NorbertRop commited on
Commit
4f2dede
1 Parent(s): 7b8ee66

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.28 +/- 0.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebe8f3dfe2ce019755655c127e3969d1312c21fc9ce6fe3145663f1bcc57ccd3
3
+ size 108075
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdf57c2ef80>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fdf57c26280>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1684163632527962253,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtHvGPtOLiruQUAw/tHvGPtOLiruQUAw/tHvGPtOLiruQUAw/tHvGPtOLiruQUAw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIbTtvsPYSL8n6YC/hL+2vw3P7D4vutk/BKdNv7hiBr59/Rw+tyy0v+6sgL1N18S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0e8Y+04uKu5BQDD9Fpp47Qrlru413oTu0e8Y+04uKu5BQDD9Fpp47Qrlru413oTu0e8Y+04uKu5BQDD9Fpp47Qrlru413oTu0e8Y+04uKu5BQDD9Fpp47Qrlru413oTuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.38766253 -0.00422809 0.5481043 ]\n [ 0.38766253 -0.00422809 0.5481043 ]\n [ 0.38766253 -0.00422809 0.5481043 ]\n [ 0.38766253 -0.00422809 0.5481043 ]]",
38
+ "desired_goal": "[[-0.4642649 -0.7845575 -1.0071152 ]\n [-1.4277196 0.46251717 1.7009944 ]\n [-0.8033297 -0.13123596 0.15331073]\n [-1.4076146 -0.06282984 -1.5378205 ]]",
39
+ "observation": "[[ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]\n [ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]\n [ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]\n [ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+rO/vcgR8Ty4GEE+5WKqPXsfVT2bbgo+SSACvRTwpz0NO8o8aTo6vWpTlbwienI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.093605 0.02942742 0.18857086]\n [ 0.08319644 0.05203198 0.13518755]\n [-0.03176907 0.08200088 0.02468636]\n [-0.04546586 -0.01822825 0.23679402]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5EnSNZNv/L+UhpRSlIwBbJRLMowBdJRHQKZogxKQJX11fZQoaAZoCWgPQwhNol7waU4AwJSGlFKUaBVLMmgWR0CmaEffwZwXdX2UKGgGaAloD0MIDDz3Hi65CcCUhpRSlGgVSzJoFkdApmgLSPU8WHV9lChoBmgJaA9DCDAOLh1zXg7AlIaUUpRoFUsyaBZHQKZnzdxhlUZ1fZQoaAZoCWgPQwiL/PohNhgEwJSGlFKUaBVLMmgWR0CmaXhJ7LMcdX2UKGgGaAloD0MINnaJ6q