{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x787f67bce0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x787f67bce170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x787f67bce200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x787f67bce290>", "_build": "<function ActorCriticPolicy._build at 0x787f67bce320>", "forward": "<function ActorCriticPolicy.forward at 0x787f67bce3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x787f67bce440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x787f67bce4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x787f67bce560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x787f67bce5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x787f67bce680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x787f67bce710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x787f711ff540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 32768, "_total_timesteps": 30, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707585726866801731, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK76hb6YhJw/4mnqvkOYFb9OYjs9SiMevgAAAAAAAAAAmsF1u4+8sT/eLEi+z3ECv7c+yjvwZ6U9AAAAAAAAAADNYo29CWiYP0iNAb8NGV2/YPBkPVby2D0AAAAAAAAAAED5q76sRBE/0oxZvx9whr+NkhM/6rXMPgAAAAAAAAAAZt/LvB/Etj+eQCG/RL4oPj5D5Twj7Q0+AAAAAAAAAAANkEQ/7519PXdQIL+7v6O+ArbOP+Lx+j8AAAAAAAAAAAAUlDx349c+wuqLPYt7pr+4Nrm+/WJevQAAAAAAAAAAAtbsvseWPz6ai+e85O2qv+jeh7/ITBm+AAAAAAAAAABmuru+HYcuP/JkkL4zo5C/RGulvgXwhb4AAAAAAAAAANq1jD7xWHw//G0RPwSyP7+q0h++1rxxvgAAAAAAAAAAjRCePThpnj8NECE+b6TSvnglL72VsCY+AAAAAAAAAADwopg+3UAqP/oZGD8zuVi/TCExvk/Tm70AAAAAAAAAAM102LsRBpY/IrOVvWIMIr+Aix8+NufIvQAAAAAAAAAAungcvoyrkz97UKm+Y78Cv86+2bziFbA9AAAAAAAAAACNtEC+DLO7PqLZyr4ddpO/A3B1PleJyDwAAAAAAAAAAPXR0b5pnAI/rbwlvusKdL/gWgS/HP+bvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1091.2666666666667, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGD1ay0KJEaMAWyUS2WMAXSUR0Cb2HAbQ1JldX2UKGgGR8BRGZTIeYD1aAdLT2gIR0Cb2Im1IAfddX2UKGgGR8BwhCQEIPbxaAdLW2gIR0Cb2JRlHz6KdX2UKGgGR8BSojxkNFz/aAdLSGgIR0Cb2MZOSGJvdX2UKGgGR8BFvAccU/OdaAdLR2gIR0Cb2PpUxVQzdX2UKGgGR8BhXa33Hq/uaAdLc2gIR0Cb2QEb5uZUdX2UKGgGR8Bf+PzBhx5taAdLQmgIR0Cb2RWattALdX2UKGgGR8BgCrPnjhkzaAdLXWgIR0Cb2VO09hZydX2UKGgGR8BT/bBKtga4aAdLeWgIR0Cb2VbnX/YKdX2UKGgGR8BRkvKISDh+aAdLhmgIR0Cb2WFo+OfedX2UKGgGR8BQ1wK0D2alaAdLsmgIR0Cb2WdI5HVgdX2UKGgGR8BU+k8zQ/oraAdLQGgIR0Cb2XeEZiuudX2UKGgGR8BTWbFGXokiaAdLV2gIR0Cb2XrWiDdydX2UKGgGR8BYuGY8dPtVaAdLdWgIR0Cb2YJvHcUNdX2UKGgGR8BcRbPD50r9aAdLUGgIR0Cb2cQIUrTZdX2UKGgGR8Bfsp2ECeVcaAdLV2gIR0Cb2b+/gzgudX2UKGgGR8BW/rS3LFGYaAdLUmgIR0Cb2coxpL26dX2UKGgGR8Bd8yCrcTJyaAdLU2gIR0Cb2fH4oJAudX2UKGgGR8BzH1s7+1jRaAdLQ2gIR0Cb2g7tiQT3dX2UKGgGR8BYImQ0XP7faAdLVGgIR0Cb2iYtg8bJdX2UKGgGR8BvjvPszEaVaAdLY2gIR0Cb2ijZL7GedX2UKGgGR8BY/ZFgDzRQaAdLUWgIR0Cb2kOIZZSvdX2UKGgGR8BFTS+xnnMdaAdLPmgIR0Cb2mi9IwuedX2UKGgGR8BUJ6TW5H3DaAdLSWgIR0Cb2n0rK/21dX2UKGgGR8BJZ1l5GBnSaAdLSmgIR0Cb2oZmI0qIdX2UKGgGR8BgHQYLsruqaAdLY2gIR0Cb2qEORT0hdX2UKGgGR8BYGGjoIOYqaAdLSWgIR0Cb2udFvybydX2UKGgGR8BhpC+zt1IRaAdLc2gIR0Cb2xp1A7gbdX2UKGgGR8BiXqmGdqcmaAdLe2gIR0Cb2zqpcX3ydX2UKGgGR8BgXo0fozN2aAdLT2gIR0Cb20pg1FYudX2UKGgGR8Bm1klVtGd7aAdLbmgIR0Cb24Bsyi22dX2UKGgGR8BoPduHerMlaAdLgmgIR0Cb24ozN2TxdX2UKGgGR8BiFP9YOlO5aAdLh2gIR0Cb25g6U7jldX2UKGgGR8Bb3gkona37aAdLQGgIR0Cb26rVe8f3dX2UKGgGR8Bi6bBbfP5YaAdLeWgIR0Cb26rhzeXSdX2UKGgGR8Bcu/wNLDhtaAdLYmgIR0Cb27ZyuIRAdX2UKGgGR8BfmX8wYcebaAdLVGgIR0Cb28HMEA5rdX2UKGgGR8B2DXxZuAI6aAdLaGgIR0Cb2+hvBJqZdX2UKGgGR8BZcIJVsDW9aAdLW2gIR0Cb2/FglWwNdX2UKGgGR8BiZK22G7BgaAdLdGgIR0Cb2/xFAmiQdX2UKGgGR8BR0A/X5FgEaAdLTGgIR0Cb3CBjnV5KdX2UKGgGR8BXi7nLaEi/aAdLSmgIR0Cb3Eg13t8edX2UKGgGR8BbNfMbFS88aAdLmWgIR0Cb3FSvTw2EdX2UKGgGR8Bi372zv7WNaAdLdmgIR0Cb3GBE8aGYdX2UKGgGR8BdiIkRjBl+aAdLV2gIR0Cb3JeZ5Rj0dX2UKGgGR8BQGGQKa5PNaAdLRGgIR0Cb3J/rSmZWdX2UKGgGR8BcK9FfAsTWaAdLT2gIR0Cb3N7yQPqcdX2UKGgGR8BWfG+wkgOjaAdLQGgIR0Cb3OMd92HMdX2UKGgGR8Bz0sXxe9i+aAdLXWgIR0Cb3SzuWrwOdX2UKGgGR8BhwHyPMjeLaAdLS2gIR0Cb3S1klNUPdX2UKGgGR8BMZkit7rs0aAdLd2gIR0Cb3UCNjslcdX2UKGgGR8BYcq7dznzQaAdLP2gIR0Cb3W3Y+Sr6dX2UKGgGR8BHuLc9GI9DaAdLaGgIR0Cb3XbJOnEVdX2UKGgGR8BUF+d07r9maAdLTmgIR0Cb3XV3EAHWdX2UKGgGR8BqFMHUtqYaaAdLe2gIR0Cb3Ye9zwMIdX2UKGgGR8BIE5vtMPBjaAdLgGgIR0Cb3aQzUI9ldX2UKGgGR8BRE57LMcIaaAdLfGgIR0Cb3b7ROUMYdX2UKGgGR8BdYcaCL/CJaAdLVWgIR0Cb3dWw/xDtdX2UKGgGR8BKtKx9oexOaAdLRmgIR0Cb3dznRsuWdX2UKGgGR8BVqK9K28ZlaAdLX2gIR0Cb3edSVGCqdX2UKGgGR8BgBWCuloDgaAdLX2gIR0Cb3jlXA/LUdX2UKGgGR8BhxVwWFev7aAdLh2gIR0Cb3jXK8tf5dX2UKGgGR8BU2RIWgvlEaAdLT2gIR0Cb3kChN/OMdX2UKGgGR8BWSu05U96kaAdLQmgIR0Cb3lV3ljmTdX2UKGgGR8BUNbidat9yaAdLRmgIR0Cb3lWqtHQQdX2UKGgGR8BYPwJPZZjhaAdLRmgIR0Cb3pSVGCqZdX2UKGgGR8BVZBwyZa3aaAdLTWgIR0Cb3rGmUGFBdX2UKGgGR8BwgBBF/hESaAdLamgIR0Cb3rHvc8DCdX2UKGgGR8BerOOCGvfTaAdLXmgIR0Cb3reOGTLXdX2UKGgGR8BmL1uBMBZIaAdLQGgIR0Cb3t0oBq9HdX2UKGgGR8Bgbb1/Ue+3aAdLWmgIR0Cb3uH2ys0YdX2UKGgGR8BY26TGHYYjaAdLQmgIR0Cb3usSCe3AdX2UKGgGR8BiNfzvqkdnaAdLTmgIR0Cb3ynivPkadX2UKGgGR8BRRVHnU2DQaAdLXGgIR0Cb3z+DOC5FdX2UKGgGR8B0p74Kx9ofaAdLcWgIR0Cb316reZXudX2UKGgGR8BQRRZpztCzaAdLSmgIR0Cb34+6RQrMdX2UKGgGR8BVcXAymALBaAdLVmgIR0Cb36RmbsnidX2UKGgGR8BW7SlzltCRaAdLOmgIR0Cb37JaaCtjdX2UKGgGR8BSeXc1wYLtaAdLgGgIR0Cb38CeVcD9dX2UKGgGR8BrOgN5MURGaAdLY2gIR0Cb3+QPZqVRdX2UKGgGR8BpY4U+LWI5aAdLQmgIR0Cb4AaMJhOQdX2UKGgGR8Buevnp0OmSaAdLamgIR0Cb4BUSqU/wdX2UKGgGR8BjRjyFwkxAaAdLe2gIR0Cb4ECMPz4DdX2UKGgGR8BhYS3d9Dx9aAdLXmgIR0Cb4HDSPU8WdX2UKGgGR8BklaTGHYYjaAdLX2gIR0Cb4HENOM2ndX2UKGgGR8Bf1rxiG34LaAdLemgIR0Cb4J1hsqJ/dX2UKGgGR8BtznCj1wo9aAdLcmgIR0Cb4Jc6/7BPdX2UKGgGR8BWDx0uDjBEaAdLV2gIR0Cb4M7CSA6NdX2UKGgGR8ABaTyJ9AooaAdLhGgIR0Cb4OPDpC8fdX2UKGgGR8BhpA176YVqaAdLVWgIR0Cb4PT238XOdX2UKGgGR8BSBUpy6tknaAdLUmgIR0Cb4Ra2WpqAdX2UKGgGR8BVrAXZXdTHaAdLS2gIR0Cb4R8vEjxDdX2UKGgGR8Bg0JFy7wrlaAdLVWgIR0Cb4RkB0ZFYdX2UKGgGR8Bg25dKNAC5aAdLb2gIR0Cb4Rndfsu4dX2UKGgGR8BcbeyVv/BFaAdLdWgIR0Cb4SGO+7DmdX2UKGgGR8BbWzK9wm3OaAdLR2gIR0Cb4ToQFs55dX2UKGgGR8BTXestCiRGaAdLTmgIR0Cb4V7BfrrxdX2UKGgGR8BdFAZflZHNaAdLR2gIR0Cb4b+OOsDGdX2UKGgGR8BPe1jy4FzNaAdLRWgIR0Cb4eklNUOvdX2UKGgGR8BmZvDgqEvkaAdLaWgIR0Cb4fR6Ww/xdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |