05,
1135
+ "loss": 2.4405,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.2079589216944801,
1140
+ "grad_norm": 0.385637491941452,
1141
+ "learning_rate": 4.994788298769593e-05,
1142
+ "loss": 2.3237,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.2092426187419769,
1147
+ "grad_norm": 0.34437429904937744,
1148
+ "learning_rate": 4.994618884396979e-05,
1149
+ "loss": 2.3477,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.21052631578947367,
1154
+ "grad_norm": 0.34156107902526855,
1155
+ "learning_rate": 4.99444676331742e-05,
1156
+ "loss": 2.3576,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.21181001283697048,
1161
+ "grad_norm": 0.33888015151023865,
1162
+ "learning_rate": 4.99427193571767e-05,
1163
+ "loss": 2.311,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.21309370988446727,
1168
+ "grad_norm": 0.34711146354675293,
1169
+ "learning_rate": 4.99409440178742e-05,
1170
+ "loss": 2.293,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.21437740693196405,
1175
+ "grad_norm": 0.30586686730384827,
1176
+ "learning_rate": 4.993914161719297e-05,
1177
+ "loss": 2.479,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.21566110397946084,
1182
+ "grad_norm": 0.4145469069480896,
1183
+ "learning_rate": 4.993731215708866e-05,
1184
+ "loss": 2.2754,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.21694480102695765,
1189
+ "grad_norm": 0.6243994235992432,
1190
+ "learning_rate": 4.993545563954626e-05,
1191
+ "loss": 2.3751,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.21822849807445444,
1196
+ "grad_norm": 0.3301653265953064,
1197
+ "learning_rate": 4.993357206658011e-05,
1198
+ "loss": 2.6124,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.21951219512195122,
1203
+ "grad_norm": 0.337147980928421,
1204
+ "learning_rate": 4.993166144023396e-05,
1205
+ "loss": 2.3946,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.220795892169448,
1210
+ "grad_norm": 0.3796294033527374,
1211
+ "learning_rate": 4.9929723762580835e-05,
1212
+ "loss": 2.3314,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.2220795892169448,
1217
+ "grad_norm": 0.4021480679512024,
1218
+ "learning_rate": 4.9927759035723175e-05,
1219
+ "loss": 2.3035,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.2233632862644416,
1224
+ "grad_norm": 0.3196207582950592,
1225
+ "learning_rate": 4.992576726179274e-05,
1226
+ "loss": 2.4047,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.2246469833119384,
1231
+ "grad_norm": 0.31279096007347107,
1232
+ "learning_rate": 4.992374844295064e-05,
1233
+ "loss": 2.4409,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.22593068035943517,
1238
+ "grad_norm": 0.3068607747554779,
1239
+ "learning_rate": 4.992170258138732e-05,
1240
+ "loss": 2.4109,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.22721437740693196,
1245
+ "grad_norm": 0.35363098978996277,
1246
+ "learning_rate": 4.991962967932258e-05,
1247
+ "loss": 2.4083,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.22849807445442877,
1252
+ "grad_norm": 0.33908936381340027,
1253
+ "learning_rate": 4.9917529739005574e-05,
1254
+ "loss": 2.4129,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.22978177150192555,
1259
+ "grad_norm": 0.32510805130004883,
1260
+ "learning_rate": 4.991540276271476e-05,
1261
+ "loss": 2.3163,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.23106546854942234,
1266
+ "grad_norm": 0.32639047503471375,
1267
+ "learning_rate": 4.991324875275794e-05,
1268
+ "loss": 2.3567,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.23234916559691912,
1273
+ "grad_norm": 0.3410406708717346,
1274
+ "learning_rate": 4.991106771147227e-05,
1275
+ "loss": 2.4137,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.2336328626444159,
1280
+ "grad_norm": 0.3334997892379761,
1281
+ "learning_rate": 4.990885964122421e-05,
1282
+ "loss": 2.3994,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.23491655969191272,
1287
+ "grad_norm": 0.3203848600387573,
1288
+ "learning_rate": 4.990662454440956e-05,
1289
+ "loss": 2.4259,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.2362002567394095,
1294
+ "grad_norm": 0.34999069571495056,
1295
+ "learning_rate": 4.9904362423453446e-05,
1296
+ "loss": 2.413,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.2374839537869063,
1301
+ "grad_norm": 0.3413456678390503,
1302
+ "learning_rate": 4.990207328081029e-05,
1303
+ "loss": 2.3749,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.23876765083440307,
1308
+ "grad_norm": 0.3702191114425659,
1309
+ "learning_rate": 4.989975711896388e-05,
1310
+ "loss": 2.4309,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.24005134788189988,
1315
+ "grad_norm": 0.3365226089954376,
1316
+ "learning_rate": 4.989741394042727e-05,
1317
+ "loss": 2.3708,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.24133504492939667,
1322
+ "grad_norm": 0.36596447229385376,
1323
+ "learning_rate": 4.989504374774288e-05,
1324
+ "loss": 2.4387,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.24261874197689345,
1329
+ "grad_norm": 0.3280293941497803,
1330
+ "learning_rate": 4.9892646543482377e-05,
1331
+ "loss": 2.498,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.24390243902439024,
1336
+ "grad_norm": 0.35989147424697876,
1337
+ "learning_rate": 4.989022233024681e-05,
1338
