CoreML MobileClip S0
Browse files- ImageEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/model.mlmodel +3 -0
- ImageEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/weights/weight.bin +3 -0
- ImageEncoder_mobileclip_s0.mlpackage/Manifest.json +18 -0
- LICENSE +46 -0
- PyTorch2CoreML-mobileclip.ipynb +620 -0
- TextEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/model.mlmodel +3 -0
- TextEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/weights/weight.bin +3 -0
- TextEncoder_mobileclip_s0.mlpackage/Manifest.json +18 -0
ImageEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/model.mlmodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ec56c63c97cc32d8d2884fd8a9c61175f5797997462096513e6cf5dc60af626
|
3 |
+
size 150531
|
ImageEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a484a869abb2fc6e1ac37975c7801e5524c44bd71936fe2da799e9dd6accd4a
|
3 |
+
size 22717696
|
ImageEncoder_mobileclip_s0.mlpackage/Manifest.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"fileFormatVersion": "1.0.0",
|
3 |
+
"itemInfoEntries": {
|
4 |
+
"CED15CCF-4EDF-46F6-B043-0B8D502F3F13": {
|
5 |
+
"author": "com.apple.CoreML",
|
6 |
+
"description": "CoreML Model Weights",
|
7 |
+
"name": "weights",
|
8 |
+
"path": "com.apple.CoreML/weights"
|
9 |
+
},
|
10 |
+
"F5132FC6-F83D-47D8-AAF2-1056EF407E07": {
|
11 |
+
"author": "com.apple.CoreML",
|
12 |
+
"description": "CoreML Model Specification",
|
13 |
+
"name": "model.mlmodel",
|
14 |
+
"path": "com.apple.CoreML/model.mlmodel"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"rootModelIdentifier": "F5132FC6-F83D-47D8-AAF2-1056EF407E07"
|
18 |
+
}
|
LICENSE
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
2 |
+
|
3 |
+
IMPORTANT: This Apple software is supplied to you by Apple
|
4 |
+
Inc. ("Apple") in consideration of your agreement to the following
|
5 |
+
terms, and your use, installation, modification or redistribution of
|
6 |
+
this Apple software constitutes acceptance of these terms. If you do
|
7 |
+
not agree with these terms, please do not use, install, modify or
|
8 |
+
redistribute this Apple software.
|
9 |
+
|
10 |
+
In consideration of your agreement to abide by the following terms, and
|
11 |
+
subject to these terms, Apple grants you a personal, non-exclusive
|
12 |
+
license, under Apple's copyrights in this original Apple software (the
|
13 |
+
"Apple Software"), to use, reproduce, modify and redistribute the Apple
|
14 |
+
Software, with or without modifications, in source and/or binary forms;
|
15 |
+
provided that if you redistribute the Apple Software in its entirety and
|
16 |
+
without modifications, you must retain this notice and the following
|
17 |
+
text and disclaimers in all such redistributions of the Apple Software.
|
18 |
+
Neither the name, trademarks, service marks or logos of Apple Inc. may
|
19 |
+
be used to endorse or promote products derived from the Apple Software
|
20 |
+
without specific prior written permission from Apple. Except as
|
21 |
+
expressly stated in this notice, no other rights or licenses, express or
|
22 |
+
implied, are granted by Apple herein, including but not limited to any
|
23 |
+
patent rights that may be infringed by your derivative works or by other
|
24 |
+
works in which the Apple Software may be incorporated.
|
25 |
+
|
26 |
+
The Apple Software is provided by Apple on an "AS IS" basis. APPLE
|
27 |
+
MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
|
28 |
+
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS
|
29 |
+
FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND
|
30 |
+
OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
|
31 |
+
|
32 |
+
IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL
|
33 |
+
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
34 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
35 |
+
INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION,
|
36 |
+
MODIFICATION AND/OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED
|
37 |
+
AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING NEGLIGENCE),
|
38 |
+
STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE
|
39 |
+
POSSIBILITY OF SUCH DAMAGE.
|
40 |
+
|
41 |
+
-------------------------------------------------------------------------------
|
42 |
+
SOFTWARE DISTRIBUTED WITH ML-MobileCLIP:
|
43 |
+
|
44 |
+
The ML-MobileCLIP software includes a number of subcomponents with separate
|
45 |
+
copyright notices and license terms - please see the file ACKNOWLEDGEMENTS.
