Niraya666 commited on
Commit
55ba846
·
1 Parent(s): d3a9321

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -5.21 +/- 2.57
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -3.03 +/- 0.93
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aaeeb5a408e3fd7042c2c86bffd113b333442a48c1b40af4334bb8de9f7a6764
3
- size 108028
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8f5add45f34fccb748417c61f597d29526526a6c8984950b218138a383cf135
3
+ size 108145
a2c-PandaReachDense-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.7.0
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb37aa05550>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fb37aa02f00>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -19,46 +19,24 @@
19
  "weight_decay": 0
20
  }
21
  },
22
- "observation_space": {
23
- ":type:": "<class 'gym.spaces.dict.Dict'>",
24
- ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
- "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
- "_shape": null,
27
- "dtype": null,
28
- "_np_random": null
29
- },
30
- "action_space": {
31
- ":type:": "<class 'gym.spaces.box.Box'>",
32
- ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
- "dtype": "float32",
34
- "_shape": [
35
- 3
36
- ],
37
- "low": "[-1. -1. -1.]",
38
- "high": "[1. 1. 1.]",
39
- "bounded_below": "[ True True True]",
40
- "bounded_above": "[ True True True]",
41
- "_np_random": null
42
- },
43
- "n_envs": 4,
44
  "num_timesteps": 1000000,
45
  "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1680506946002050552,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANd7zPl7dbbvlbCc/Nd7zPl7dbbvlbCc/Nd7zPl7dbbvlbCc/Nd7zPl7dbbvlbCc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm+HlvrrOI7/Dgra/tH4yPnsFn7/U6V+/VgC6v89pQL4RW8Y/MqKZPyU0tT8sCw++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA13vM+Xt1tu+VsJz8oU0U7P5Qdu8Aruzw13vM+Xt1tu+VsJz8oU0U7P5Qdu8Aruzw13vM+Xt1tu+VsJz8oU0U7P5Qdu8Aruzw13vM+Xt1tu+VsJz8oU0U7P5Qdu8AruzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 0.47630468 -0.00362953 0.65400535]\n [ 0.47630468 -0.00362953 0.65400535]\n [ 0.47630468 -0.00362953 0.65400535]\n [ 0.47630468 -0.00362953 0.65400535]]",
60
- "desired_goal": "[[-0.44898686 -0.63987315 -1.4258655 ]\n [ 0.17431146 -1.2423548 -0.8746617 ]\n [-1.4531353 -0.18790363 1.5496541 ]\n [ 1.2002623 1.4156538 -0.13969105]]",
61
- "observation": "[[ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]\n [ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]\n [ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]\n [ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,18 +44,19 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxzmZvGV6SDylpn4+5tzlPW6xfDwycJU+xzhaPVTF2T3B6q490A8/vD88wrxF2Ig9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.01870431 0.01223621 0.24868257]\n [ 0.11223774 0.01542316 0.2918716 ]\n [ 0.0532768 0.1063334 0.0854087 ]\n [-0.01166148 -0.02371037 0.06681875]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