+ "loss": 2.4993,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.24518613607188702,
1343
+ "grad_norm": 0.3124522268772125,
1344
+ "learning_rate": 4.988777111066646e-05,
1345
+ "loss": 2.3186,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.24646983311938384,
1350
+ "grad_norm": 0.32323285937309265,
1351
+ "learning_rate": 4.988529288740096e-05,
1352
+ "loss": 2.3859,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.24775353016688062,
1357
+ "grad_norm": 0.33156561851501465,
1358
+ "learning_rate": 4.988278766313922e-05,
1359
+ "loss": 2.3271,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.2490372272143774,
1364
+ "grad_norm": 0.32494014501571655,
1365
+ "learning_rate": 4.9880255440599476e-05,
1366
+ "loss": 2.4023,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.2503209242618742,
1371
+ "grad_norm": 0.3906209468841553,
1372
+ "learning_rate": 4.987769622252921e-05,
1373
+ "loss": 2.4245,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.251604621309371,
1378
+ "grad_norm": 0.3735322952270508,
1379
+ "learning_rate": 4.987511001170523e-05,
1380
+ "loss": 2.4883,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.25288831835686776,
1385
+ "grad_norm": 0.30935361981391907,
1386
+ "learning_rate": 4.987249681093362e-05,
1387
+ "loss": 2.5118,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.25417201540436457,
1392
+ "grad_norm": 0.34933099150657654,
1393
+ "learning_rate": 4.986985662304976e-05,
1394
+ "loss": 2.3138,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.2554557124518614,
1399
+ "grad_norm": 0.3328215777873993,
1400
+ "learning_rate": 4.9867189450918294e-05,
1401
+ "loss": 2.4475,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.25673940949935814,
1406
+ "grad_norm": 0.3271300494670868,
1407
+ "learning_rate": 4.986449529743314e-05,
1408
+ "loss": 2.4156,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.25802310654685495,
1413
+ "grad_norm": 0.296889990568161,
1414
+ "learning_rate": 4.9861774165517536e-05,
1415
+ "loss": 2.4117,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.2593068035943517,
1420
+ "grad_norm": 0.31897205114364624,
1421
+ "learning_rate": 4.9859026058123925e-05,
1422
+ "loss": 2.4637,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.2605905006418485,
1427
+ "grad_norm": 0.320688933134079,
1428
+ "learning_rate": 4.985625097823408e-05,
1429
+ "loss": 2.3865,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.26187419768934533,
1434
+ "grad_norm": 0.29705896973609924,
1435
+ "learning_rate": 4.985344892885899e-05,
1436
+ "loss": 2.365,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.2631578947368421,
1441
+ "grad_norm": 0.32413363456726074,
1442
+ "learning_rate": 4.985061991303895e-05,
1443
+ "loss": 2.4379,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.2644415917843389,
1448
+ "grad_norm": 0.38111138343811035,
1449
+ "learning_rate": 4.984776393384348e-05,
1450
+ "loss": 2.4303,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.26572528883183566,
1455
+ "grad_norm": 0.34943342208862305,
1456
+ "learning_rate": 4.984488099437138e-05,
1457
+ "loss": 2.3508,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.26700898587933247,
1462
+ "grad_norm": 0.34694743156433105,
1463
+ "learning_rate": 4.984197109775068e-05,
1464
+ "loss": 2.4488,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.2682926829268293,
1469
+ "grad_norm": 0.3251892626285553,
1470
+ "learning_rate": 4.983903424713868e-05,
1471
+ "loss": 2.4187,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.26957637997432604,
1476
+ "grad_norm": 0.34391969442367554,
1477
+ "learning_rate": 4.9836070445721924e-05,
1478
+ "loss": 2.4723,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.27086007702182285,
1483
+ "grad_norm": 0.32182154059410095,
1484
+ "learning_rate": 4.983307969671617e-05,
1485
+ "loss": 2.4282,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.27214377406931967,
1490
+ "grad_norm": 0.3486088514328003,
1491
+ "learning_rate": 4.983006200336645e-05,
1492
+ "loss": 2.4411,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.2734274711168164,
1497
+ "grad_norm": 0.3152271807193756,
1498
+ "learning_rate": 4.9827017368947e-05,
1499
+ "loss": 2.3362,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.27471116816431324,
1504
+ "grad_norm": 0.30361658334732056,
1505
+ "learning_rate": 4.982394579676133e-05,
1506
+ "loss": 2.34,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.27599486521181,
1511
+ "grad_norm": 0.3163071274757385,
1512
+ "learning_rate": 4.9820847290142135e-05,
1513
+ "loss": 2.3996,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.2772785622593068,
1518
+ "grad_norm": 0.319831907749176,
1519
+ "learning_rate": 4.981772185245135e-05,
1520
+ "loss": 2.352,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.2785622593068036,
1525
+ "grad_norm": 0.34143316745758057,
1526
+ "learning_rate": 4.981456948708014e-05,
1527
+ "loss": 2.2837,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.2798459563543004,
1532
+ "grad_norm": 0.3066380023956299,
1533
+ "learning_rate": 4.981139019744887e-05,
1534
+ "loss": 2.3848,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.2811296534017972,
1539
+ "grad_norm": 0.32719743251800537,
1540
+ "learning_rate": 4.9808183987007136e-05,
1541
+ "loss": 2.3845,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.28241335044929394,