|
46 |
+
-------------------------------------------------------------------------------
|
PyTorch2CoreML-mobileclip.ipynb
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "1e99de7a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"--2024-06-20 13:18:56-- https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt\n",
|
14 |
+
"Resolving docs-assets.developer.apple.com (docs-assets.developer.apple.com)... 17.253.73.203, 17.253.73.201\n",
|
15 |
+
"Connecting to docs-assets.developer.apple.com (docs-assets.developer.apple.com)|17.253.73.203|:443... connected.\n",
|
16 |
+
"HTTP request sent, awaiting response... 416 Requested Range Not Satisfiable\n",
|
17 |
+
"\n",
|
18 |
+
" The file is already fully retrieved; nothing to do.\n",
|
19 |
+
"\n",
|
20 |
+
"--2024-06-20 13:18:58-- https://raw.githubusercontent.com/apple/ml-mobileclip/main/mobileclip/configs/mobileclip_s0.json\n",
|
21 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
|
22 |
+
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
|
23 |
+
"HTTP request sent, awaiting response... 416 Range Not Satisfiable\n",
|
24 |
+
"\n",
|
25 |
+
" The file is already fully retrieved; nothing to do.\n",
|
26 |
+
"\n"
|
27 |
+
]
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"source": [
|
31 |
+
"\n",
|
32 |
+
"!pip install -q git+https://github.com/apple/ml-mobileclip\n",
|
33 |
+
"!mkdir -p checkpoints\n",
|
34 |
+
"!wget --continue https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/mobileclip_s0.pt -P checkpoints\n",
|
35 |
+
"!wget --continue https://raw.githubusercontent.com/apple/ml-mobileclip/main/mobileclip/configs/mobileclip_s0.json -P checkpoints\n",
|
36 |
+
"!pip install -q --upgrade coremltools"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"execution_count": 2,
|
42 |
+
"id": "801db364",
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [
|
45 |
+
{
|
46 |
+
"name": "stderr",
|
47 |
+
"output_type": "stream",
|
48 |
+
"text": [
|
49 |
+
"scikit-learn version 1.2.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.\n"
|
50 |
+
]
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"import torch\n",
|
55 |
+
"import coremltools as ct\n",
|
56 |
+
"import mobileclip\n",
|
57 |
+
"import numpy as np\n",
|
58 |
+
"from PIL import Image"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "markdown",
|
63 |
+
"id": "26f7dcff",
|
64 |
+
"metadata": {},
|
65 |
+
"source": [
|
66 |
+
"# 1. Export TextEncoder"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 3,
|
72 |
+
"id": "8f89976b",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stderr",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"/usr/local/anaconda3/envs/py30/lib/python3.10/site-packages/mobileclip/modules/common/transformer.py:125: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
80 |
+
" if seq_len != self.num_embeddings:\n"
|
81 |
+
]
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"source": [
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"#device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
88 |
+
"device = \"cpu\"\n",
|
89 |
+
"model, _, preprocess = mobileclip.create_model_and_transforms('mobileclip_s0', pretrained='./checkpoints/mobileclip_s0.pt')\n",
|
90 |
+
"tokenizer = mobileclip.get_tokenizer('mobileclip_s0')\n",
|
91 |
+
"\n",
|
92 |
+
"model=model.to(device)\n",
|
93 |
+
"model = model.eval()\n",
|
94 |
+
"\n",
|
95 |
+
"text_encoder = model.text_encoder\n",
|
96 |