76
  "sde_sample_freq": -1,
77
  "_current_progress_remaining": 0.0,
 
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxY7GoX7XGMCUhpRSlIwBbJRLMowBdJRHQKieUzByjpN1fZQoaAZoCWgPQwgJ+gs9YuQQwJSGlFKUaBVLMmgWR0ConhKzzErHdX2UKGgGaAloD0MIkX2QZcGkCMCUhpRSlGgVSzJoFkdAqJ3WXLNfPXV9lChoBmgJaA9DCLXdBN80zRDAlIaUUpRoFUsyaBZHQKidmJ0nw5N1fZQoaAZoCWgPQwjlettMhSgXwJSGlFKUaBVLMmgWR0Con2eAVfu1dX2UKGgGaAloD0MIN45Yi08BFsCUhpRSlGgVSzJoFkdAqJ8nMwDeTHV9lChoBmgJaA9DCOlfksoUGyLAlIaUUpRoFUsyaBZHQKie611GLDR1fZQoaAZoCWgPQwgqqn6l88EdwJSGlFKUaBVLMmgWR0Conq3C9AX3dX2UKGgGaAloD0MIC5xsA3fACcCUhpRSlGgVSzJoFkdAqKB/9Nvfj3V9lChoBmgJaA9DCO6TowBR8AvAlIaUUpRoFUsyaBZHQKigP5/LDAJ1fZQoaAZoCWgPQwjn4m97giQNwJSGlFKUaBVLMmgWR0CooANr9EThdX2UKGgGaAloD0MINnaJ6q2BEcCUhpRSlGgVSzJoFkdAqJ/GAmReTnV9lChoBmgJaA9DCCP0M/W65QnAlIaUUpRoFUsyaBZHQKihn72L5yl1fZQoaAZoCWgPQwjqCOBm8TIjwJSGlFKUaBVLMmgWR0CooV/Xf642dX2UKGgGaAloD0MICKwcWmR7EMCUhpRSlGgVSzJoFkdAqKEkDyOJcnV9lChoBmgJaA9DCChiEcMO0xDAlIaUUpRoFUsyaBZHQKig5t9hJAd1fZQoaAZoCWgPQwgAOPbsuTwTwJSGlFKUaBVLMmgWR0CoosHbAUL2dX2UKGgGaAloD0MIwk8cQL8/EsCUhpRSlGgVSzJoFkdAqKKBcmjTKHV9lChoBmgJaA9DCC51kNeDSRfAlIaUUpRoFUsyaBZHQKiiRShrWRR1fZQoaAZoCWgPQwjGv8+4cDAXwJSGlFKUaBVLMmgWR0CoogfACW/rdX2UKGgGaAloD0MIEmvxKQCGHcCUhpRSlGgVSzJoFkdAqKRUZHd43XV9lChoBmgJaA9DCBVVv9L5QBHAlIaUUpRoFUsyaBZHQKikFI6r/851fZQoaAZoCWgPQwgQ5+EEpjMPwJSGlFKUaBVLMmgWR0Coo9i2MKkVdX2UKGgGaAloD0MIkGXBxB+FD8CUhpRSlGgVSzJoFkdAqKObzoUzsXV9lChoBmgJaA9DCPWc9L7xFQ7AlIaUUpRoFUsyaBZHQKimHnwG4Zx1fZQoaAZoCWgPQwjUm1HzVWIRwJSGlFKUaBVLMmgWR0Copd8W9DhMdX2UKGgGaAloD0MIlpLlJJQOE8CUhpRSlGgVSzJoFkdAqKWj1AZ88nV9lChoBmgJaA9DCBbD1QEQpxfAlIaUUpRoFUsyaBZHQKilZv/BFd91fZQoaAZoCWgPQwhmu0IfLOMFwJSGlFKUaBVLMmgWR0Cop/Ieo1k2dX2UKGgGaAloD0MIdZMYBFZeEcCUhpRSlGgVSzJoFkdAqKey+vhZQ3V9lChoBmgJaA9DCCeHTzqRABTAlIaUUpRoFUsyaBZHQKind19v0iB1fZQoaAZoCWgPQwhywRn8/TIRwJSGlFKUaBVLMmgWR0CopzreqJdjdX2UKGgGaAloD0MI8s6hDFVRC8CUhpRSlGgVSzJoFkdAqKnzL+xW1nV9lChoBmgJaA9DCOCdfHpsSxbAlIaUUpRoFUsyaBZHQKips+ajN6h1fZQoaAZoCWgPQwgJFRxeEHEUwJSGlFKUaBVLMmgWR0CoqXj0cwQEdX2UKGgGaAloD0MInZ53Y0HhJcCUhpRSlGgVSzJoFkdAqKk8bJfYz3V9lChoBmgJaA9DCODZHr3hXiDAlIaUUpRoFUsyaBZHQKisDR0lqrR1fZQoaAZoCWgPQwhc/67PnFUDwJSGlFKUaBVLMmgWR0Coq86wljVhdX2UKGgGaAloD0MIbHh6pSzDC8CUhpRSlGgVSzJoFkdAqKuT5XU6P3V9lChoBmgJaA9DCAWjkjoBHRXAlIaUUpRoFUsyaBZHQKirV02cawV1fZQoaAZoCWgPQwi6SQwCK4ccwJSGlFKUaBVLMmgWR0CorgBYV6/qdX2UKGgGaAloD0MIgGQ6dHq+CcCUhpRSlGgVSzJoFkdAqK3BHiFTN3V9lChoBmgJaA9DCDz59NiWsRTAlIaUUpRoFUsyaBZHQKithX18LKF1fZQoaAZoCWgPQwjiIYyfxh0OwJSGlFKUaBVLMmgWR0CorUjg62fDdX2UKGgGaAloD0MIz0iERrDRDsCUhpRSlGgVSzJoFkdAqK85BX0Xg3V9lChoBmgJaA9DCPkTlQ1rShDAlIaUUpRoFUsyaBZHQKiu+NaQmu11fZQoaAZoCWgPQwhd3EYDeMsewJSGlFKUaBVLMmgWR0CorrzKs+3ZdX2UKGgGaAloD0MI8pcW9UmeHsCUhpRSlGgVSzJoFkdAqK5/AVO9FnV9lChoBmgJaA9DCPJ376gxARHAlIaUUpRoFUsyaBZHQKiwTied07t1fZQoaAZoCWgPQwj4cMlxpxQBwJSGlFKUaBVLMmgWR0CosA5xJd0JdX2UKGgGaAloD0MIjJ/GvflNEMCUhpRSlGgVSzJoFkdAqK/R/ViF03V9lChoBmgJaA9DCMkCJnDrxibAlIaUUpRoFUsyaBZHQKivlGdZq211fZQoaAZoCWgPQwhpxqLp7MQCwJSGlFKUaBVLMmgWR0CosalVDKHPdX2UKGgGaAloD0MIG4ANiBDX/b+UhpRSlGgVSzJoFkdAqLFp6yB063V9lChoBmgJaA9DCBHfiVkvth7AlIaUUpRoFUsyaBZHQKixLb/wRXh1fZQoaAZoCWgPQwjS4SGMnyYMwJSGlFKUaBVLMmgWR0CosPALApKBdX2UKGgGaAloD0MIyeU/pN8eDsCUhpRSlGgVSzJoFkdAqLMQKOT7mHV9lChoBmgJaA9DCFe0Oc5t8iTAlIaUUpRoFUsyaBZHQKiy0M2m52B1fZQoaAZoCWgPQwhvumWH+NcbwJSGlFKUaBVLMmgWR0CospR/d69kdX2UKGgGaAloD0MIKZKvBFKCEcCUhpRSlGgVSzJoFkdAqLJW5avA5HV9lChoBmgJaA9DCAVSYtf2tgbAlIaUUpRoFUsyaBZHQKi0UpBomHB1fZQoaAZoCWgPQwgRqP5BJFsgwJSGlFKUaBVLMmgWR0CotBJB5X2edX2UKGgGaAloD0MITP4nf/c+EcCUhpRSlGgVSzJoFkdAqLPV7pmmL3V9lChoBmgJaA9DCCXK3lLOhxvAlIaUUpRoFUsyaBZHQKizmHIp6Qh1fZQoaAZoCWgPQwgdkloomcwQwJSGlFKUaBVLMmgWR0CotXWjfvWpdX2UKGgGaAloD0MIwXCuYYa2FsCUhpRSlGgVSzJoFkdAqLU1oi9qUXV9lChoBmgJaA9DCNgQHJdxmyPAlIaUUpRoFUsyaBZHQKi0+XLNfPZ1fZQoaAZoCWgPQwitUKT7OaUMwJSGlFKUaBVLMmgWR0CotLyXUpd9dX2UKGgGaAloD0MIIsSVs3euJMCUhpRSlGgVSzJoFkdAqLawsiB5HHV9lChoBmgJaA9DCEw1s5YC8g3AlIaUUpRoFUsyaBZHQKi2cKKHfuV1fZQoaAZoCWgPQwjQRq6bUo4ZwJSGlFKUaBVLMmgWR0CotjUo0ALidX2UKGgGaAloD0MIhdBBl3CoAsCUhpRSlGgVSzJoFkdAqLX3fZVXFXV9lChoBmgJaA9DCDikUYGTDQXAlIaUUpRoFUsyaBZHQKi4VGTcIqt1fZQoaAZoCWgPQwjHSPYINUMuwJSGlFKUaBVLMmgWR0CouBUgbIcSdX2UKGgGaAloD0MImUuqtpvQHsCUhpRSlGgVSzJoFkdAqLfZrvb48HV9lChoBmgJaA9DCJaVJqWg2wnAlIaUUpRoFUsyaBZHQKi3nCxeLNx1fZQoaAZoCWgPQwj59xkXDsQXwJSGlFKUaBVLMmgWR0Coudeaa1CxdX2UKGgGaAloD0MIMe2b+6v3FcCUhpRSlGgVSzJoFkdAqLmYaef7JnV9lChoBmgJaA9DCKHa4ET0syjAlIaUUpRoFUsyaBZHQKi5XUONHYp1fZQoaAZoCWgPQwgBpDZxckcmwJSGlFKUaBVLMmgWR0CouR/+jua4dX2UKGgGaAloD0MIHyxjQzebDcCUhpRSlGgVSzJoFkdAqLtCkuYhMnV9lChoBmgJaA9DCFq8WBgiZx/AlIaUUpRoFUsyaBZHQKi7A15Sm651fZQoaAZoCWgPQwhlUG1wIroGwJSGlFKUaBVLMmgWR0CousckMTewdX2UKGgGaAloD0MIRrWIKCY/EMCUhpRSlGgVSzJoFkdAqLqJsqJ/G3V9lChoBmgJaA9DCLByaJHtLCzAlIaUUpRoFUsyaBZHQKi8cGzKLbZ1fZQoaAZoCWgPQwhZv5mYLiQUwJSGlFKUaBVLMmgWR0CovDBvaURndX2UKGgGaAloD0MIatyb3zBxC8CUhpRSlGgVSzJoFkdAqLv0CHRCyHV9lChoBmgJaA9DCO9054nnHB/AlIaUUpRoFUsyaBZHQKi7tnGKhtd1fZQoaAZoCWgPQwjKiXYVUv4HwJSGlFKUaBVLMmgWR0Covcts3yZsdX2UKGgGaAloD0MIDVTGv8+4DMCUhpRSlGgVSzJoFkdAqL2LXBguy3V9lChoBmgJaA9DCP6ABwYQPg/AlIaUUpRoFUsyaBZHQKi9T3Zf2K51fZQoaAZoCWgPQwiZKELqdjYKwJSGlFKUaBVLMmgWR0CovRHoxHoYdX2UKGgGaAloD0MIMEs7NZfbG8CUhpRSlGgVSzJoFkdAqL9OIVM233V9lChoBmgJaA9DCAFolC79UynAlIaUUpRoFUsyaBZHQKi/EBp5/sp1fZQoaAZoCWgPQwgN5NnlW58VwJSGlFKUaBVLMmgWR0CovtSTY/VzdX2UKGgGaAloD0MIBvUtc7rsLsCUhpRSlGgVSzJoFkdAqL6ZNqQA/HV9lChoBmgJaA9DCHhjQWFQhhvAlIaUUpRoFUsyaBZHQKjAsKjSG8F1fZQoaAZoCWgPQwjLhjWVRdEQwJSGlFKUaBVLMmgWR0CowHCU5dWydX2UKGgGaAloD0MIwoh9AiiGDMCUhpRSlGgVSzJoFkdAqMA0M5OrQ3V9lChoBmgJaA9DCJ6Xio15XQ7AlIaUUpRoFUsyaBZHQKi/9p+MIeJ1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