1546
+ "grad_norm": 0.384798526763916,
1547
+ "learning_rate": 4.980495085923372e-05,
1548
+ "loss": 2.3767,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.28369704749679076,
1553
+ "grad_norm": 0.4263782799243927,
1554
+ "learning_rate": 4.980169081763665e-05,
1555
+ "loss": 2.3342,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.28498074454428757,
1560
+ "grad_norm": 0.3271712064743042,
1561
+ "learning_rate": 4.979840386575311e-05,
1562
+ "loss": 2.4539,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.2862644415917843,
1567
+ "grad_norm": 0.35880088806152344,
1568
+ "learning_rate": 4.97950900071495e-05,
1569
+ "loss": 2.3488,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.28754813863928114,
1574
+ "grad_norm": 0.30669230222702026,
1575
+ "learning_rate": 4.9791749245421434e-05,
1576
+ "loss": 2.4084,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.2888318356867779,
1581
+ "grad_norm": 0.34398922324180603,
1582
+ "learning_rate": 4.9788381584193684e-05,
1583
+ "loss": 2.3226,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.2901155327342747,
1588
+ "grad_norm": 0.3699093163013458,
1589
+ "learning_rate": 4.9784987027120236e-05,
1590
+ "loss": 2.3608,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.2913992297817715,
1595
+ "grad_norm": 0.3445926010608673,
1596
+ "learning_rate": 4.978156557788424e-05,
1597
+ "loss": 2.3771,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.2926829268292683,
1602
+ "grad_norm": 0.33999142050743103,
1603
+ "learning_rate": 4.977811724019802e-05,
1604
+ "loss": 2.3541,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.2939666238767651,
1609
+ "grad_norm": 0.3054107427597046,
1610
+ "learning_rate": 4.9774642017803106e-05,
1611
+ "loss": 2.4764,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.2952503209242619,
1616
+ "grad_norm": 0.3072315454483032,
1617
+ "learning_rate": 4.977113991447017e-05,
1618
+ "loss": 2.3055,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.29653401797175866,
1623
+ "grad_norm": 0.3254982531070709,
1624
+ "learning_rate": 4.9767610933999055e-05,
1625
+ "loss": 2.4659,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.29781771501925547,
1630
+ "grad_norm": 0.2930049002170563,
1631
+ "learning_rate": 4.976405508021877e-05,
1632
+ "loss": 2.3313,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.2991014120667522,
1637
+ "grad_norm": 0.30119720101356506,
1638
+ "learning_rate": 4.976047235698747e-05,
1639
+ "loss": 2.2981,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.30038510911424904,
1644
+ "grad_norm": 0.30038225650787354,
1645
+ "learning_rate": 4.9756862768192504e-05,
1646
+ "loss": 2.2864,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.30166880616174585,
1651
+ "grad_norm": 0.29573819041252136,
1652
+ "learning_rate": 4.975322631775032e-05,
1653
+ "loss": 2.3508,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.3029525032092426,
1658
+ "grad_norm": 0.316169798374176,
1659
+ "learning_rate": 4.9749563009606534e-05,
1660
+ "loss": 2.3648,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.3042362002567394,
1665
+ "grad_norm": 0.3109273910522461,
1666
+ "learning_rate": 4.9745872847735894e-05,
1667
+ "loss": 2.5141,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.3055198973042362,
1672
+ "grad_norm": 0.34613820910453796,
1673
+ "learning_rate": 4.974215583614232e-05,
1674
+ "loss": 2.333,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.306803594351733,
1679
+ "grad_norm": 0.34924328327178955,
1680
+ "learning_rate": 4.9738411978858814e-05,
1681
+ "loss": 2.4158,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.3080872913992298,
1686
+ "grad_norm": 0.2984835207462311,
1687
+ "learning_rate": 4.9734641279947535e-05,
1688
+ "loss": 2.3817,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.30937098844672656,
1693
+ "grad_norm": 0.3265876770019531,
1694
+ "learning_rate": 4.9730843743499764e-05,
1695
+ "loss": 2.4202,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.31065468549422337,
1700
+ "grad_norm": 0.31205374002456665,
1701
+ "learning_rate": 4.9727019373635895e-05,
1702
+ "loss": 2.3492,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.3119383825417201,
1707
+ "grad_norm": 0.3619811534881592,
1708
+ "learning_rate": 4.972316817450544e-05,
1709
+ "loss": 2.481,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.31322207958921694,
1714
+ "grad_norm": 0.4126303791999817,
1715
+ "learning_rate": 4.9719290150287026e-05,
1716
+ "loss": 2.2388,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.31450577663671375,
1721
+ "grad_norm": 0.34099090099334717,
1722
+ "learning_rate": 4.971538530518836e-05,
1723
+ "loss": 2.4,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.3157894736842105,
1728
+ "grad_norm": 0.32491570711135864,
1729
+ "learning_rate": 4.971145364344628e-05,
1730
+ "loss": 2.3854,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.3170731707317073,
1735
+ "grad_norm": 0.340457022190094,
1736
+ "learning_rate": 4.970749516932672e-05,
1737
+ "loss": 2.4011,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.31835686777920413,
1742
+ "grad_norm": 0.33701422810554504,
1743
+ "learning_rate": 4.97035098871247e-05,
1744
+ "loss": 2.4188,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.3196405648267009,
1749
+ "grad_norm": 0.3307265341281891,