+
"example_input = tokenizer(\"a photo of a cat\", return_tensors=\"pt\")\n",
|
97 |
+
"traced_model = torch.jit.trace(text_encoder, example_input)"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 4,
|
103 |
+
"id": "a727c3d1",
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [
|
106 |
+
{
|
107 |
+
"data": {
|
108 |
+
"text/plain": [
|
109 |
+
"torch.Size([1, 77])"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"execution_count": 4,
|
113 |
+
"metadata": {},
|
114 |
+
"output_type": "execute_result"
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"source": [
|
118 |
+
"example_input.shape"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 5,
|
124 |
+
"id": "a38a3ca0",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"# https://github.com/apple/ml-mobileclip/blob/main/mobileclip/configs/mobileclip_s0.json\n",
|
129 |
+
"max_seq_length = 77"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": 6,
|
135 |
+
"id": "c87abd71",
|
136 |
+
"metadata": {},
|
137 |
+
"outputs": [
|
138 |
+
{
|
139 |
+
"name": "stderr",
|
140 |
+
"output_type": "stream",
|
141 |
+
"text": [
|
142 |
+
"Converting PyTorch Frontend ==> MIL Ops: 27%|██▋ | 110/402 [00:00<00:00, 687.59 ops/s]Saving value type of int64 into a builtin type of int32, might lose precision!\n",
|
143 |
+
"Converting PyTorch Frontend ==> MIL Ops: 100%|█████████▉| 401/402 [00:00<00:00, 1694.77 ops/s]\n",
|
144 |
+
"Running MIL frontend_pytorch pipeline: 100%|██████████| 5/5 [00:00<00:00, 172.42 passes/s]\n",
|
145 |
+
"Running MIL default pipeline: 100%|██████████| 78/78 [00:02<00:00, 31.32 passes/s] \n",
|
146 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████| 12/12 [00:00<00:00, 219.77 passes/s]\n"
|
147 |
+
]
|
148 |
+
}
|
149 |
+
],
|
150 |
+
"source": [
|
151 |
+
"\n",
|
152 |
+
"text_encoder_model = ct.convert(\n",
|
153 |
+
" traced_model,\n",
|
154 |
+
" convert_to=\"mlprogram\",\n",
|
155 |
+
" minimum_deployment_target=ct.target.iOS16,\n",
|
156 |
+
" inputs=[ct.TensorType(name=\"prompt\",\n",
|
157 |
+
" shape=[1,max_seq_length],\n",
|
158 |
+
" dtype=np.int32)],\n",
|
159 |
+
" outputs=[ct.TensorType(name=\"embOutput\", dtype=np.float32)],\n",
|
160 |
+
" )\n",
|
161 |
+
"text_encoder_model.save(\"TextEncoder_mobileclip_s0.mlpackage\")"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "markdown",
|
166 |
+
"id": "617e4e6b",
|
167 |
+
"metadata": {},
|
168 |
+
"source": [
|
169 |
+
"## Validate export precision"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 7,
|
175 |
+
"id": "fd6af02a",
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [
|
178 |
+
{
|
179 |
+
"name": "stdout",
|
180 |
+
"output_type": "stream",
|
181 |
+
"text": [
|
182 |
+
"Tokenized text: tensor([49406, 320, 1125, 539, 320, 2368, 49407, 0, 0, 0],\n",
|
183 |
+
" dtype=torch.int32)\n"
|
184 |
+
]
|
185 |
+
}
|
186 |
+
],
|
187 |
+
"source": [
|
188 |
+
"# Load the model\n",
|
189 |
+
"te_ml_model = ct.models.MLModel('TextEncoder_mobileclip_s0.mlpackage')\n",
|
190 |
+
"\n",
|
191 |
+
"# Choose a tokenizer, here we use the clip tokenizer\n",
|
192 |
+
"text = tokenizer(\"a photo of a cat\").to(torch.int32)\n",
|
193 |
+
"text = text[:,:max_seq_length]\n",
|
194 |
+
"print(\"Tokenized text: \", text[0, :10])\n",
|
195 |
+
"\n",
|
196 |
+
"# # Or use CLIPTokenizerFast\n",
|
197 |
+
"# text = tokenizer(\"a photo of a cat\", return_tensors=\"pt\", padding=\"max_length\", max_length=max_seq_length)\n",
