|
import warnings |
|
from typing import Callable, Union |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
import numpy as np |
|
import librosa |
|
from PIL import Image |
|
|
|
class Mel(ConfigMixin, SchedulerMixin): |
|
config_name = "mel_config.json" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
x_res: int = 256, |
|
y_res: int = 256, |
|
sample_rate: int = 22050, |
|
n_fft: int = 2048, |
|
hop_length: int = 512, |
|
top_db: float = 80.0, |
|
n_iter: int = 32, |
|
): |
|
self.hop_length = hop_length |
|
self.sr = sample_rate |
|
self.n_fft = n_fft |
|
self.top_db = top_db |
|
self.audio = None |
|
self.n_iter = n_iter |
|
self.set_resolution(x_res, y_res) |
|
|
|
def set_resolution(self, x_res: int, y_res: int): |
|
self.x_res = x_res |
|
self.y_res = y_res |
|
self.n_mels = self.y_res |
|
self.slice_size = self.x_res * self.hop_length - 1 |
|
|
|
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None): |
|
if audio_file is not None: |
|
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr) |
|
else: |
|
self.audio = raw_audio |
|
|
|
if len(self.audio) < self.x_res * self.hop_length: |
|
self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))]) |
|
|
|
def get_number_of_slices(self) -> int: |
|
return len(self.audio) // self.slice_size |
|
|
|
def get_audio_slice(self, slice: int = 0) -> int: |
|
return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)] |
|
|
|
def get_sample_rate(self) -> int: |
|
return self.sr |
|
|
|
def audio_slice_to_image(self, slice: int, ref: Union[float, Callable] = np.max) -> Image.Image: |
|
S = librosa.feature.melspectrogram( |
|
y=self.get_audio_slice(slice), |
|
sr=self.sr, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
n_mels=self.n_mels, |
|
) |
|
log_S = librosa.power_to_db(S, ref=ref, top_db=self.top_db) |
|
spec_data = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8) |
|
return Image.fromarray(spec_data) |
|
|
|
def image_to_audio(self, image: Image.Image) -> np.ndarray: |
|
spec_data = np.frombuffer(image.tobytes(), dtype=np.uint8).reshape((image.height, image.width)) |
|
log_S = spec_data.astype("float") * self.top_db / 255 - self.top_db |
|
S = librosa.db_to_power(log_S) |
|
return librosa.feature.inverse.mel_to_audio( |
|
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter |
|
) |