1750
+ "learning_rate": 4.969949780116431e-05,
1751
+ "loss": 2.4553,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.3209242618741977,
1756
+ "grad_norm": 0.38966116309165955,
1757
+ "learning_rate": 4.969545891579873e-05,
1758
+ "loss": 2.3657,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.32220795892169446,
1763
+ "grad_norm": 0.36796143651008606,
1764
+ "learning_rate": 4.969139323541025e-05,
1765
+ "loss": 2.3044,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.32349165596919127,
1770
+ "grad_norm": 0.32584547996520996,
1771
+ "learning_rate": 4.968730076441017e-05,
1772
+ "loss": 2.4064,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.3247753530166881,
1777
+ "grad_norm": 0.3360714316368103,
1778
+ "learning_rate": 4.968318150723893e-05,
1779
+ "loss": 2.4243,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.32605905006418484,
1784
+ "grad_norm": 0.3058249056339264,
1785
+ "learning_rate": 4.9679035468365986e-05,
1786
+ "loss": 2.3598,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.32734274711168165,
1791
+ "grad_norm": 0.32182779908180237,
1792
+ "learning_rate": 4.9674862652289865e-05,
1793
+ "loss": 2.3469,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.3286264441591784,
1798
+ "grad_norm": 0.39011824131011963,
1799
+ "learning_rate": 4.967066306353816e-05,
1800
+ "loss": 2.4215,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.3299101412066752,
1805
+ "grad_norm": 0.3215901553630829,
1806
+ "learning_rate": 4.966643670666748e-05,
1807
+ "loss": 2.396,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.33119383825417203,
1812
+ "grad_norm": 0.3239218592643738,
1813
+ "learning_rate": 4.9662183586263514e-05,
1814
+ "loss": 2.4271,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.3324775353016688,
1819
+ "grad_norm": 0.33229637145996094,
1820
+ "learning_rate": 4.965790370694097e-05,
1821
+ "loss": 2.4345,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.3337612323491656,
1826
+ "grad_norm": 0.36766308546066284,
1827
+ "learning_rate": 4.9653597073343594e-05,
1828
+ "loss": 2.4257,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.33504492939666236,
1833
+ "grad_norm": 0.33887600898742676,
1834
+ "learning_rate": 4.964926369014417e-05,
1835
+ "loss": 2.4391,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.3363286264441592,
1840
+ "grad_norm": 0.3224686086177826,
1841
+ "learning_rate": 4.964490356204449e-05,
1842
+ "loss": 2.3664,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.337612323491656,
1847
+ "grad_norm": 0.3371565341949463,
1848
+ "learning_rate": 4.964051669377538e-05,
1849
+ "loss": 2.4992,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.33889602053915274,
1854
+ "grad_norm": 0.3373253345489502,
1855
+ "learning_rate": 4.963610309009665e-05,
1856
+ "loss": 2.3509,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.34017971758664955,
1861
+ "grad_norm": 0.34519249200820923,
1862
+ "learning_rate": 4.963166275579717e-05,
1863
+ "loss": 2.4388,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.34146341463414637,
1868
+ "grad_norm": 0.3187866806983948,
1869
+ "learning_rate": 4.9627195695694774e-05,
1870
+ "loss": 2.4655,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.3427471116816431,
1875
+ "grad_norm": 0.31844937801361084,
1876
+ "learning_rate": 4.962270191463629e-05,
1877
+ "loss": 2.4097,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.34403080872913994,
1882
+ "grad_norm": 0.359625905752182,
1883
+ "learning_rate": 4.9618181417497566e-05,
1884
+ "loss": 2.4364,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.3453145057766367,
1889
+ "grad_norm": 0.3335789740085602,
1890
+ "learning_rate": 4.961363420918342e-05,
1891
+ "loss": 2.2316,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.3465982028241335,
1896
+ "grad_norm": 0.3209823668003082,
1897
+ "learning_rate": 4.960906029462766e-05,
1898
+ "loss": 2.4698,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.3478818998716303,
1903
+ "grad_norm": 0.3264525532722473,
1904
+ "learning_rate": 4.960445967879307e-05,
1905
+ "loss": 2.3222,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.3491655969191271,
1910
+ "grad_norm": 0.29652708768844604,
1911
+ "learning_rate": 4.959983236667138e-05,
1912
+ "loss": 2.3258,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.3504492939666239,
1917
+ "grad_norm": 0.35058003664016724,
1918
+ "learning_rate": 4.959517836328333e-05,
1919
+ "loss": 2.3009,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.35173299101412064,
1924
+ "grad_norm": 0.29893478751182556,
1925
+ "learning_rate": 4.959049767367859e-05,
1926
+ "loss": 2.463,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.35301668806161746,
1931
+ "grad_norm": 0.3114057183265686,
1932
+ "learning_rate": 4.95857903029358e-05,
1933
+ "loss": 2.2757,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.35430038510911427,
1938
+ "grad_norm": 0.3837164640426636,
1939
+ "learning_rate": 4.958105625616253e-05,
1940
+ "loss": 2.445,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.355584082156611,
1945
+ "grad_norm": 0.3195387125015259,
1946
+ "learning_rate": 4.957629553849532e-05,
1947
+ "loss": 2.4823,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.35686777920410784,
1952
+ "grad_norm": 0.37014302611351013,
1953
+ "learning_rate": 4.957150815509963e-05,