|
198 |
+
"# text = text.data['input_ids'].to(torch.int32)\n",
|
199 |
+
"\n",
|
200 |
+
"orig_features = text_encoder(text)\n",
|
201 |
+
"predictions = te_ml_model.predict({'prompt': text})\n",
|
202 |
+
"out = traced_model(text)"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": 8,
|
208 |
+
"id": "c29d0a98",
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [
|
211 |
+
{
|
212 |
+
"name": "stdout",
|
213 |
+
"output_type": "stream",
|
214 |
+
"text": [
|
215 |
+
"Original PyTorch TextEncoder ckpt out for \"a photo of a cat\":\n",
|
216 |
+
">>> tensor([ 0.1062, 0.3889, 0.2455, 0.2906, 0.3474, -0.0871, 0.0244, -0.1012,\n",
|
217 |
+
" 0.4056, -0.0591], grad_fn=<SliceBackward0>)\n",
|
218 |
+
"Traced PyTorch TextEncoder ckpt out for \"a photo of a cat\":\n",
|
219 |
+
">>> tensor([ 0.1062, 0.3889, 0.2455, 0.2906, 0.3474, -0.0871, 0.0244, -0.1012,\n",
|
220 |
+
" 0.4056, -0.0591], grad_fn=<SliceBackward0>)\n",
|
221 |
+
"\n",
|
222 |
+
"CoreML TextEncoder ckpt out for \"a photo of a cat\":\n",
|
223 |
+
">>> [ 0.10631 0.388583 0.24500522 0.29059237 0.3471204 -0.0872687\n",
|
224 |
+
" 0.024912 -0.10095407 0.4052309 -0.05918849]\n"
|
225 |
+
]
|
226 |
+
}
|
227 |
+
],
|
228 |
+
"source": [
|
229 |
+
"print(\"Original PyTorch TextEncoder ckpt out for \\\"a photo of a cat\\\":\\n>>>\", orig_features[0, :10])\n",
|
230 |
+
"print(\"Traced PyTorch TextEncoder ckpt out for \\\"a photo of a cat\\\":\\n>>>\", out[0, :10])\n",
|
231 |
+
"print(\"\\nCoreML TextEncoder ckpt out for \\\"a photo of a cat\\\":\\n>>>\", predictions['embOutput'][0, :10])"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "markdown",
|
236 |
+
"id": "3c0d9c70",
|
237 |
+
"metadata": {},
|
238 |
+
"source": [
|
239 |
+
"You can see that there is some loss in precision, but it is still acceptable."
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "markdown",
|
244 |
+
"id": "ca182b4a",
|
245 |
+
"metadata": {},
|
246 |
+
"source": [
|
247 |
+
"# 2. Export ImageEncoder"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 9,
|
253 |
+
"id": "68521589",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"name": "stdout",
|
258 |
+
"output_type": "stream",
|
259 |
+
"text": [
|
260 |
+
"torch.Size([1, 3, 256, 256])\n"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"name": "stderr",
|
265 |
+
"output_type": "stream",
|
266 |
+
"text": [
|
267 |
+
"/var/folders/tm/mkjhhwzd5hb8y3tkrr72_zcw0000gq/T/ipykernel_43113/694208471.py:4: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
268 |
+
" example_input = torch.tensor(preprocess(img))\n"
|
269 |
+
]
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"source": [
|
273 |
+
"image_encoder = model.image_encoder\n",
|
274 |
+
"\n",
|
275 |
+
"img = Image.open(\"./sample_images/IMG_4085.jpeg\")\n",
|
276 |
+
"example_input = torch.tensor(preprocess(img))\n",
|
277 |
+
"#reshape to 1,3,256,256\n",
|
278 |
+
"example_input = example_input.unsqueeze(0)\n",
|
279 |
+
"print(example_input.shape)\n",
|
280 |
+
"traced_model = torch.jit.trace(image_encoder, example_input)"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 10,
|
286 |
+
"id": "6817c413",
|
287 |
+
"metadata": {},
|
288 |
+
"outputs": [
|
289 |
+
{
|
290 |
+
"name": "stdout",
|
291 |
+
"output_type": "stream",
|
292 |
+
"text": [
|
293 |
+
"Original PyTorch ImageEncoder ckpt out for jpg:\n",
|
294 |
+
">>> tensor([ 0.0180, 0.0550, 0.0086, 0.0529, 0.0514, 0.0155, -0.0660, 0.1181,\n",