0BBMCUhpRSlGgVSzJoFkdApmk87W/ag3V9lChoBmgJaA9DCIcahSSzugHAlIaUUpRoFUsyaBZHQKZpAJrtVrB1fZQoaAZoCWgPQwiWzLG8qz4BwJSGlFKUaBVLMmgWR0CmaMMx46fbdX2UKGgGaAloD0MIwxA5fT0fBcCUhpRSlGgVSzJoFkdApmpYY3vQW3V9lChoBmgJaA9DCJJe1O5XgQjAlIaUUpRoFUsyaBZHQKZqHPhQ3xZ1fZQoaAZoCWgPQwhKmGn7V1b9v5SGlFKUaBVLMmgWR0CmaeBxHXmOdX2UKGgGaAloD0MIt9RBXg8m/b+UhpRSlGgVSzJoFkdApmmjDGcWkHV9lChoBmgJaA9DCCIa3UHsbADAlIaUUpRoFUsyaBZHQKZrRct5D7Z1fZQoaAZoCWgPQwhcA1slWFwNwJSGlFKUaBVLMmgWR0CmawpiAlOXdX2UKGgGaAloD0MIttsuNNdpCcCUhpRSlGgVSzJoFkdApmrOi1y/9HV9lChoBmgJaA9DCE90XfjBOQrAlIaUUpRoFUsyaBZHQKZqkWHk92Z1fZQoaAZoCWgPQwjvxoLCoEwBwJSGlFKUaBVLMmgWR0CmbCwLVnVYdX2UKGgGaAloD0MInS/2XnyR/7+UhpRSlGgVSzJoFkdApmvwtFrmAHV9lChoBmgJaA9DCJ/ouvCDM/+/lIaUUpRoFUsyaBZHQKZrtDiwSrZ1fZQoaAZoCWgPQwhPWyOCcZAJwJSGlFKUaBVLMmgWR0Cma3ciW3SbdX2UKGgGaAloD0MIoYLDCyKS/b+UhpRSlGgVSzJoFkdApm0GOXE61nV9lChoBmgJaA9DCPg2/dmPFP+/lIaUUpRoFUsyaBZHQKZsyuEEkjZ1fZQoaAZoCWgPQwizlZf8T34HwJSGlFKUaBVLMmgWR0CmbI5tFa0QdX2UKGgGaAloD0MINIY5QZtc/L+UhpRSlGgVSzJoFkdApmxRGe+VT3V9lChoBmgJaA9DCH5yFCAK5ve/lIaUUpRoFUsyaBZHQKZt77Y02tN1fZQoaAZoCWgPQwhck25L5EIAwJSGlFKUaBVLMmgWR0CmbbRUFSsKdX2UKGgGaAloD0MIildZ2xQPCcCUhpRSlGgVSzJoFkdApm13uw5eaHV9lChoBmgJaA9DCDLjbaXX5vW/lIaUUpRoFUsyaBZHQKZtOmnfl6t1fZQoaAZoCWgPQwj3cwryszEMwJSGlFKUaBVLMmgWR0CmbtQCCBf8dX2UKGgGaAloD0MIfJxpwvZTAcCUhpRSlGgVSzJoFkdApm6YvYe1bHV9lChoBmgJaA9DCCzYRjzZDfq/lIaUUpRoFUsyaBZHQKZuXB42S+x1fZQoaAZoCWgPQwjct1onLkcGwJSGlFKUaBVLMmgWR0Cmbh7IDHOsdX2UKGgGaAloD0MIKnEd44oL/L+UhpRSlGgVSzJoFkdApm+7/hl183V9lChoBmgJaA9DCBB4YADhgwDAlIaUUpRoFUsyaBZHQKZvgI0qH451fZQoaAZoCWgPQwhlj1AzpMoEwJSGlFKUaBVLMmgWR0Cmb0PvjOs1dX2UKGgGaAloD0MIVrd6TnqfAMCUhpRSlGgVSzJoFkdApm8GmixmkHV9lChoBmgJaA9DCGTNyCB3kf6/lIaUUpRoFUsyaBZHQKZwl0nw5Np1fZQoaAZoCWgPQwgu5Xyx94IHwJSGlFKUaBVLMmgWR0CmcFvRZ2ZBdX2UKGgGaAloD0MIbW+3JAesCMCUhpRSlGgVSzJoFkdApnAfQdCE6HV9lChoBmgJaA9DCATLETKQZwPAlIaUUpRoFUsyaBZHQKZv4eIVM251fZQoaAZoCWgPQwjqsS0DztL3v5SGlFKUaBVLMmgWR0CmcX9WZJCjdX2UKGgGaAloD0MInpYfuMqT+b+UhpRSlGgVSzJoFkdApnFEIAwPAnV9lChoBmgJaA9DCAvrxrsj4/+/lIaUUpRoFUsyaBZHQKZxB4gzP8h1fZQoaAZoCWgPQwhkO99PjZf8v5SGlFKUaBVLMmgWR0CmcMomXw9adX2UKGgGaAloD0MI1uO+1TpRAcCUhpRSlGgVSzJoFkdApnJXsgMc63V9lChoBmgJaA9DCDifOlYpXQfAlIaUUpRoFUsyaBZHQKZyHFmWdEt1fZQoaAZoCWgPQwg6kPXU6iv6v5SGlFKUaBVLMmgWR0Cmcd++VTrFdX2UKGgGaAloD0MIG5yIfm399b+UhpRSlGgVSzJoFkdApnGiYgJTl3V9lChoBmgJaA9DCFCr6A/NPPm/lIaUUpRoFUsyaBZHQKZzMTdLxqh1fZQoaAZoCWgPQwiUha+vdckCwJSGlFKUaBVLMmgWR0CmcvXhn8KpdX2UKGgGaAloD0MI6IcRwqON/r+UhpRSlGgVSzJoFkdApnK5UT+NtXV9lChoBmgJaA9DCHhCrz+JD/6/lIaUUpRoFUsyaBZHQKZye/yoXKt1fZQoaAZoCWgPQwh9BP7w878KwJSGlFKUaBVLMmgWR0CmdBGEf1YhdX2UKGgGaAloD0MI+z4cJETZAcCUhpRSlGgVSzJoFkdApnPWKKpDNXV9lChoBmgJaA9DCM40YfvJmAPAlIaUUpRoFUsyaBZHQKZzmZH/cWV1fZQoaAZoCWgPQwhvgQTFj7EDwJSGlFKUaBVLMmgWR0Cmc1wudwvQdX2UKGgGaAloD0MI/MbXnlmSAcCUhpRSlGgVSzJoFkdApnTyfxtpEnV9lChoBmgJaA9DCK7UsyCUdwXAlIaUUpRoFUsyaBZHQKZ0t5/LDAJ1fZQoaAZoCWgPQwgBUTBjClb3v5SGlFKUaBVLMmgWR0CmdHtZNfw7dX2UKGgGaAloD0MIdGIP7WNFBsCUhpRSlGgVSzJoFkdApnQ+Z3LV4HV9lChoBmgJaA9DCKzI6IAkzATAlIaUUpRoFUsyaBZHQKZ15EqDsdF1fZQoaAZoCWgPQwicFOY9zrT9v5SGlFKUaBVLMmgWR0CmdamKyfL+dX2UKGgGaAloD0MI+DWSBOGKAMCUhpRSlGgVSzJoFkdApnVtUS7GvXV9lChoBmgJaA9DCBaiQ+BIoP2/lIaUUpRoFUsyaBZHQKZ1MH1OCXh1fZQoaAZoCWgPQwiEvYkhOdkBwJSGlFKUaBVLMmgWR0Cmdr9LQHAzdX2UKGgGaAloD0MItqFinL/J+L+UhpRSlGgVSzJoFkdApnaD8m8dxXV9lChoBmgJaA9DCF653jZTwQ3AlIaUUpRoFUsyaBZHQKZ2R5VwPy11fZQoaAZoCWgPQwhjQswlVdv6v5SGlFKUaBVLMmgWR0CmdgpDVpbmdX2UKGgGaAloD0MIhQmjWdleCMCUhpRSlGgVSzJoFkdApngixFAmiXV9lChoBmgJaA9DCMkgdxGmqPi/lIaUUpRoFUsyaBZHQKZ35/GVAzJ1fZQoaAZoCWgPQwhWZd8VwT//v5SGlFKUaBVLMmgWR0Cmd6vPszEadX2UKGgGaAloD0MIEcZP4958+b+UhpRSlGgVSzJoFkdApndu8kD6nHV9lChoBmgJaA9DCDtREhJp2wnAlIaUUpRoFUsyaBZHQKZ5dltj0+V1fZQoaAZoCWgPQwjReCKI83D3v5SGlFKUaBVLMmgWR0CmeTuDjBEbdX2UKGgGaAloD0MIUaBP5EkyDcCUhpRSlGgVSzJoFkdApnj/kmx+rnV9lChoBmgJaA9DCLFs5pDUggLAlIaUUpRoFUsyaBZHQKZ4wreZXuF1fZQoaAZoCWgPQwjb3JiesMQAwJSGlFKUaBVLMmgWR0CmetjNyHVPdX2UKGgGaAloD0MIsdtnlZnS+r+UhpRSlGgVSzJoFkdApnqd14gRsnV9lChoBmgJaA9DCFrVko5ykADAlIaUUpRoFUsyaBZHQKZ6Yc4HX3B1fZQoaAZoCWgPQwh0zk9xHPgKwJSGlFKUaBVLMmgWR0CmeiTbnHNpdX2UKGgGaAloD0MIvXK9baYCDsCUhpRSlGgVSzJoFkdApnxCuW8h93V9lChoBmgJaA9DCGk7pu7KrgDAlIaUUpRoFUsyaBZHQKZ8CDcuand1fZQoaAZoCWgPQwiOsn4zMd38v5SGlFKUaBVLMmgWR0Cme8xhc7hfdX2UKGgGaAloD0MIdavnpPcNAcCUhpRSlGgVSzJoFkdApnuPszEaVHV9lChoBmgJaA9DCA04S8lykgzAlIaUUpRoFUsyaBZHQKZ9uGsV+JB1fZQoaAZoCWgPQwgM5US7CqkHwJSGlFKUaBVLMmgWR0CmfX2jfvWpdX2UKGgGaAloD0MIMiJRaFmXB8CUhpRSlGgVSzJoFkdApn1BmEoOQXV9lChoBmgJaA9DCIo73uS3SAHAlIaUUpRoFUsyaBZHQKZ9BSrHU+d1fZQoaAZoCWgPQwjGFKxxNn0EwJSGlFKUaBVLMmgWR0CmfyxlpXZHdX2UKGgGaAloD0MIpABRMGPK+L+UhpRSlGgVSzJoFkdApn7xZ+x4ZHV9lChoBmgJaA9DCPbv+sxZvwTAlIaUUpRoFUsyaBZHQKZ+tVDKHO91fZQoaAZoCWgPQwhNSkG3l1QHwJSGlFKUaBVLMmgWR0Cmfnh55Z8sdX2UKGgGaAloD0MIAfp9/+aFA8CUhpRSlGgVSzJoFkdApoCY0uUUwnV9lChoBmgJaA9DCDVFgNO7mAvAlIaUUpRoFUsyaBZHQKaAXoxpL291fZQoaAZoCWgPQwgvpwTEJBwAwJSGlFKUaBVLMmgWR0CmgCJnQID6dX2UKGgGaAloD0MIat/cXz3u/L+UhpRSlGgVSzJoFkdApn/ljVhCt3V9lChoBmgJaA9DCCb9vRQeNPy/lIaUUpRoFUsyaBZHQKaB6FuejEh1fZQoaAZoCWgPQwh0YaQXtZsLwJSGlFKUaBVLMmgWR0Cmgazx5LRKdX2UKGgGaAloD0MIldbfEoA/B8CUhpRSlGgVSzJoFkdApoFwtcv/R3V9lChoBmgJaA9DCDl/EwoRMATAlIaUUpRoFUsyaBZHQKaBM2CuloF1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08fdf144cd885594f120d02d8e332e359fe16a5a57f22adfc5bd6e53d3eb2dae
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38be39728d44769ef63611207bbcd8ce1909f4193dfeb9573ab2b761e8cb0fd7
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdf57c2ef80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdf57c26280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684163632527962253, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtHvGPtOLiruQUAw/tHvGPtOLiruQUAw/tHvGPtOLiruQUAw/tHvGPtOLiruQUAw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIbTtvsPYSL8n6YC/hL+2vw3P7D4vutk/BKdNv7hiBr59/Rw+tyy0v+6sgL1N18S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0e8Y+04uKu5BQDD9Fpp47Qrlru413oTu0e8Y+04uKu5BQDD9Fpp47Qrlru413oTu0e8Y+04uKu5BQDD9Fpp47Qrlru413oTu0e8Y+04uKu5BQDD9Fpp47Qrlru413oTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38766253 -0.00422809 0.5481043 ]\n [ 0.38766253 -0.00422809 0.5481043 ]\n [ 0.38766253 -0.00422809 0.5481043 ]\n [ 0.38766253 -0.00422809 0.5481043 ]]", "desired_goal": "[[-0.4642649 -0.7845575 -1.0071152 ]\n [-1.4277196 0.46251717 1.7009944 ]\n [-0.8033297 -0.13123596 0.15331073]\n [-1.4076146 -0.06282984 -1.5378205 ]]", "observation": "[[ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]\n [ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]\n [ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]\n [ 0.38766253 -0.00422809 0.5481043 0.0048416 -0.00359686 0.00492758]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+rO/vcgR8Ty4GEE+5WKqPXsfVT2bbgo+SSACvRTwpz0NO8o8aTo6vWpTlbwienI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.093605 0.02942742 0.18857086]\n [ 0.08319644 0.05203198 0.13518755]\n [-0.03176907 0.08200088 0.02468636]\n [-0.04546586 -0.01822825 0.23679402]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5EnSNZNv/L+UhpRSlIwBbJRLMowBdJRHQKZogxKQJX11fZQoaAZoCWgPQwhNol7waU4AwJSGlFKUaBVLMmgWR0CmaEffwZwXdX2UKGgGaAloD0MIDDz3Hi65CcCUhpRSlGgVSzJoFkdApmgLSPU8WHV9lChoBmgJaA9DCDAOLh1zXg7AlIaUUpRoFUsyaBZHQKZnzdxhlUZ1fZQoaAZoCWgPQwiL/PohNhgEwJSGlFKUaBVLMmgWR0CmaXhJ7LMcdX2UKGgGaAloD0MINnaJ6q0BBMCUhpRSlGgVSzJoFkdApmk87W/ag3V9lChoBmgJaA9DCIcahSSzugHAlIaUUpRoFUsyaBZHQKZpAJrtVrB1fZQoaAZoCWgPQwiWzLG8qz4BwJSGlFKUaBVLMmgWR0CmaMMx46fbdX2UKGgGaAloD0MIwxA5fT0fBcCUhpRSlGgVSzJoFkdApmpYY3vQW3V9lChoBmgJaA9DCJJe1O5XgQjAlIaUUpRoFUsyaBZHQKZqHPhQ3xZ1fZQoaAZoCWgPQwhKmGn7V1b9v5SGlFKUaBVLMmgWR0CmaeBxHXmOdX2UKGgGaAloD0MIt9RBXg8m/b+UhpRSlGgVSzJoFkdApmmjDGcWkHV9lChoBmgJaA9DCCIa3UHsbADAlIaUUpRoFUsyaBZHQKZrRct5D7Z1fZQoaAZoCWgPQwhcA1slWFwNwJSGlFKUaBVLMmgWR0CmawpiAlOXdX2UKGgGaAloD0MIttsuNNdpCcCUhpRSlGgVSzJoFkdApmrOi1y/9HV9lChoBmgJaA9DCE90XfjBOQrAlIaUUpRoFUsyaBZHQKZqkWHk92Z1fZQoaAZoCWgPQwjvxoLCoEwBwJSGlFKUaBVLMmgWR0CmbCwLVnVYdX2UKGgGaAloD0MInS/2XnyR/7+UhpRSlGgVSzJoFkdApmvwtFrmAHV9lChoBmgJaA9DCJ/ouvCDM/+/lIaUUpRoFUsyaBZHQKZrtDiwSrZ1fZQoaAZoCWgPQwhPWyOCcZAJwJSGlFKUaBVLMmgWR0Cma3ciW3SbdX2UKGgGaAloD0MIoYLDCyKS/b+UhpRSlGgVSzJoFkdApm0GOXE61nV9lChoBmgJaA9DCPg2/dmPFP+/lIaUUpRoFUsyaBZHQKZsyuEEkjZ1fZQoaAZoCWgPQwizlZf8T34HwJSGlFKUaBVLMmgWR0CmbI5tFa0QdX2UKGgGaAloD0MINIY5QZtc/L+UhpRSlGgVSzJoFkdApmxRGe+VT3V9lChoBmgJaA9DCH5yFCAK5ve/lIaUUpRoFUsyaBZHQKZt77Y02tN1fZQoaAZoCWgPQwhck25L5EIAwJSGlFKUaBVLMmgWR0CmbbRUFSsKdX2UKGgGaAloD0MIildZ2xQPCcCUhpRSlGgVSzJoFkdApm13uw5eaHV9lChoBmgJaA9DCDLjbaXX5vW/lIaUUpRoFUsyaBZHQKZtOmnfl6t1fZQoaAZoCWgPQwj3cwryszEMwJSGlFKUaBVLMmgWR0CmbtQCCBf8dX2UKGgGaAloD0MIfJxpwvZTAcCUhpRSlGgVSzJoFkdApm6YvYe1bHV9lChoBmgJaA9DCCzYRjzZDfq/lIaUUpRoFUsyaBZHQKZuXB42S+x1fZQoaAZoCWgPQwjct1onLkcGwJSGlFKUaBVLMmgWR0Cmbh7IDHOsdX2UKGgGaAloD0MIKnEd44oL/L+UhpRSlGgVSzJoFkdApm+7/hl183V9lChoBmgJaA9DCBB4YADhgwDAlIaUUpRoFUsyaBZHQKZvgI0qH451fZQoaAZoCWgPQwhlj1AzpMoEwJSGlFKUaBVLMmgWR0Cmb0PvjOs1dX2UKGgGaAloD0MIVrd6TnqfAMCUhpRSlGgVSzJoFkdApm8GmixmkHV9lChoBmgJaA9DCGTNyCB3kf6/lIaUUpRoFUsyaBZHQKZwl0nw5Np1fZQoaAZoCWgPQwgu5Xyx94IHwJSGlFKUaBVLMmgWR0CmcFvRZ2ZBdX2UKGgGaAloD0MIbW+3JAesCMCUhpRSlGgVSzJoFkdApnAfQdCE6HV9lChoBmgJaA9DCATLETKQZwPAlIaUUpRoFUsyaBZHQKZv4eIVM251fZQoaAZoCWgPQwjqsS0DztL3v5SGlFKUaBVLMmgWR0CmcX9WZJCjdX2UKGgGaAloD0MInpYfuMqT+b+UhpRSlGgVSzJoFkdApnFEIAwPAnV9lChoBmgJaA9DCAvrxrsj4/+/lIaUUpRoFUsyaBZHQKZxB4gzP8h1fZQoaAZoCWgPQwhkO99PjZf8v5SGlFKUaBVLMmgWR0CmcMomXw9adX2UKGgGaAloD0MI1uO+1TpRAcCUhpRSlGgVSzJoFkdApnJXsgMc63V9lChoBmgJaA9DCDifOlYpXQfAlIaUUpRoFUsyaBZHQKZyHFmWdEt1fZQoaAZoCWgPQwg6kPXU6iv6v5SGlFKUaBVLMmgWR0Cmcd++VTrFdX2UKGgGaAloD0MIG5yIfm399b+UhpRSlGgVSzJoFkdApnGiYgJTl3V9lChoBmgJaA9DCFCr6A/NPPm/lIaUUpRoFUsyaBZHQKZzMTdLxqh1fZQoaAZoCWgPQwiUha+vdckCwJSGlFKUaBVLMmgWR0CmcvXhn8KpdX2UKGgGaAloD0MI6IcRwqON/r+UhpRSlGgVSzJoFkdApnK5UT+NtXV9lChoBmgJaA9DCHhCrz+JD/6/lIaUUpRoFUsyaBZHQKZye/yoXKt1fZQoaAZoCWgPQwh9BP7w878KwJSGlFKUaBVLMmgWR0CmdBGEf1YhdX2UKGgGaAloD0MI+z4cJETZAcCUhpRSlGgVSzJoFkdApnPWKKpDNXV9lChoBmgJaA9DCM40YfvJmAPAlIaUUpRoFUsyaBZHQKZzmZH/cWV1fZQoaAZoCWgPQwhvgQTFj7EDwJSGlFKUaBVLMmgWR0Cmc1wudwvQdX2UKGgGaAloD0MI/MbXnlmSAcCUhpRSlGgVSzJoFkdApnTyfxtpEnV9lChoBmgJaA9DCK7UsyCUdwXAlIaUUpRoFUsyaBZHQKZ0t5/LDAJ1fZQoaAZoCWgPQwgBUTBjClb3v5SGlFKUaBVLMmgWR0CmdHtZNfw7dX2UKGgGaAloD0MIdGIP7WNFBsCUhpRSlGgVSzJoFkdApnQ+Z3LV4HV9lChoBmgJaA9DCKzI6IAkzATAlIaUUpRoFUsyaBZHQKZ15EqDsdF1fZQoaAZoCWgPQwicFOY9zrT9v5SGlFKUaBVLMmgWR0CmdamKyfL+dX2UKGgGaAloD0MI+DWSBOGKAMCUhpRSlGgVSzJoFkdApnVtUS7GvXV9lChoBmgJaA9DCBaiQ+BIoP2/lIaUUpRoFUsyaBZHQKZ1MH1OCXh1fZQoaAZoCWgPQwiEvYkhOdkBwJSGlFKUaBVLMmgWR0Cmdr9LQHAzdX2UKGgGaAloD0MItqFinL/J+L+UhpRSlGgVSzJoFkdApnaD8m8dxXV9lChoBmgJaA9DCF653jZTwQ3AlIaUUpRoFUsyaBZHQKZ2R5VwPy11fZQoaAZoCWgPQwhjQswlVdv6v5SGlFKUaBVLMmgWR0CmdgpDVpbmdX2UKGgGaAloD0MIhQmjWdleCMCUhpRSlGgVSzJoFkdApngixFAmiXV9lChoBmgJaA9DCMkgdxGmqPi/lIaUUpRoFUsyaBZHQKZ35/GVAzJ1fZQoaAZoCWgPQwhWZd8VwT//v5SGlFKUaBVLMmgWR0Cmd6vPszEadX2UKGgGaAloD0MIEcZP4958+b+UhpRSlGgVSzJoFkdApndu8kD6nHV9lChoBmgJaA9DCDtREhJp2wnAlIaUUpRoFUsyaBZHQKZ5dltj0+V1fZQoaAZoCWgPQwjReCKI83D3v5SGlFKUaBVLMmgWR0CmeTuDjBEbdX2UKGgGaAloD0MIUaBP5EkyDcCUhpRSlGgVSzJoFkdApnj/kmx+rnV9lChoBmgJaA9DCLFs5pDUggLAlIaUUpRoFUsyaBZHQKZ4wreZXuF1fZQoaAZoCWgPQwjb3JiesMQAwJSGlFKUaBVLMmgWR0CmetjNyHVPdX2UKGgGaAloD0MIsdtnlZnS+r+UhpRSlGgVSzJoFkdApnqd14gRsnV9lChoBmgJaA9DCFrVko5ykADAlIaUUpRoFUsyaBZHQKZ6Yc4HX3B1fZQoaAZoCWgPQwh0zk9xHPgKwJSGlFKUaBVLMmgWR0CmeiTbnHNpdX2UKGgGaAloD0MIvXK9baYCDsCUhpRSlGgVSzJoFkdApnxCuW8h93V9lChoBmgJaA9DCGk7pu7KrgDAlIaUUpRoFUsyaBZHQKZ8CDcuand1fZQoaAZoCWgPQwiOsn4zMd38v5SGlFKUaBVLMmgWR0Cme8xhc7hfdX2UKGgGaAloD0MIdavnpPcNAcCUhpRSlGgVSzJoFkdApnuPszEaVHV9lChoBmgJaA9DCA04S8lykgzAlIaUUpRoFUsyaBZHQKZ9uGsV+JB1fZQoaAZoCWgPQwgM5US7CqkHwJSGlFKUaBVLMmgWR0CmfX2jfvWpdX2UKGgGaAloD0MIMiJRaFmXB8CUhpRSlGgVSzJoFkdApn1BmEoOQXV9lChoBmgJaA9DCIo73uS3SAHAlIaUUpRoFUsyaBZHQKZ9BSrHU+d1fZQoaAZoCWgPQwjGFKxxNn0EwJSGlFKUaBVLMmgWR0CmfyxlpXZHdX2UKGgGaAloD0MIpABRMGPK+L+UhpRSlGgVSzJoFkdApn7xZ+x4ZHV9lChoBmgJaA9DCPbv+sxZvwTAlIaUUpRoFUsyaBZHQKZ+tVDKHO91fZQoaAZoCWgPQwhNSkG3l1QHwJSGlFKUaBVLMmgWR0Cmfnh55Z8sdX2UKGgGaAloD0MIAfp9/+aFA8CUhpRSlGgVSzJoFkdApoCY0uUUwnV9lChoBmgJaA9DCDVFgNO7mAvAlIaUUpRoFUsyaBZHQKaAXoxpL291fZQoaAZoCWgPQwgvpwTEJBwAwJSGlFKUaBVLMmgWR0CmgCJnQID6dX2UKGgGaAloD0MIat/cXz3u/L+UhpRSlGgVSzJoFkdApn/ljVhCt3V9lChoBmgJaA9DCCb9vRQeNPy/lIaUUpRoFUsyaBZHQKaB6FuejEh1fZQoaAZoCWgPQwh0YaQXtZsLwJSGlFKUaBVLMmgWR0Cmgazx5LRKdX2UKGgGaAloD0MIldbfEoA/B8CUhpRSlGgVSzJoFkdApoFwtcv/R3V9lChoBmgJaA9DCDl/EwoRMATAlIaUUpRoFUsyaBZHQKaBM2CuloF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (771 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.2794927234295757, "std_reward": 0.7181619632762027, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-15T16:46:23.457822"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1155444c510de1a48d943fab1f2cbd00a7e8da969102a885ad32ee5990ee9f5
3
+ size 2387