1954
+ "loss": 2.3322,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.3581514762516046,
1959
+ "grad_norm": 0.28935369849205017,
1960
+ "learning_rate": 4.9566694111169853e-05,
1961
+ "loss": 2.4336,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.3594351732991014,
1966
+ "grad_norm": 0.3155868351459503,
1967
+ "learning_rate": 4.956185341192933e-05,
1968
+ "loss": 2.4691,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.3607188703465982,
1973
+ "grad_norm": 0.33008038997650146,
1974
+ "learning_rate": 4.955698606263028e-05,
1975
+ "loss": 2.3331,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.362002567394095,
1980
+ "grad_norm": 0.3546096086502075,
1981
+ "learning_rate": 4.95520920685539e-05,
1982
+ "loss": 2.4626,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.3632862644415918,
1987
+ "grad_norm": 0.3569015562534332,
1988
+ "learning_rate": 4.954717143501024e-05,
1989
+ "loss": 2.4165,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.3645699614890886,
1994
+ "grad_norm": 0.2979843318462372,
1995
+ "learning_rate": 4.954222416733829e-05,
1996
+ "loss": 2.3322,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.36585365853658536,
2001
+ "grad_norm": 0.43857890367507935,
2002
+ "learning_rate": 4.953725027090591e-05,
2003
+ "loss": 2.3168,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.36713735558408217,
2008
+ "grad_norm": 0.32624951004981995,
2009
+ "learning_rate": 4.953224975110988e-05,
2010
+ "loss": 2.3685,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.3684210526315789,
2015
+ "grad_norm": 0.3195008933544159,
2016
+ "learning_rate": 4.9527222613375855e-05,
2017
+ "loss": 2.4137,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.36970474967907574,
2022
+ "grad_norm": 0.362567663192749,
2023
+ "learning_rate": 4.952216886315837e-05,
2024
+ "loss": 2.2978,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.37098844672657255,
2029
+ "grad_norm": 0.31306540966033936,
2030
+ "learning_rate": 4.951708850594083e-05,
2031
+ "loss": 2.4381,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.3722721437740693,
2036
+ "grad_norm": 0.3275150954723358,
2037
+ "learning_rate": 4.951198154723552e-05,
2038
+ "loss": 2.3528,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.3735558408215661,
2043
+ "grad_norm": 0.32541584968566895,
2044
+ "learning_rate": 4.9506847992583586e-05,
2045
+ "loss": 2.5023,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.3748395378690629,
2050
+ "grad_norm": 0.3278298079967499,
2051
+ "learning_rate": 4.9501687847555016e-05,
2052
+ "loss": 2.3745,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.3761232349165597,
2057
+ "grad_norm": 0.3163221776485443,
2058
+ "learning_rate": 4.949650111774868e-05,
2059
+ "loss": 2.3451,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.3774069319640565,
2064
+ "grad_norm": 0.30997052788734436,
2065
+ "learning_rate": 4.9491287808792265e-05,
2066
+ "loss": 2.3976,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.37869062901155326,
2071
+ "grad_norm": 0.3496086597442627,
2072
+ "learning_rate": 4.948604792634229e-05,
2073
+ "loss": 2.4361,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.37997432605905007,
2078
+ "grad_norm": 0.3483693599700928,
2079
+ "learning_rate": 4.948078147608416e-05,
2080
+ "loss": 2.4022,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.38125802310654683,
2085
+ "grad_norm": 0.3135087490081787,
2086
+ "learning_rate": 4.947548846373204e-05,
2087
+ "loss": 2.3585,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.38254172015404364,
2092
+ "grad_norm": 0.323482871055603,
2093
+ "learning_rate": 4.947016889502895e-05,
2094
+ "loss": 2.3958,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.38382541720154045,
2099
+ "grad_norm": 0.3020581901073456,
2100
+ "learning_rate": 4.946482277574673e-05,
2101
+ "loss": 2.2809,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.3851091142490372,
2106
+ "grad_norm": 0.31288352608680725,
2107
+ "learning_rate": 4.9459450111686e-05,
2108
+ "loss": 2.3526,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.386392811296534,
2113
+ "grad_norm": 0.31495004892349243,
2114
+ "learning_rate": 4.945405090867621e-05,
2115
+ "loss": 2.4462,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.38767650834403083,
2120
+ "grad_norm": 0.3513999581336975,
2121
+ "learning_rate": 4.94486251725756e-05,
2122
+ "loss": 2.3795,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.3889602053915276,
2127
+ "grad_norm": 0.33559510111808777,
2128
+ "learning_rate": 4.944317290927117e-05,
2129
+ "loss": 2.3002,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.3902439024390244,
2134
+ "grad_norm": 0.3153408467769623,
2135
+ "learning_rate": 4.943769412467875e-05,
2136
+ "loss": 2.437,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.39152759948652116,
2141
+ "grad_norm": 0.3177226781845093,
2142
+ "learning_rate": 4.943218882474291e-05,
2143
+ "loss": 2.3447,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.392811296534018,
2148
+ "grad_norm": 0.3815303146839142,
2149
+ "learning_rate": 4.9426657015436994e-05,
2150
+ "loss": 2.3584,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.3940949935815148,
2155
+ "grad_norm": 0.34336403012275696,
2156
+ "learning_rate": 4.9421098702763126e-05,
2157