|
295 |
+
" 0.0274, -0.0218], grad_fn=<SliceBackward0>)\n"
|
296 |
+
]
|
297 |
+
}
|
298 |
+
],
|
299 |
+
"source": [
|
300 |
+
"example_output = image_encoder(example_input)\n",
|
301 |
+
"print(\"Original PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", example_output[0, :10])"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "code",
|
306 |
+
"execution_count": 11,
|
307 |
+
"id": "123c9b1c",
|
308 |
+
"metadata": {},
|
309 |
+
"outputs": [],
|
310 |
+
"source": [
|
311 |
+
"from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD\n",
|
312 |
+
"image_mean = IMAGENET_DEFAULT_MEAN\n",
|
313 |
+
"image_std = IMAGENET_DEFAULT_STD"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": 12,
|
319 |
+
"id": "8f66a99c",
|
320 |
+
"metadata": {},
|
321 |
+
"outputs": [],
|
322 |
+
"source": [
|
323 |
+
"import torchvision.transforms as transforms\n",
|
324 |
+
"\n",
|
325 |
+
"class Wrapper(torch.nn.Module):\n",
|
326 |
+
" def __init__(self, model):\n",
|
327 |
+
" super().__init__()\n",
|
328 |
+
" self.model = model\n",
|
329 |
+
" _means = IMAGENET_DEFAULT_MEAN\n",
|
330 |
+
" _stds = IMAGENET_DEFAULT_STD\n",
|
331 |
+
" self.stds = torch.tensor(_stds).half()[:,None,None]\n",
|
332 |
+
" self.means = torch.tensor(_means).half()[:,None,None]\n",
|
333 |
+
"\n",
|
334 |
+
" transform_model = torch.nn.Sequential(\n",
|
335 |
+
" transforms.Normalize(mean=image_mean,\n",
|
336 |
+
" std=image_std)\n",
|
337 |
+
" )\n",
|
338 |
+
"\n",
|
339 |
+
" def forward(self, input): \n",
|
340 |
+
" input = input/255.0\n",
|
341 |
+
" intput = self.transform_model(input)\n",
|
342 |
+
" output = self.model(input) \n",
|
343 |
+
" return output\n",
|
344 |
+
"\n",
|
345 |
+
"# Instantiate the Wrapper model passing the original PyTorch FCN model\n",
|
346 |
+
"wrapped_model = Wrapper(traced_model)"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"execution_count": 13,
|
352 |
+
"id": "b3da3350",
|
353 |
+
"metadata": {},
|
354 |
+
"outputs": [
|
355 |
+
{
|
356 |
+
"name": "stdout",
|
357 |
+
"output_type": "stream",
|
358 |
+
"text": [
|
359 |
+
"wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
|
360 |
+
">>> tensor([ 0.0180, 0.0501, 0.0073, 0.0510, 0.0515, 0.0164, -0.0680, 0.1125,\n",
|
361 |
+
" 0.0306, -0.0220])\n",
|
362 |
+
"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
|
363 |
+
">>> tensor([ 0.0180, 0.0501, 0.0073, 0.0510, 0.0515, 0.0164, -0.0680, 0.1125,\n",
|
364 |
+
" 0.0306, -0.0220])\n"
|
365 |
+
]
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"source": [
|
369 |
+
"i = np.asarray(img.resize((256, 256)))\n",
|
370 |
+
"i = i.astype(\"float32\")\n",
|
371 |
+
"i = np.transpose(i, (2, 0, 1))\n",
|
372 |
+
"i = np.expand_dims(i, 0)\n",
|
373 |
+
"i = torch.from_numpy(i)\n",
|
374 |
+
"\n",
|
375 |
+
"with torch.no_grad():\n",
|
376 |
+
" out = wrapped_model(i)\n",
|
377 |
+
"\n",
|
378 |
+
"print(\"wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])\n",
|
379 |
+
"\n",
|
380 |
+
"traced_model = torch.jit.trace(wrapped_model, i)\n",
|
381 |
+
"\n",
|
382 |
+
"with torch.no_grad():\n",
|
383 |
+
" out = traced_model(i)\n",
|
384 |
+
"\n",
|
385 |
+
"print(\"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": 14,
|
391 |
+
"id": "304ae7b0",
|
392 |
+
"metadata": {},
|
393 |
+
"outputs": [
|
394 |
+
{
|
395 |
+
"name": "stderr",
|
396 |
+
"output_type": "stream",
|
397 |
+
"text": [
|
398 |
+
"Model is not in eval mode. Consider calling '.eval()' on your model prior to conversion\n",
|
399 |
+
"Converting PyTorch Frontend ==> MIL Ops: 100%|█████████▉| 723/724 [00:00<00:00, 3783.41 ops/s]\n",
|
400 |
+
"Running MIL frontend_pytorch pipeline: 100%|██████████| 5/5 [00:00<00:00, 69.84 passes/s]\n",
|
401 |
+
"Running MIL default pipeline: 100%|██████████| 78/78 [00:02<00:00, 30.22 passes/s]\n",
|
402 |
+
"Running MIL backend_mlprogram pipeline: 100%|██████████| 12/12 [00:00<00:00, 71.49 passes/s]\n"
|
403 |
+
]
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"source": [
|
407 |
+
"image_input = ct.ImageType(name=\"colorImage\", shape=i.shape)\n",
|
408 |
+
"image_encoder_model = ct.converters.convert(\n",
|
409 |
+
" traced_model,\n",
|
410 |
+
" convert_to=\"mlprogram\",\n",
|
411 |
+
" inputs=[image_input],\n",
|
412 |
+
" outputs=[ct.TensorType(name=\"embOutput\", dtype=np.float32)],\n",
|
413 |
+
" minimum_deployment_target=ct.target.iOS16,\n",
|
414 |
+
")\n",
|
415 |
+
"image_encoder_model.save(\"ImageEncoder_mobileclip_s0.mlpackage\")"
|
416 |
+
]
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "markdown",
|
420 |
+
"id": "f3c5008e",
|
421 |
+
"metadata": {},
|
422 |
+
"source": [
|
423 |
+
"## Validate export"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": 15,
|
429 |
+
"id": "759bb57d",
|
430 |
+
"metadata": {},
|
431 |
+
"outputs": [
|
432 |
+
{
|
433 |
+
"name": "stderr",
|
434 |
+
"output_type": "stream",
|
435 |
+
"text": [
|
436 |
+
"/var/folders/tm/mkjhhwzd5hb8y3tkrr72_zcw0000gq/T/ipykernel_43113/3839791618.py:5: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.\n",
|
437 |
+
" imgPIL = imgPIL.resize((256, 256), Image.BICUBIC)\n"
|
438 |
+
]
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"name": "stdout",
|
442 |
+
"output_type": "stream",
|
443 |
+
"text": [
|
444 |
+
"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\n",
|
445 |
+
">>> tensor([ 0.0180, 0.0501, 0.0073, 0.0510, 0.0515, 0.0164, -0.0680, 0.1125,\n",
|
446 |
+
" 0.0306, -0.0220], grad_fn=<SliceBackward0>)\n",
|
447 |
+
"\n",
|
448 |
+
"CoreML ImageEncoder ckpt out for jpg:\n",
|
449 |
+
">>> [ 0.01794434 0.04956055 0.0073967 0.05114746 0.05157471 0.01622009\n",
|
450 |
+
" -0.0680542 0.11236572 0.03044128 -0.02180481]\n"
|
451 |
+
]
|
452 |
+
}
|
453 |
+
],
|
454 |
+
"source": [
|
455 |
+
"import torchvision.transforms as transforms\n",
|
456 |
+
"\n",
|
457 |
+
"ie_ml_model = ct.models.MLModel('ImageEncoder_mobileclip_s0.mlpackage')\n",
|
458 |
+
"imgPIL = Image.open(\"./sample_images/IMG_4085.jpeg\")\n",
|
459 |
+
"imgPIL = imgPIL.resize((256, 256), Image.BICUBIC)\n",
|
460 |
+
"\n",
|
461 |
+
"img_np = np.asarray(imgPIL).astype(np.float32) # (256, 256, 3)\n",
|
462 |
+
"img_np = img_np[np.newaxis, :, :, :] # (1, 256, 256, 3)\n",
|
463 |
+
"img_np = np.transpose(img_np, [0, 3, 1, 2]) # (1, 3, 256, 256)\n",
|
464 |
+
"torch_tensor_input = torch.from_numpy(img_np)\n",
|
465 |
+
"\n",
|
466 |
+
"predictions = ie_ml_model.predict({'colorImage': imgPIL})\n",
|
467 |
+
"out = wrapped_model(torch_tensor_input)\n",
|
468 |
+
"print(\"Traced wrapped PyTorch ImageEncoder ckpt out for jpg:\\n>>>\", out[0, :10])\n",
|
469 |
+
"print(\"\\nCoreML ImageEncoder ckpt out for jpg:\\n>>>\", predictions['embOutput'][0, :10])"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "code",
|
474 |
+
"execution_count": 18,
|
475 |
+
"id": "a71abf7b",
|
476 |
+
"metadata": {},
|
477 |
+
"outputs": [
|
478 |
+
{
|
479 |
+
"name": "stdout",
|
480 |
+
"output_type": "stream",
|
481 |
+
"text": [
|
482 |
+
"There are 9 images in the dataset, each has a feature of shape torch.Size([512])\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"Text: a photo of a dog\n",
|
486 |
+
"Most similar images:\n",
|
487 |
+
"IMG_4061.jpeg 50.45%\n",
|
488 |
+
"IMG_2134.jpeg 45.32%\n",
|
489 |
+
"21-09-07_1153.jpeg 3.20%\n",
|
490 |
+
"IMG_0519.jpeg 1.01%\n",
|
491 |
+
"IMG_4085.jpeg 0.01%\n",
|
492 |
+
"\n",
|
493 |
+
"\n",
|
494 |
+
"Text: a dog\n",
|
495 |
+
"Most similar images:\n",
|
496 |
+
"IMG_2134.jpeg 85.73%\n",
|
497 |
+
"IMG_4061.jpeg 12.42%\n",
|
498 |
+
"21-09-07_1153.jpeg 1.19%\n",
|
499 |
+
"IMG_0519.jpeg 0.65%\n",
|
500 |
+
"IMG_4085.jpeg 0.00%\n",
|
501 |
+
"\n",
|
502 |
+
"\n",
|
503 |
+
"Text: dogs\n",
|
504 |
+
"Most similar images:\n",
|
505 |
+
"IMG_0519.jpeg 79.85%\n",
|
506 |
+
"IMG_2134.jpeg 16.58%\n",
|
507 |
+
"IMG_4061.jpeg 3.17%\n",
|
508 |
+
"21-09-07_1153.jpeg 0.20%\n",
|
509 |
+
"IMG_6172.jpeg 0.12%\n"
|
510 |
+
]
|
511 |
+
}
|
512 |
+
],
|
513 |
+
"source": [
|
514 |
+
"import os\n",
|
515 |
+
"import pickle\n",
|
516 |
+
"\n",
|
517 |
+
"path = r\"./sample_images\"\n",
|
518 |
+
"# this list holds all the image filename\n",
|
519 |
+
"images = []\n",
|
520 |
+
"\n",
|
521 |
+
"def image_resize(image):\n",
|
522 |
+
" image = image.resize((256, 256), Image.BICUBIC)\n",
|
523 |
+
" return image\n",
|
524 |
+
"\n",
|
525 |
+
"# creates a ScandirIterator aliased as files\n",
|
526 |
+
"with os.scandir(path) as files:\n",
|
527 |
+
" # loops through each file in the directory\n",
|
528 |
+
" for file in files:\n",
|
529 |
+
" if file.name.endswith('.jpeg'):\n",
|
530 |
+
" # adds only the image files to the flowers list\n",
|
531 |
+
" images.append(file.name)\n",
|
532 |
+
"\n",
|
533 |
+
"def extract_features(path, images):\n",
|
534 |
+
" num_images = len(images)\n",
|
535 |
+
" images_features = []\n",
|
536 |
+
" counter = 0\n",
|
537 |
+
" for i in range(0, num_images):\n",
|
538 |
+
" images_preprocess = image_resize(Image.open(os.path.join(path,images[i])).convert(\"RGB\")) \n",
|
539 |
+
" print(i)\n",
|
540 |
+
" cur_features = ie_ml_model.predict({'colorImage': images_preprocess})\n",
|
541 |
+
" cur_features = torch.tensor(cur_features['embOutput']).float().to(device)\n",
|
542 |
+
" cur_features /= cur_features.norm(dim=-1, keepdim=True)\n",
|
543 |
+
" images_features.append(cur_features)\n",
|
544 |
+
"\n",
|
545 |
+
" images_features = torch.cat(images_features)\n",
|
546 |
+
" print(\"Features shape {}\".format(images_features.shape))\n",
|
547 |
+
" return images_features.cpu().numpy()\n",
|
548 |
+
" \n",
|
549 |
+
"data = {}\n",
|
550 |
+
"p = r\"./ml_mobileclip_s0_features.pkl\"\n",
|
551 |
+
"\n",
|
552 |
+
"# check if the pickled file exists\n",
|
553 |
+
"if os.path.exists(p):\n",
|
554 |
+
" with open(p,'rb') as file:\n",
|
555 |
+
" data = pickle.load(file)\n",
|
556 |
+
"else:\n",
|
557 |
+
" print(\"Extracting features\")\n",
|
558 |
+
" images_features = extract_features(path, images)\n",
|
559 |
+
" for i in range(len(images_features)):\n",
|
560 |
+
" data[images[i]] = images_features[i]\n",
|
561 |
+
"\n",
|
562 |
+
" with open(p,'wb') as file:\n",
|
563 |
+
" pickle.dump(data,file)\n",
|
564 |
+
" \n",
|
565 |
+
" \n",
|
566 |
+
"# get a list of the filenames\n",
|
567 |
+
"filenames = np.array(list(data.keys()))\n",
