initial commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2_sagitzhan.zip +3 -0
- ppo-LunarLander-v2_sagitzhan/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_sagitzhan/data +94 -0
- ppo-LunarLander-v2_sagitzhan/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_sagitzhan/policy.pth +3 -0
- ppo-LunarLander-v2_sagitzhan/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_sagitzhan/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 219.13 +/- 23.38
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4cd75a5050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4cd75a50e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4cd75a5170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4cd75a5200>", "_build": "<function ActorCriticPolicy._build at 0x7f4cd75a5290>", "forward": "<function ActorCriticPolicy.forward at 0x7f4cd75a5320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4cd75a53b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4cd75a5440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4cd75a54d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4cd75a5560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4cd75a55f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4cd75f1690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653022530.4998066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOmxD17irW6cNQTugArYLXLLJ44E6vFNAAAgD8AAIA/7e5XPteVRTwL7ti7O7fBuejiyD19/LC6AACAPwAAgD9dPIo+cTZwuz6fJDukWAe4Y3CuvCbuQroAAIA/AACAP9M8Jj49AUS7DiuCPMdYzrmhG6e8fmivugAAgD8AAIA/ZqH7vJqWrT/rsky+fJOyvqsnkbz5/hy9AAAAAAAAAACzTR69j6ZgulizajnLRlk1lSObuj75hLgAAIA/AACAP80RgT1cUze6SBp5O7FuADY598i6rGWOugAAgD8AAIA/QLiCPmo0Lr24VKa5eo+HOBP0lb711d44AACAPwAAgD+TAy4+e7T+Oyrt/7vK3gK6usaJPW62+roAAIA/AACAPyAejz6uh7m8PrlYPDElUrqiqCK+egkmuwAAgD8AAIA/mldOPSl4I7o1HFO65Mg7Nu12IzmudHc5AACAPwAAgD8t062+V1k+P4ScOb6gCWq+mXxbvv2Th7wAAAAAAAAAAJoN77sUIKK6aYsQO40bFbbmJ6y6JlgmugAAgD8AAIA/zapVvZ8Z4D5mBYS8q9BevqGpCjzmFU69AAAAAAAAAACT5Fo+ijd5PJZ6uzqKgQc5aMAGPuj45rkAAIA/AACAP+D+Qz7Fh4Q8zoJduvITrbiEzhI+FsONOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5uWw+459XkCUhpRSlIwBbJRN6AOMAXSUR0CSgmfSx7iRdX2UKGgGaAloD0MIU5J1OLp+YUCUhpRSlGgVTegDaBZHQJKZKJSBK+V1fZQoaAZoCWgPQwiutmJ/2ShiQJSGlFKUaBVN6ANoFkdAkqWMWsRxtHV9lChoBmgJaA9DCBgjEoWWMWFAlIaUUpRoFU3oA2gWR0CSrTsHB1s+dX2UKGgGaAloD0MIk1URbjIUXUCUhpRSlGgVTegDaBZHQJKxzurp7kZ1fZQoaAZoCWgPQwjPTgZHSf9jQJSGlFKUaBVN6ANoFkdAkrpsZP2wmnV9lChoBmgJaA9DCOnVAKWhilhAlIaUUpRoFU3oA2gWR0CSwfJPZZjhdX2UKGgGaAloD0MIWyiZnFpjYkCUhpRSlGgVTegDaBZHQJLCMT7EYO51fZQoaAZoCWgPQwjaq4+HvrpcQJSGlFKUaBVN6ANoFkdAksLOLBKtgnV9lChoBmgJaA9DCKmgoupXaFpAlIaUUpRoFU3oA2gWR0CSw5BKL877dX2UKGgGaAloD0MIMCsU6X7GYkCUhpRSlGgVTegDaBZHQJLFf8FY+0R1fZQoaAZoCWgPQwhwmGiQghFdQJSGlFKUaBVN6ANoFkdAksx3tjTa03V9lChoBmgJaA9DCPgZFw4E2WJAlIaUUpRoFU3oA2gWR0CSzUt6X0GvdX2UKGgGaAloD0MI/Bhz1xL+YECUhpRSlGgVTegDaBZHQJLQ4274BWB1fZQoaAZoCWgPQwiAnDBhNJFlQJSGlFKUaBVN6ANoFkdAkt0Ki0v4/XV9lChoBmgJaA9DCPW4b7XOkGNAlIaUUpRoFU3oA2gWR0CS3WydWhh6dX2UKGgGaAloD0MIgQabOo8MXECUhpRSlGgVTegDaBZHQJLe3RVp9JB1fZQoaAZoCWgPQwjWNVoOdE9hQJSGlFKUaBVN6ANoFkdAkvStnbqQinV9lChoBmgJaA9DCNhGPNnNVFVAlIaUUpRoFU3oA2gWR0CTAOJNTLntdX2UKGgGaAloD0MI+S8QBEhQZECUhpRSlGgVTegDaBZHQJMIUOc2BJ91fZQoaAZoCWgPQwjuCKcFr+BgQJSGlFKUaBVN6ANoFkdAkwy36ZYxL3V9lChoBmgJaA9DCIUn9PqTel5AlIaUUpRoFU3oA2gWR0CTFWYQ8OkMdX2UKGgGaAloD0MIzo3pCUs8YUCUhpRSlGgVTegDaBZHQJMc186V+ql1fZQoaAZoCWgPQwhKsg5H1w1gQJSGlFKUaBVN6ANoFkdAkx0Ht0FKTXV9lChoBmgJaA9DCNTUsrW+x2RAlIaUUpRoFU3oA2gWR0CTHaIv8IiUdX2UKGgGaAloD0MIWeAruvW3X0CUhpRSlGgVTegDaBZHQJMeaJvYODt1fZQoaAZoCWgPQwhDc51G2i9iQJSGlFKUaBVN6ANoFkdAkyBEb5uZTnV9lChoBmgJaA9DCEMB28EId2JAlIaUUpRoFU3oA2gWR0CTJt9cKPXDdX2UKGgGaAloD0MIJLiRskWQVkCUhpRSlGgVTegDaBZHQJMnpsHjZL91fZQoaAZoCWgPQwgukKD4MVhkQJSGlFKUaBVN6ANoFkdAkyrLeQ+2VnV9lChoBmgJaA9DCD7nbtfLW2tAlIaUUpRoFU3KA2gWR0CTMwYSQHRkdX2UKGgGaAloD0MI6GZ/oNxVYECUhpRSlGgVTegDaBZHQJM1DYAbQ1J1fZQoaAZoCWgPQwiVK7zLRZlhQJSGlFKUaBVN6ANoFkdAk2ijye7L+3V9lChoBmgJaA9DCI/Ey9O55ENAlIaUUpRoFUv3aBZHQJN69N7Bwdd1fZQoaAZoCWgPQwilv5fCgwtjQJSGlFKUaBVN6ANoFkdAk3rw93bEgnV9lChoBmgJaA9DCMoYH2Yvc2dAlIaUUpRoFU3oA2gWR0CThLl18stkdX2UKGgGaAloD0MI8rG7QEkXTkCUhpRSlGgVTegDaBZHQJOK+wRoRI11fZQoaAZoCWgPQwi5bHTOz3tgQJSGlFKUaBVN6ANoFkdAk47Ugr6LwXV9lChoBmgJaA9DCGkZqfdUejlAlIaUUpRoFUv3aBZHQJOPVWLgn+h1fZQoaAZoCWgPQwigNT/+0v1iQJSGlFKUaBVN6ANoFkdAk5ZBEfDDTHV9lChoBmgJaA9DCLa8cr1tsmJAlIaUUpRoFU3oA2gWR0CTnM8eCCjDdX2UKGgGaAloD0MIIT8buW4DYkCUhpRSlGgVTegDaBZHQJOc9D6WPcV1fZQoaAZoCWgPQwig/x68drJZQJSGlFKUaBVN6ANoFkdAk516VMVUM3V9lChoBmgJaA9DCKwDIO7q3F5AlIaUUpRoFU3oA2gWR0CTni6FM7EHdX2UKGgGaAloD0MI/RAbLJwWX0CUhpRSlGgVTegDaBZHQJOf0SM98qp1fZQoaAZoCWgPQwhYxoZu9rBaQJSGlFKUaBVN6ANoFkdAk6Yy0jTrmnV9lChoBmgJaA9DCKxXkdEBb1dAlIaUUpRoFU3oA2gWR0CTpvqUeMhpdX2UKGgGaAloD0MICvMeZ5reYUCUhpRSlGgVTegDaBZHQJOqRcgQpWp1fZQoaAZoCWgPQwjRBfUt89RhQJSGlFKUaBVN6ANoFkdAk7KmOIZZS3V9lChoBmgJaA9DCONPVDasQGZAlIaUUpRoFU3oA2gWR0CTtloM8YAKdX2UKGgGaAloD0MInfS+8TXeZECUhpRSlGgVTegDaBZHQJPJ71e0G/x1fZQoaAZoCWgPQwg0LhwISdRjQJSGlFKUaBVN6ANoFkdAk9S+4LCvYHV9lChoBmgJaA9DCBr6J7hYOVxAlIaUUpRoFU3oA2gWR0CT265hScbzdX2UKGgGaAloD0MIJZS+EHLHYUCUhpRSlGgVTegDaBZHQJPgokgOjIt1fZQoaAZoCWgPQwgFUIwsmWxiQJSGlFKUaBVN6ANoFkdAk+FE1Q66rnV9lChoBmgJaA9DCMrFGFjHe11AlIaUUpRoFU3oA2gWR0CT6OR+z+m4dX2UKGgGaAloD0MIW0HTEqt0ZECUhpRSlGgVTegDaBZHQJPv3ZqVQhx1fZQoaAZoCWgPQwgOpItNq6RiQJSGlFKUaBVN6ANoFkdAk/AHjlxOtXV9lChoBmgJaA9DCHRiD+1jYldAlIaUUpRoFU3oA2gWR0CT8JagElmfdX2UKGgGaAloD0MIlX1XBH8QYkCUhpRSlGgVTegDaBZHQJPxUPSUkfN1fZQoaAZoCWgPQwh6qkNuhv5fQJSGlFKUaBVN6ANoFkdAk/L2wA2hqXV9lChoBmgJaA9DCNbG2AkvrV9AlIaUUpRoFU3oA2gWR0CT+VRzBAObdX2UKGgGaAloD0MIvAM8aeGaYUCUhpRSlGgVTegDaBZHQJP6FJXhfjV1fZQoaAZoCWgPQwgZ5ZmXw+lhQJSGlFKUaBVN6ANoFkdAk/0zEWIoE3V9lChoBmgJaA9DCIDyd++oV19AlIaUUpRoFU3oA2gWR0CUBe0iQkondX2UKGgGaAloD0MIR5OLMbCBYkCUhpRSlGgVTegDaBZHQJQJmzhP0qZ1fZQoaAZoCWgPQwgHXi135ihkQJSGlFKUaBVN6ANoFkdAlE6pnctXgnV9lChoBmgJaA9DCI8dVOK6R2ZAlIaUUpRoFU3oA2gWR0CUWcWykbgkdX2UKGgGaAloD0MIsVHWb6YFZUCUhpRSlGgVTegDaBZHQJRgygRK6Fx1fZQoaAZoCWgPQwg4MSQnE/dgQJSGlFKUaBVN6ANoFkdAlGUjkMkQgHV9lChoBmgJaA9DCBFwCFVqomFAlIaUUpRoFU3oA2gWR0CUZbauwHJLdX2UKGgGaAloD0MIIPDAAMLiYkCUhpRSlGgVTegDaBZHQJRtegyuZCx1fZQoaAZoCWgPQwiMTMCvESZjQJSGlFKUaBVN6ANoFkdAlHTR6fJ3gXV9lChoBmgJaA9DCA4V4/xNFl1AlIaUUpRoFU3oA2gWR0CUdQLLZBcBdX2UKGgGaAloD0MIHlGhurkSXkCUhpRSlGgVTegDaBZHQJR1leZ5Rj11fZQoaAZoCWgPQwh+AihGlr9cQJSGlFKUaBVN6ANoFkdAlHZOgYgq3HV9lChoBmgJaA9DCB2Txf3HBGNAlIaUUpRoFU3oA2gWR0CUeBKraM72dX2UKGgGaAloD0MITwXc83xeZECUhpRSlGgVTegDaBZHQJR+rqFAVwh1fZQoaAZoCWgPQwgQIEPHDq5iQJSGlFKUaBVN6ANoFkdAlH93yy2QXHV9lChoBmgJaA9DCNnO91PjKWVAlIaUUpRoFU3oA2gWR0CUgu7YChexdX2UKGgGaAloD0MI4ZnQJDGZY0CUhpRSlGgVTegDaBZHQJSLpGoaUA11fZQoaAZoCWgPQwidf7vsV2FjQJSGlFKUaBVN6ANoFkdAlI9GtQsPKHV9lChoBmgJaA9DCPkx5q4ls2NAlIaUUpRoFU3xAmgWR0CUnexsEaESdX2UKGgGaAloD0MItY0/UdmXXkCUhpRSlGgVTegDaBZHQJSitwo9cKR1fZQoaAZoCWgPQwg8hzJUxSFdQJSGlFKUaBVN6ANoFkdAlK0GcOLBK3V9lChoBmgJaA9DCCswZHWroVxAlIaUUpRoFU3oA2gWR0CUt91q33HrdX2UKGgGaAloD0MI/82LE18vXECUhpRSlGgVTegDaBZHQJS4a5f+jud1fZQoaAZoCWgPQwjt8UI6PPhiQJSGlFKUaBVN6ANoFkdAlL+dC7btZ3V9lChoBmgJaA9DCMr8o2/St2FAlIaUUpRoFU3oA2gWR0CUxhGBnSOSdX2UKGgGaAloD0MIFsPVAZCdZECUhpRSlGgVTegDaBZHQJTGM4bS7Xh1fZQoaAZoCWgPQwhdNGQ8yi5mQJSGlFKUaBVN6ANoFkdAlMbEIkZ75XV9lChoBmgJaA9DCBDJkGNr3mZAlIaUUpRoFU3oA2gWR0CUx2t1IRRNdX2UKGgGaAloD0MI9mG9USunYECUhpRSlGgVTegDaBZHQJTI/Ek0Jnh1fZQoaAZoCWgPQwhYOEnzx71iQJSGlFKUaBVN6ANoFkdAlM73xnWat3V9lChoBmgJaA9DCFRVaCAWX2RAlIaUUpRoFU3oA2gWR0CUz7VclgMMdX2UKGgGaAloD0MIpgpGJXW4akCUhpRSlGgVTU0BaBZHQJTQY1He7+V1fZQoaAZoCWgPQwjgSQuXVb9eQJSGlFKUaBVN6ANoFkdAlNK+4smOVHV9lChoBmgJaA9DCEaVYdyNHWBAlIaUUpRoFU3oA2gWR0CU2l53C9AYdX2UKGgGaAloD0MIpmPOM3Y0YECUhpRSlGgVTegDaBZHQJTdpVp9JBh1fZQoaAZoCWgPQwhz1TxH5L8+QJSGlFKUaBVL42gWR0CU4k2Hck+pdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 186, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2_sagitzhan.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d6903bc681afb878cc198a96f0d836628906882edc4b8c0cfd3ecbf13ad1db0
|
3 |
+
size 144047
|
ppo-LunarLander-v2_sagitzhan/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2_sagitzhan/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4cd75a5050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4cd75a50e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4cd75a5170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4cd75a5200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4cd75a5290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4cd75a5320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4cd75a53b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4cd75a5440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4cd75a54d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4cd75a5560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4cd75a55f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4cd75f1690>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653022530.4998066,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOmxD17irW6cNQTugArYLXLLJ44E6vFNAAAgD8AAIA/7e5XPteVRTwL7ti7O7fBuejiyD19/LC6AACAPwAAgD9dPIo+cTZwuz6fJDukWAe4Y3CuvCbuQroAAIA/AACAP9M8Jj49AUS7DiuCPMdYzrmhG6e8fmivugAAgD8AAIA/ZqH7vJqWrT/rsky+fJOyvqsnkbz5/hy9AAAAAAAAAACzTR69j6ZgulizajnLRlk1lSObuj75hLgAAIA/AACAP80RgT1cUze6SBp5O7FuADY598i6rGWOugAAgD8AAIA/QLiCPmo0Lr24VKa5eo+HOBP0lb711d44AACAPwAAgD+TAy4+e7T+Oyrt/7vK3gK6usaJPW62+roAAIA/AACAPyAejz6uh7m8PrlYPDElUrqiqCK+egkmuwAAgD8AAIA/mldOPSl4I7o1HFO65Mg7Nu12IzmudHc5AACAPwAAgD8t062+V1k+P4ScOb6gCWq+mXxbvv2Th7wAAAAAAAAAAJoN77sUIKK6aYsQO40bFbbmJ6y6JlgmugAAgD8AAIA/zapVvZ8Z4D5mBYS8q9BevqGpCjzmFU69AAAAAAAAAACT5Fo+ijd5PJZ6uzqKgQc5aMAGPuj45rkAAIA/AACAP+D+Qz7Fh4Q8zoJduvITrbiEzhI+FsONOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5uWw+459XkCUhpRSlIwBbJRN6AOMAXSUR0CSgmfSx7iRdX2UKGgGaAloD0MIU5J1OLp+YUCUhpRSlGgVTegDaBZHQJKZKJSBK+V1fZQoaAZoCWgPQwiutmJ/2ShiQJSGlFKUaBVN6ANoFkdAkqWMWsRxtHV9lChoBmgJaA9DCBgjEoWWMWFAlIaUUpRoFU3oA2gWR0CSrTsHB1s+dX2UKGgGaAloD0MIk1URbjIUXUCUhpRSlGgVTegDaBZHQJKxzurp7kZ1fZQoaAZoCWgPQwjPTgZHSf9jQJSGlFKUaBVN6ANoFkdAkrpsZP2wmnV9lChoBmgJaA9DCOnVAKWhilhAlIaUUpRoFU3oA2gWR0CSwfJPZZjhdX2UKGgGaAloD0MIWyiZnFpjYkCUhpRSlGgVTegDaBZHQJLCMT7EYO51fZQoaAZoCWgPQwjaq4+HvrpcQJSGlFKUaBVN6ANoFkdAksLOLBKtgnV9lChoBmgJaA9DCKmgoupXaFpAlIaUUpRoFU3oA2gWR0CSw5BKL877dX2UKGgGaAloD0MIMCsU6X7GYkCUhpRSlGgVTegDaBZHQJLFf8FY+0R1fZQoaAZoCWgPQwhwmGiQghFdQJSGlFKUaBVN6ANoFkdAksx3tjTa03V9lChoBmgJaA9DCPgZFw4E2WJAlIaUUpRoFU3oA2gWR0CSzUt6X0GvdX2UKGgGaAloD0MI/Bhz1xL+YECUhpRSlGgVTegDaBZHQJLQ4274BWB1fZQoaAZoCWgPQwiAnDBhNJFlQJSGlFKUaBVN6ANoFkdAkt0Ki0v4/XV9lChoBmgJaA9DCPW4b7XOkGNAlIaUUpRoFU3oA2gWR0CS3WydWhh6dX2UKGgGaAloD0MIgQabOo8MXECUhpRSlGgVTegDaBZHQJLe3RVp9JB1fZQoaAZoCWgPQwjWNVoOdE9hQJSGlFKUaBVN6ANoFkdAkvStnbqQinV9lChoBmgJaA9DCNhGPNnNVFVAlIaUUpRoFU3oA2gWR0CTAOJNTLntdX2UKGgGaAloD0MI+S8QBEhQZECUhpRSlGgVTegDaBZHQJMIUOc2BJ91fZQoaAZoCWgPQwjuCKcFr+BgQJSGlFKUaBVN6ANoFkdAkwy36ZYxL3V9lChoBmgJaA9DCIUn9PqTel5AlIaUUpRoFU3oA2gWR0CTFWYQ8OkMdX2UKGgGaAloD0MIzo3pCUs8YUCUhpRSlGgVTegDaBZHQJMc186V+ql1fZQoaAZoCWgPQwhKsg5H1w1gQJSGlFKUaBVN6ANoFkdAkx0Ht0FKTXV9lChoBmgJaA9DCNTUsrW+x2RAlIaUUpRoFU3oA2gWR0CTHaIv8IiUdX2UKGgGaAloD0MIWeAruvW3X0CUhpRSlGgVTegDaBZHQJMeaJvYODt1fZQoaAZoCWgPQwhDc51G2i9iQJSGlFKUaBVN6ANoFkdAkyBEb5uZTnV9lChoBmgJaA9DCEMB28EId2JAlIaUUpRoFU3oA2gWR0CTJt9cKPXDdX2UKGgGaAloD0MIJLiRskWQVkCUhpRSlGgVTegDaBZHQJMnpsHjZL91fZQoaAZoCWgPQwgukKD4MVhkQJSGlFKUaBVN6ANoFkdAkyrLeQ+2VnV9lChoBmgJaA9DCD7nbtfLW2tAlIaUUpRoFU3KA2gWR0CTMwYSQHRkdX2UKGgGaAloD0MI6GZ/oNxVYECUhpRSlGgVTegDaBZHQJM1DYAbQ1J1fZQoaAZoCWgPQwiVK7zLRZlhQJSGlFKUaBVN6ANoFkdAk2ijye7L+3V9lChoBmgJaA9DCI/Ey9O55ENAlIaUUpRoFUv3aBZHQJN69N7Bwdd1fZQoaAZoCWgPQwilv5fCgwtjQJSGlFKUaBVN6ANoFkdAk3rw93bEgnV9lChoBmgJaA9DCMoYH2Yvc2dAlIaUUpRoFU3oA2gWR0CThLl18stkdX2UKGgGaAloD0MI8rG7QEkXTkCUhpRSlGgVTegDaBZHQJOK+wRoRI11fZQoaAZoCWgPQwi5bHTOz3tgQJSGlFKUaBVN6ANoFkdAk47Ugr6LwXV9lChoBmgJaA9DCGkZqfdUejlAlIaUUpRoFUv3aBZHQJOPVWLgn+h1fZQoaAZoCWgPQwigNT/+0v1iQJSGlFKUaBVN6ANoFkdAk5ZBEfDDTHV9lChoBmgJaA9DCLa8cr1tsmJAlIaUUpRoFU3oA2gWR0CTnM8eCCjDdX2UKGgGaAloD0MIIT8buW4DYkCUhpRSlGgVTegDaBZHQJOc9D6WPcV1fZQoaAZoCWgPQwig/x68drJZQJSGlFKUaBVN6ANoFkdAk516VMVUM3V9lChoBmgJaA9DCKwDIO7q3F5AlIaUUpRoFU3oA2gWR0CTni6FM