+ "loss": 2.2979,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.39537869062901154,
2162
+ "grad_norm": 0.33281055092811584,
2163
+ "learning_rate": 4.941551389275217e-05,
2164
+ "loss": 2.4152,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.39666238767650835,
2169
+ "grad_norm": 0.3309512138366699,
2170
+ "learning_rate": 4.9409902591463756e-05,
2171
+ "loss": 2.361,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.3979460847240051,
2176
+ "grad_norm": 0.3044840097427368,
2177
+ "learning_rate": 4.940426480498623e-05,
2178
+ "loss": 2.3172,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.3992297817715019,
2183
+ "grad_norm": 0.32050418853759766,
2184
+ "learning_rate": 4.939860053943671e-05,
2185
+ "loss": 2.374,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.40051347881899874,
2190
+ "grad_norm": 0.36678293347358704,
2191
+ "learning_rate": 4.939290980096103e-05,
2192
+ "loss": 2.3529,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.4017971758664955,
2197
+ "grad_norm": 0.32348355650901794,
2198
+ "learning_rate": 4.9387192595733734e-05,
2199
+ "loss": 2.4048,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.4030808729139923,
2204
+ "grad_norm": 0.3086166977882385,
2205
+ "learning_rate": 4.938144892995809e-05,
2206
+ "loss": 2.4091,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.40436456996148906,
2211
+ "grad_norm": 0.31869277358055115,
2212
+ "learning_rate": 4.937567880986609e-05,
2213
+ "loss": 2.3594,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.4056482670089859,
2218
+ "grad_norm": 0.317147821187973,
2219
+ "learning_rate": 4.936988224171842e-05,
2220
+ "loss": 2.2666,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.4069319640564827,
2225
+ "grad_norm": 0.32587262988090515,
2226
+ "learning_rate": 4.936405923180446e-05,
2227
+ "loss": 2.317,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.40821566110397944,
2232
+ "grad_norm": 0.3181535005569458,
2233
+ "learning_rate": 4.935820978644228e-05,
2234
+ "loss": 2.3611,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.40949935815147626,
2239
+ "grad_norm": 0.31699231266975403,
2240
+ "learning_rate": 4.9352333911978625e-05,
2241
+ "loss": 2.4676,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.41078305519897307,
2246
+ "grad_norm": 0.35386183857917786,
2247
+ "learning_rate": 4.9346431614788945e-05,
2248
+ "loss": 2.3525,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.4120667522464698,
2253
+ "grad_norm": 0.3134053647518158,
2254
+ "learning_rate": 4.934050290127733e-05,
2255
+ "loss": 2.4045,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.41335044929396664,
2260
+ "grad_norm": 0.3209103047847748,
2261
+ "learning_rate": 4.933454777787654e-05,
2262
+ "loss": 2.3606,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.4146341463414634,
2267
+ "grad_norm": 0.3191809356212616,
2268
+ "learning_rate": 4.9328566251048e-05,
2269
+ "loss": 2.4551,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.4159178433889602,
2274
+ "grad_norm": 0.2983877658843994,
2275
+ "learning_rate": 4.9322558327281773e-05,
2276
+ "loss": 2.3299,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.417201540436457,
2281
+ "grad_norm": 0.3376917541027069,
2282
+ "learning_rate": 4.931652401309655e-05,
2283
+ "loss": 2.3599,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.4184852374839538,
2288
+ "grad_norm": 0.36222752928733826,
2289
+ "learning_rate": 4.93104633150397e-05,
2290
+ "loss": 2.4432,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.4197689345314506,
2295
+ "grad_norm": 0.2962850034236908,
2296
+ "learning_rate": 4.930437623968718e-05,
2297
+ "loss": 2.3965,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.42105263157894735,
2302
+ "grad_norm": 0.32738175988197327,
2303
+ "learning_rate": 4.929826279364357e-05,
2304
+ "loss": 2.3276,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.42233632862644416,
2309
+ "grad_norm": 0.3119535446166992,
2310
+ "learning_rate": 4.929212298354207e-05,
2311
+ "loss": 2.3639,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.42362002567394097,
2316
+ "grad_norm": 0.3193548321723938,
2317
+ "learning_rate": 4.9285956816044486e-05,
2318
+ "loss": 2.4468,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.4249037227214377,
2323
+ "grad_norm": 0.32102808356285095,
2324
+ "learning_rate": 4.927976429784124e-05,
2325
+ "loss": 2.422,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.42618741976893454,
2330
+ "grad_norm": 0.3115790784358978,
2331
+ "learning_rate": 4.92735454356513e-05,
2332
+ "loss": 2.2948,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.4274711168164313,
2337
+ "grad_norm": 0.320351243019104,
2338
+ "learning_rate": 4.926730023622227e-05,
2339
+ "loss": 2.3466,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.4287548138639281,
2344
+ "grad_norm": 0.30213356018066406,
2345
+ "learning_rate": 4.926102870633029e-05,
2346
+ "loss": 2.3773,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.4300385109114249,
2351
+ "grad_norm": 0.3080739676952362,
2352
+ "learning_rate": 4.925473085278008e-05,
2353
+ "loss": 2.3822,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.4313222079589217,
2358
+ "grad_norm": 0.3327421545982361,
2359
+ "learning_rate": 4.924840668240495e-05,
2360
+ "loss": 2.4326,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.4326059050064185,
2365
+ "grad_norm": 0.34913370013237,
2366
+ "learning_rate": 4.924205620206671e-05,
2367
+ "loss": 2.4491,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.4338896020539153,
2372
+ "grad_norm": 0.3061310946941376,
2373
+ "learning_rate": 4.923567941865577e-05,
2374
+ "loss": 2.3727,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.43517329910141206,
2379
+ "grad_norm": 0.3259632885456085,
2380
+ "learning_rate": 4.9229276339091034e-05,
2381
+ "loss": 2.3775,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.43645699614890887,
2386
+ "grad_norm": 0.29085099697113037,
2387
+ "learning_rate": 4.922284697031999e-05,
2388
+ "loss": 2.3427,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.43774069319640563,
2393
+ "grad_norm": 0.30840590596199036,
2394
+ "learning_rate": 4.921639131931859e-05,
2395
+ "loss": 2.367,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.43902439024390244,
2400
+ "grad_norm": 0.32114389538764954,
2401
+ "learning_rate": 4.920990939309135e-05,
2402
+ "loss": 2.4625,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.44030808729139925,
2407
+ "grad_norm": 0.3091549873352051,
2408
+ "learning_rate": 4.920340119867127e-05,
2409
+ "loss": 2.3571,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.441591784338896,
2414
+ "grad_norm": 0.2978641092777252,
2415
+ "learning_rate": 4.919686674311987e-05,
2416
+ "loss": 2.3033,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.4428754813863928,
2421
+ "grad_norm": 0.33106520771980286,
2422
+ "learning_rate": 4.919030603352715e-05,
2423
+ "loss": 2.3276,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.4441591784338896,
2428
+ "grad_norm": 0.42283540964126587,
2429
+ "learning_rate": 4.918371907701159e-05,
2430
+ "loss": 2.3563,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.4454428754813864,
2435
+ "grad_norm": 0.32727953791618347,
2436
+ "learning_rate": 4.9177105880720173e-05,
2437
+ "loss": 2.3928,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.4467265725288832,
2442
+ "grad_norm": 0.3086586892604828,
2443
+ "learning_rate": 4.9170466451828326e-05,
2444
+ "loss": 2.2707,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.44801026957637996,
2449
+ "grad_norm": 0.28993648290634155,
2450
+ "learning_rate": 4.916380079753995e-05,
2451
+ "loss": 2.3582,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.4492939666238768,
2456
+ "grad_norm": 0.3154331147670746,
2457
+ "learning_rate": 4.9157108925087405e-05,
2458
+ "loss": 2.4003,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.45057766367137353,
2463
+ "grad_norm": 0.3312948942184448,
2464
+ "learning_rate": 4.9150390841731485e-05,
2465
+ "loss": 2.3955,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.45186136071887034,
2470
+ "grad_norm": 0.30381128191947937,
2471
+ "learning_rate": 4.914364655476146e-05,
2472
+ "loss": 2.3737,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.45314505776636715,
2477
+ "grad_norm": 0.30618736147880554,
2478
+ "learning_rate": 4.9136876071494976e-05,
2479
+ "loss": 2.3602,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.4544287548138639,
2484
+ "grad_norm": 0.3091343343257904,
2485
+ "learning_rate": 4.913007939927814e-05,
2486
+ "loss": 2.4564,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.4557124518613607,
2491
+ "grad_norm": 0.311162531375885,
2492
+ "learning_rate": 4.912325654548546e-05,
2493
+ "loss": 2.3133,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.45699614890885754,
2498
+ "grad_norm": 0.33965715765953064,
2499
+ "learning_rate": 4.911640751751988e-05,
2500
+ "loss": 2.4312,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.4582798459563543,
2505
+ "grad_norm": 0.3162749111652374,
2506
+ "learning_rate": 4.910953232281269e-05,
2507
+ "loss": 2.3438,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.4595635430038511,
2512
+ "grad_norm": 0.32984068989753723,
2513
+ "learning_rate": 4.910263096882362e-05,
2514
+ "loss": 2.3823,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.46084724005134786,
2519
+ "grad_norm": 0.30816513299942017,
2520
+ "learning_rate": 4.909570346304076e-05,
2521
+ "loss": 2.445,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.4621309370988447,
2526
+ "grad_norm": 0.2928940951824188,
2527
+ "learning_rate": 4.908874981298057e-05,
2528
+ "loss": 2.4538,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.4634146341463415,
2533
+ "grad_norm": 0.32563963532447815,
2534
+ "learning_rate": 4.9081770026187914e-05,
2535
+ "loss": 2.292,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.46469833119383824,
2540
+ "grad_norm": 0.29584982991218567,
2541
+ "learning_rate": 4.907476411023596e-05,
2542
+ "loss": 2.4046,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.46598202824133506,
2547
+ "grad_norm": 0.3291500210762024,
2548
+ "learning_rate": 4.906773207272626e-05,
2549
+ "loss": 2.3186,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.4672657252888318,
2554
+ "grad_norm": 0.3066290020942688,
2555
+ "learning_rate": 4.9060673921288716e-05,
2556
+ "loss": 2.3266,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.4685494223363286,
2561
+ "grad_norm": 0.3005695939064026,
2562
+ "learning_rate": 4.905358966358153e-05,
2563
+ "loss": 2.3712,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.46983311938382544,
2568
+ "grad_norm": 0.32391899824142456,
2569
+ "learning_rate": 4.904647930729128e-05,
2570
+ "loss": 2.3514,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.4711168164313222,
2575
+ "grad_norm": 0.2915700078010559,
2576
+ "learning_rate": 4.903934286013281e-05,
2577
+ "loss": 2.4646,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.472400513478819,
2582
+ "grad_norm": 0.34920045733451843,
2583
+ "learning_rate": 4.90321803298493e-05,
2584
+ "loss": 2.3287,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.47368421052631576,
2589
+ "grad_norm": 0.2955242395401001,
2590
+ "learning_rate": 4.902499172421222e-05,
2591
+ "loss": 2.3654,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.4749679075738126,
2596
+ "grad_norm": 0.3305751085281372,
2597
+ "learning_rate": 4.901777705102135e-05,
2598
+ "loss": 2.4419,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.4762516046213094,
2603
+ "grad_norm": 0.30396509170532227,
2604
+ "learning_rate": 4.9010536318104734e-05,
2605
+ "loss": 2.3576,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.47753530166880614,
2610
+ "grad_norm": 0.2961418330669403,
2611
+ "learning_rate": 4.9003269533318704e-05,
2612
+ "loss": 2.3039,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.47881899871630296,
2617
+ "grad_norm": 0.35183992981910706,
2618
+ "learning_rate": 4.899597670454785e-05,
2619
+ "loss": 2.3333,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.48010269576379977,
2624
+ "grad_norm": 0.297158420085907,
2625
+ "learning_rate": 4.8988657839705024e-05,
2626
+ "loss": 2.3514,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.4813863928112965,
2631
+ "grad_norm": 0.3379060626029968,
2632
+ "learning_rate": 4.8981312946731325e-05,
2633
+ "loss": 2.2811,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.48267008985879334,
2638
+ "grad_norm": 0.34060969948768616,
2639
+ "learning_rate": 4.897394203359611e-05,
2640
+ "loss": 2.4123,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.4839537869062901,
2645
+ "grad_norm": 0.3308861255645752,
2646
+ "learning_rate": 4.896654510829694e-05,
2647
+ "loss": 2.4262,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.4852374839537869,
2652
+ "grad_norm": 0.3043263852596283,
2653
+ "learning_rate": 4.8959122178859616e-05,
2654
+ "loss": 2.4291,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.4865211810012837,
2659
+ "grad_norm": 0.32594412565231323,
2660
+ "learning_rate": 4.8951673253338156e-05,
2661
+ "loss": 2.3679,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.4878048780487805,
2666
+ "grad_norm": 0.3090050220489502,
2667
+ "learning_rate": 4.894419833981478e-05,
2668
+ "loss": 2.3933,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.4890885750962773,
2673
+ "grad_norm": 0.3234407901763916,
2674
+ "learning_rate": 4.8936697446399896e-05,
2675
+ "loss": 2.3156,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.49037227214377405,
2680
+ "grad_norm": 0.3294239938259125,
2681
+ "learning_rate": 4.892917058123212e-05,
2682
+ "loss": 2.357,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.49165596919127086,
2687
+ "grad_norm": 0.33215636014938354,
2688
+ "learning_rate": 4.8921617752478235e-05,
2689
+ "loss": 2.4386,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.49293966623876767,
2694
+ "grad_norm": 0.30511781573295593,
2695
+ "learning_rate": 4.89140389683332e-05,
2696
+ "loss": 2.4283,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.4942233632862644,
2701
+ "grad_norm": 0.31070634722709656,
2702
+ "learning_rate": 4.890643423702013e-05,
2703
+ "loss": 2.3565,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.49550706033376124,
2708
+ "grad_norm": 0.3108975291252136,
2709
+ "learning_rate": 4.8898803566790296e-05,
2710
+ "loss": 2.3209,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.496790757381258,
2715
+ "grad_norm": 0.31348085403442383,
2716
+ "learning_rate": 4.889114696592312e-05,
2717
+ "loss": 2.3707,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.4980744544287548,
2722
+ "grad_norm": 0.3120376467704773,
2723
+ "learning_rate": 4.8883464442726146e-05,
2724
+ "loss": 2.3743,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.4993581514762516,
2729
+ "grad_norm": 0.3120869994163513,
2730
+ "learning_rate": 4.887575600553506e-05,
2731
+ "loss": 2.3501,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.5006418485237484,
2736
+ "grad_norm": 0.28657200932502747,
2737
+ "learning_rate": 4.886802166271364e-05,
2738
+ "loss": 2.365,
2739
+ "step": 390
2740
+ }
2741
+ ],
2742
+ "logging_steps": 1,
2743
+ "max_steps": 3116,
2744
+ "num_input_tokens_seen": 0,
2745
+ "num_train_epochs": 4,
2746
+ "save_steps": 195,
2747
+ "stateful_callbacks": {
2748
+ "TrainerControl": {
2749
+ "args": {
2750
+ "should_epoch_stop": false,
2751
+ "should_evaluate": false,
2752
+ "should_log": false,
2753
+ "should_save": true,
2754
+ "should_training_stop": false
2755
+ },
2756
+ "attributes": {}
2757
+ }
2758
+ },
2759
+ "total_flos": 4.733457601218478e+18,
2760
+ "train_batch_size": 4,
2761
+ "trial_name": null,
2762
+ "trial_params": null
2763
+ }
checkpoint-390/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a98077399ec24ec1c4b81639fc3b1a9aa583b98269d8126c92d55b9add25889
3
+ size 7928
checkpoint-390/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-390/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)