|
568 |
+
"\n",
|
569 |
+
"# get a list of just the features\n",
|
570 |
+
"feat = np.array(list(data.values()))\n",
|
571 |
+
"feat = torch.tensor(feat).float().to(device)\n",
|
572 |
+
"\n",
|
573 |
+
"# reshape so that there are n samples of 512 vectors\n",
|
574 |
+
"#feat = feat.reshape(-1,512)\n",
|
575 |
+
"\n",
|
576 |
+
"print(f\"There are {len(filenames)} images in the dataset, each has a feature of shape {feat[0].shape}\")\n",
|
577 |
+
"\n",
|
578 |
+
"text_input = [\"a photo of a dog\", \"a dog\", \"dogs\"]\n",
|
579 |
+
"#text = tokenizer(\"a photo of a cat\").to(torch.int32)\n",
|
580 |
+
"texts_input_tokenized = tokenizer(text_input).to(torch.int32)\n",
|
581 |
+
"texts_input_tokenized = texts_input_tokenized[:,:max_seq_length]\n",
|
582 |
+
"\n",
|
583 |
+
"for i in range(len(text_input)):\n",
|
584 |
+
" text_input_tokenized = [texts_input_tokenized[i]]\n",
|
585 |
+
" text_features = te_ml_model.predict({'prompt': text_input_tokenized})\n",
|
586 |
+
" text_features = torch.tensor(text_features['embOutput']).float().to(device)\n",
|
587 |
+
" text_features /= text_features.norm(dim=-1, keepdim=True)\n",
|
588 |
+
" # calculate the similarity between the text features and the image features\n",
|
589 |
+
" similarity = (100.0 * text_features @ feat.T).softmax(dim=-1)\n",
|
590 |
+
" print(\"\\n\")\n",
|
591 |
+
" print(f\"Text: {text_input[i]}\")\n",
|
592 |
+
" values, indices = similarity[0].topk(5)\n",
|
593 |
+
" print(\"Most similar images:\")\n",
|
594 |
+
" for value, index in zip(values, indices):\n",
|
595 |
+
" print(f\"{filenames[index]:<40} {100 * value.item():.2f}%\") \n"
|
596 |
+
]
|
597 |
+
}
|
598 |
+
],
|
599 |
+
"metadata": {
|
600 |
+
"kernelspec": {
|
601 |
+
"display_name": "Python 3 (ipykernel)",
|
602 |
+
"language": "python",
|
603 |
+
"name": "python3"
|
604 |
+
},
|
605 |
+
"language_info": {
|
606 |
+
"codemirror_mode": {
|
607 |
+
"name": "ipython",
|
608 |
+
"version": 3
|
609 |
+
},
|
610 |
+
"file_extension": ".py",
|
611 |
+
"mimetype": "text/x-python",
|
612 |
+
"name": "python",
|
613 |
+
"nbconvert_exporter": "python",
|
614 |
+
"pygments_lexer": "ipython3",
|
615 |
+
"version": "3.10.13"
|
616 |
+
}
|
617 |
+
},
|
618 |
+
"nbformat": 4,
|
619 |
+
"nbformat_minor": 5
|
620 |
+
}
|
TextEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/model.mlmodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f999dca8d10f1a0a1ca95a09e8a169e59f6c16ed5eb76f67a26e0bcfec9e10a
|
3 |
+
size 55887
|
TextEncoder_mobileclip_s0.mlpackage/Data/com.apple.CoreML/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18ea166cc91e2b6b657f8a34edf873696b2c0ab6dac7831d9853e16c8a6a36bf
|
3 |
+
size 84871616
|
TextEncoder_mobileclip_s0.mlpackage/Manifest.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"fileFormatVersion": "1.0.0",
|
3 |
+
"itemInfoEntries": {
|
4 |
+
"2EC2DF70-CC93-4AFF-BD0A-F7B24DD88BBE": {
|
5 |
+
"author": "com.apple.CoreML",
|
6 |
+
"description": "CoreML Model Specification",
|
7 |
+
"name": "model.mlmodel",
|
8 |
+
"path": "com.apple.CoreML/model.mlmodel"
|
9 |
+
},
|
10 |
+
"F8DAD87B-2BE0-42E2-AEE2-B5BD6A3FDF88": {
|
11 |
+
"author": "com.apple.CoreML",
|
12 |
+
"description": "CoreML Model Weights",
|
13 |
+
"name": "weights",
|
14 |
+
"path": "com.apple.CoreML/weights"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"rootModelIdentifier": "2EC2DF70-CC93-4AFF-BD0A-F7B24DD88BBE"
|
18 |
+
}
|