7EHdX2UKGgGaAloD0MI/RAbLJwWX0CUhpRSlGgVTegDaBZHQJOf0SM98qp1fZQoaAZoCWgPQwhYxoZu9rBaQJSGlFKUaBVN6ANoFkdAk6Yy0jTrmnV9lChoBmgJaA9DCKxXkdEBb1dAlIaUUpRoFU3oA2gWR0CTpvqUeMhpdX2UKGgGaAloD0MICvMeZ5reYUCUhpRSlGgVTegDaBZHQJOqRcgQpWp1fZQoaAZoCWgPQwjRBfUt89RhQJSGlFKUaBVN6ANoFkdAk7KmOIZZS3V9lChoBmgJaA9DCONPVDasQGZAlIaUUpRoFU3oA2gWR0CTtloM8YAKdX2UKGgGaAloD0MInfS+8TXeZECUhpRSlGgVTegDaBZHQJPJ71e0G/x1fZQoaAZoCWgPQwg0LhwISdRjQJSGlFKUaBVN6ANoFkdAk9S+4LCvYHV9lChoBmgJaA9DCBr6J7hYOVxAlIaUUpRoFU3oA2gWR0CT265hScbzdX2UKGgGaAloD0MIJZS+EHLHYUCUhpRSlGgVTegDaBZHQJPgokgOjIt1fZQoaAZoCWgPQwgFUIwsmWxiQJSGlFKUaBVN6ANoFkdAk+FE1Q66rnV9lChoBmgJaA9DCMrFGFjHe11AlIaUUpRoFU3oA2gWR0CT6OR+z+m4dX2UKGgGaAloD0MIW0HTEqt0ZECUhpRSlGgVTegDaBZHQJPv3ZqVQhx1fZQoaAZoCWgPQwgOpItNq6RiQJSGlFKUaBVN6ANoFkdAk/AHjlxOtXV9lChoBmgJaA9DCHRiD+1jYldAlIaUUpRoFU3oA2gWR0CT8JagElmfdX2UKGgGaAloD0MIlX1XBH8QYkCUhpRSlGgVTegDaBZHQJPxUPSUkfN1fZQoaAZoCWgPQwh6qkNuhv5fQJSGlFKUaBVN6ANoFkdAk/L2wA2hqXV9lChoBmgJaA9DCNbG2AkvrV9AlIaUUpRoFU3oA2gWR0CT+VRzBAObdX2UKGgGaAloD0MIvAM8aeGaYUCUhpRSlGgVTegDaBZHQJP6FJXhfjV1fZQoaAZoCWgPQwgZ5ZmXw+lhQJSGlFKUaBVN6ANoFkdAk/0zEWIoE3V9lChoBmgJaA9DCIDyd++oV19AlIaUUpRoFU3oA2gWR0CUBe0iQkondX2UKGgGaAloD0MIR5OLMbCBYkCUhpRSlGgVTegDaBZHQJQJmzhP0qZ1fZQoaAZoCWgPQwgHXi135ihkQJSGlFKUaBVN6ANoFkdAlE6pnctXgnV9lChoBmgJaA9DCI8dVOK6R2ZAlIaUUpRoFU3oA2gWR0CUWcWykbgkdX2UKGgGaAloD0MIsVHWb6YFZUCUhpRSlGgVTegDaBZHQJRgygRK6Fx1fZQoaAZoCWgPQwg4MSQnE/dgQJSGlFKUaBVN6ANoFkdAlGUjkMkQgHV9lChoBmgJaA9DCBFwCFVqomFAlIaUUpRoFU3oA2gWR0CUZbauwHJLdX2UKGgGaAloD0MIIPDAAMLiYkCUhpRSlGgVTegDaBZHQJRtegyuZCx1fZQoaAZoCWgPQwiMTMCvESZjQJSGlFKUaBVN6ANoFkdAlHTR6fJ3gXV9lChoBmgJaA9DCA4V4/xNFl1AlIaUUpRoFU3oA2gWR0CUdQLLZBcBdX2UKGgGaAloD0MIHlGhurkSXkCUhpRSlGgVTegDaBZHQJR1leZ5Rj11fZQoaAZoCWgPQwh+AihGlr9cQJSGlFKUaBVN6ANoFkdAlHZOgYgq3HV9lChoBmgJaA9DCB2Txf3HBGNAlIaUUpRoFU3oA2gWR0CUeBKraM72dX2UKGgGaAloD0MITwXc83xeZECUhpRSlGgVTegDaBZHQJR+rqFAVwh1fZQoaAZoCWgPQwgQIEPHDq5iQJSGlFKUaBVN6ANoFkdAlH93yy2QXHV9lChoBmgJaA9DCNnO91PjKWVAlIaUUpRoFU3oA2gWR0CUgu7YChexdX2UKGgGaAloD0MI4ZnQJDGZY0CUhpRSlGgVTegDaBZHQJSLpGoaUA11fZQoaAZoCWgPQwidf7vsV2FjQJSGlFKUaBVN6ANoFkdAlI9GtQsPKHV9lChoBmgJaA9DCPkx5q4ls2NAlIaUUpRoFU3xAmgWR0CUnexsEaESdX2UKGgGaAloD0MItY0/UdmXXkCUhpRSlGgVTegDaBZHQJSitwo9cKR1fZQoaAZoCWgPQwg8hzJUxSFdQJSGlFKUaBVN6ANoFkdAlK0GcOLBK3V9lChoBmgJaA9DCCswZHWroVxAlIaUUpRoFU3oA2gWR0CUt91q33HrdX2UKGgGaAloD0MI/82LE18vXECUhpRSlGgVTegDaBZHQJS4a5f+jud1fZQoaAZoCWgPQwjt8UI6PPhiQJSGlFKUaBVN6ANoFkdAlL+dC7btZ3V9lChoBmgJaA9DCMr8o2/St2FAlIaUUpRoFU3oA2gWR0CUxhGBnSOSdX2UKGgGaAloD0MIFsPVAZCdZECUhpRSlGgVTegDaBZHQJTGM4bS7Xh1fZQoaAZoCWgPQwhdNGQ8yi5mQJSGlFKUaBVN6ANoFkdAlMbEIkZ75XV9lChoBmgJaA9DCBDJkGNr3mZAlIaUUpRoFU3oA2gWR0CUx2t1IRRNdX2UKGgGaAloD0MI9mG9USunYECUhpRSlGgVTegDaBZHQJTI/Ek0Jnh1fZQoaAZoCWgPQwhYOEnzx71iQJSGlFKUaBVN6ANoFkdAlM73xnWat3V9lChoBmgJaA9DCFRVaCAWX2RAlIaUUpRoFU3oA2gWR0CUz7VclgMMdX2UKGgGaAloD0MIpgpGJXW4akCUhpRSlGgVTU0BaBZHQJTQY1He7+V1fZQoaAZoCWgPQwjgSQuXVb9eQJSGlFKUaBVN6ANoFkdAlNK+4smOVHV9lChoBmgJaA9DCEaVYdyNHWBAlIaUUpRoFU3oA2gWR0CU2l53C9AYdX2UKGgGaAloD0MIpmPOM3Y0YECUhpRSlGgVTegDaBZHQJTdpVp9JBh1fZQoaAZoCWgPQwhz1TxH5L8+QJSGlFKUaBVL42gWR0CU4k2Hck+pdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 186,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 6,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2_sagitzhan/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0a44238b895e23e39e3725071f2c8e2a2a78c291d443e81b32527903a8c307a
|
3 |
+
size 84829
|
ppo-LunarLander-v2_sagitzhan/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad971a4464d77cdfe99c13bc4367361c8f4117e538186a5b80811d2ab6974d3b
|
3 |
+
size 43201
|
ppo-LunarLander-v2_sagitzhan/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2_sagitzhan/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50ea149c4e3eb20b3a7c4af946cf5a224ccb70654eba7a04c41bd62c93e454f
|
3 |
+
size 250632
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 219.13105452081078, "std_reward": 23.381522534638158, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T05:28:01.398112"}
|