Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,145 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: mistralai/Mistral-7B-v0.1
|
3 |
+
tags:
|
4 |
+
- mistral
|
5 |
+
- instruct
|
6 |
+
- finetune
|
7 |
+
- chatml
|
8 |
+
- gpt4
|
9 |
+
- synthetic data
|
10 |
+
- distillation
|
11 |
+
model-index:
|
12 |
+
- name: Thestral-0.1
|
13 |
+
results: []
|
14 |
license: apache-2.0
|
15 |
+
language:
|
16 |
+
- en
|
17 |
---
|
18 |
+
|
19 |
+
# Thestral 0.1
|
20 |
+
|
21 |
+
Thestral is Mistral Fine-tune. The model is a QLoRA version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca).
|
22 |
+
|
23 |
+
This model is finetuned using `1xH100` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
|
24 |
+
|
25 |
+
<details><summary>See axolotl config</summary>
|
26 |
+
axolotl version: `0.4.0`
|
27 |
+
```yaml
|
28 |
+
base_model: mistralai/Mistral-7B-v0.1
|
29 |
+
model_type: MistralForCausalLM
|
30 |
+
tokenizer_type: LlamaTokenizer
|
31 |
+
|
32 |
+
load_in_8bit: false
|
33 |
+
load_in_4bit: true
|
34 |
+
strict: false
|
35 |
+
|
36 |
+
datasets:
|
37 |
+
- path: Open-Orca/SlimOrca
|
38 |
+
type: sharegpt
|
39 |
+
dataset_prepared_path: last_run_prepared
|
40 |
+
val_set_size: 0.1
|
41 |
+
output_dir: ./qlora-out_2
|
42 |
+
|
43 |
+
adapter: qlora
|
44 |
+
lora_model_dir:
|
45 |
+
|
46 |
+
sequence_len: 8192
|
47 |
+
sample_packing: true
|
48 |
+
pad_to_sequence_len: true
|
49 |
+
|
50 |
+
lora_r: 128
|
51 |
+
lora_alpha: 32
|
52 |
+
lora_dropout: 0.05
|
53 |
+
lora_target_linear: true
|
54 |
+
lora_fan_in_fan_out:
|
55 |
+
lora_target_modules:
|
56 |
+
- gate_proj
|
57 |
+
- down_proj
|
58 |
+
- up_proj
|
59 |
+
- q_proj
|
60 |
+
- v_proj
|
61 |
+
- k_proj
|
62 |
+
- o_proj
|
63 |
+
|
64 |
+
wandb_project: slim_orca
|
65 |
+
wandb_entity:
|
66 |
+
wandb_watch:
|
67 |
+
wandb_name:
|
68 |
+
wandb_log_model:
|
69 |
+
|
70 |
+
gradient_accumulation_steps: 4
|
71 |
+
micro_batch_size: 2
|
72 |
+
num_epochs: 1
|
73 |
+
optimizer: adamw_bnb_8bit
|
74 |
+
lr_scheduler: cosine
|
75 |
+
learning_rate: 0.0002
|
76 |
+
|
77 |
+
train_on_inputs: false
|
78 |
+
group_by_length: false
|
79 |
+
bf16: auto
|
80 |
+
fp16:
|
81 |
+
tf32: false
|
82 |
+
|
83 |
+
gradient_checkpointing: true
|
84 |
+
early_stopping_patience:
|
85 |
+
resume_from_checkpoint:
|
86 |
+
local_rank:
|
87 |
+
logging_steps: 1
|
88 |
+
xformers_attention:
|
89 |
+
flash_attention: true
|
90 |
+
|
91 |
+
loss_watchdog_threshold: 5.0
|
92 |
+
loss_watchdog_patience: 3
|
93 |
+
|
94 |
+
warmup_steps: 10
|
95 |
+
evals_per_epoch: 4
|
96 |
+
eval_table_size:
|
97 |
+
eval_max_new_tokens: 128
|
98 |
+
saves_per_epoch: 1
|
99 |
+
debug:
|
100 |
+
deepspeed:
|
101 |
+
weight_decay: 0.0
|
102 |
+
fsdp:
|
103 |
+
fsdp_config:
|
104 |
+
special_tokens:
|
105 |
+
bos_token: "<s>"
|
106 |
+
eos_token: "</s>"
|
107 |
+
unk_token: "<unk>"
|
108 |
+
|
109 |
+
```
|
110 |
+
|
111 |
+
|
112 |
+
GPT-4All Benchmark Set
|
113 |
+
|
114 |
+
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
115 |
+
|-------------|------:|------|------|--------|-----:|---|-----:|
|
116 |
+
|winogrande | 1|none |None |acc |0.7498|± |0.0122|
|
117 |
+
|piqa | 1|none |None |acc |0.8172|± |0.0090|
|
118 |
+
| | |none |None |acc_norm|0.8286|± |0.0088|
|
119 |
+
|openbookqa | 1|none |None |acc |0.3380|± |0.0212|
|
120 |
+
| | |none |None |acc_norm|0.4420|± |0.0222|
|
121 |
+
|hellaswag | 1|none |None |acc |0.6254|± |0.0048|
|
122 |
+
| | |none |None |acc_norm|0.8061|± |0.0039|
|
123 |
+
|boolq | 2|none |None |acc |0.8740|± |0.0058|
|
124 |
+
|arc_easy | 1|none |None |acc |0.8199|± |0.0079|
|
125 |
+
| | |none |None |acc_norm|0.7891|± |0.0084|
|
126 |
+
|arc_challenge| 1|none |None |acc |0.5145|± |0.0146|
|
127 |
+
| | |none |None |acc_norm|0.5461|± |0.0145|
|
128 |
+
Average: 71.93
|
129 |
+
|
130 |
+
|
131 |
+
# 🤖 Additional information about training
|
132 |
+
|
133 |
+
This model is fine-tuned for 1.0 epoch.
|
134 |
+
|
135 |
+
|
136 |
+
<details><summary>Loss graph</summary>
|
137 |
+
|
138 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60ca32d2e7bc4b029af088a0/bZdS1tIIJ4tWL_pTM4qeQ.png)
|
139 |
+
</details><br>
|
140 |
+
|
141 |
+
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.
|
142 |
+
|
143 |
+
Thanks to all open source AI community.
|
144 |
+
|
145 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|