Upload sd15-arthur-generate-samples.py
Browse files
sd15-arthur-generate-samples.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
3 |
+
import torch
|
4 |
+
|
5 |
+
#////////////////////////////////////////////////////////////////
|
6 |
+
guidance_scale=8.0
|
7 |
+
steps=40
|
8 |
+
width=512
|
9 |
+
height=512
|
10 |
+
|
11 |
+
prompt_suffix = ", Very detailed, clean, high quality, sharp image"
|
12 |
+
#////////////////////////////////////////////////////////////////
|
13 |
+
custom_model_id = "Norod78/sd15-arthur-blip-captions"
|
14 |
+
#////////////////////////////////////////////////////////////////
|
15 |
+
custom_model_id_str = custom_model_id.replace("/","_")
|
16 |
+
custom_model_pipe = None
|
17 |
+
|
18 |
+
def generate(prompt, file_prefix ,samples, seed):
|
19 |
+
global base_model_pipe, custom_model_pipe
|
20 |
+
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
prompt += prompt_suffix
|
23 |
+
file_prefix += "Arthur"
|
24 |
+
custom_model_images = custom_model_pipe([prompt] * samples, num_inference_steps=steps, guidance_scale=guidance_scale, height=height, width=width)["images"]
|
25 |
+
for idx, image in enumerate(custom_model_images):
|
26 |
+
image.save(f"{file_prefix}-{idx}-{seed}--{width}x{height}-{custom_model_id_str}.jpg")
|
27 |
+
|
28 |
+
def load():
|
29 |
+
global base_model_pipe, custom_model_pipe
|
30 |
+
|
31 |
+
scheduler = DPMSolverMultistepScheduler(
|
32 |
+
beta_start=0.00085,
|
33 |
+
beta_end=0.012,
|
34 |
+
beta_schedule="scaled_linear",
|
35 |
+
num_train_timesteps=1000,
|
36 |
+
trained_betas=None,
|
37 |
+
thresholding=False,
|
38 |
+
algorithm_type="dpmsolver++",
|
39 |
+
solver_type="midpoint",
|
40 |
+
lower_order_final=True,
|
41 |
+
)
|
42 |
+
|
43 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
45 |
+
custom_model_pipe = StableDiffusionPipeline.from_pretrained(custom_model_id, scheduler=scheduler,torch_dtype=dtype).to(device)
|
46 |
+
|
47 |
+
def main():
|
48 |
+
load()
|
49 |
+
|
50 |
+
generate("A livingroom", "01_LivingRoom", 4, 555)
|
51 |
+
generate("Nicolas Cage, in \"The Minions\" movie", "02_NicolasCage", 2, 42)
|
52 |
+
generate("Gal Gadot as wonderwoman", "03_GalGadot", 2, 42)
|
53 |
+
generate("Gal Gadot in Avatar", "04_GalGadotAvatar", 2, 777)
|
54 |
+
generate("Family guy taking selfies at the beach", "05_FamilyGuy", 2, 555)
|
55 |
+
generate("Pikachu as Rick and morty, Eric Wallis", "06_PikachuRnM", 2, 777)
|
56 |
+
generate("Pikachu as Spongebob, Eric Wallis", "07_PikachuSpongeBob", 2, 42)
|
57 |
+
generate("An oil painting of Miss. Piggy from the muppets as the Mona Lisa", "08_MsPiggyMonaLisa", 2, 42)
|
58 |
+
generate("Rick Sanchez from the TV show \"Rick and Morty\"", "09_RickSanchez", 2, 42)
|
59 |
+
generate("An paiting of Southpark with rainbow", "10_Southpark", 2, 777)
|
60 |
+
generate("A psychedelic image of Bojack Horseman", "11_Bojack", 2, 777)
|
61 |
+
generate("A movie poster for Gravity Falls Cthulhu stories", "12_GravityFalls", 2, 777)
|
62 |
+
generate("A vibrant oil painting portrait of She-Ra", "13_Shira", 2, 512)
|
63 |
+
#
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
main()
|