@@ -90,5 +69,27 @@
90
  "ent_coef": 0.0,
91
  "vf_coef": 0.5,
92
  "max_grad_norm": 0.5,
93
- "normalize_advantage": false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  }
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f810d087c10>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f810d0834b0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
19
  "weight_decay": 0
20
  }
21
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  "num_timesteps": 1000000,
23
  "_total_timesteps": 1000000,
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1684915483957540253,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
31
  ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVzwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTi9yb290L21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMTi9yb290L21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+bDXPmNYhTx9ZQ8/+bDXPmNYhTx9ZQ8/+bDXPmNYhTx9ZQ8/+bDXPmNYhTx9ZQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf2Hav+yYz7+qQli/pUe4v0Dbm7+4Aac+oojTv6lNj78egJo/fi7Lv5a/W7+bTJC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7v5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7v5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7v5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7uUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.42127207 0.0162775 0.56014234]\n [0.42127207 0.0162775 0.56014234]\n [0.42127207 0.0162775 0.56014234]\n [0.42127207 0.0162775 0.56014234]]",
38
+ "desired_goal": "[[-1.7061003 -1.6218543 -0.8447672]\n [-1.4396864 -1.2176285 0.326185 ]\n [-1.6526072 -1.1195575 1.2070348]\n [-1.5873563 -0.8583921 -1.1273378]]",
39
+ "observation": "[[ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]\n [ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]\n [ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]\n [ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwAViPazPXj2eAko+IdXnveg+tzxF6qQ8AwiavRdLjb2xKQk+GfOHvCVHE73/NXo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.05518126 0.05439727 0.19727561]\n [-0.11319948 0.02236886 0.02013124]\n [-0.07521059 -0.06899088 0.1339481 ]\n [-0.01659541 -0.03595652 0.2443466 ]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
53
  "use_sde": false,
54
  "sde_sample_freq": -1,
55
  "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuFm8WBgiGMCUhpRSlIwBbJRLMowBdJRHQKgyg4xUNrl1fZQoaAZoCWgPQwjI7Cx6pyIAwJSGlFKUaBVLMmgWR0CoMjaRQrMDdX2UKGgGaAloD0MIB9Fa0eY4/r+UhpRSlGgVSzJoFkdAqDHiBun/DXV9lChoBmgJaA9DCGMMrOP4IRDAlIaUUpRoFUsyaBZHQKgxkRtgrpd1fZQoaAZoCWgPQwj/lZUmpaAGwJSGlFKUaBVLMmgWR0CoNcyCe2/jdX2UKGgGaAloD0MIbk26LZFLCMCUhpRSlGgVSzJoFkdAqDV/NNahYnV9lChoBmgJaA9DCLmMmxpoPg3AlIaUUpRoFUsyaBZHQKg1Ks052hZ1fZQoaAZoCWgPQwgBvXDnwugFwJSGlFKUaBVLMmgWR0CoNNmfwqiHdX2UKGgGaAloD0MIZacf1EVqAsCUhpRSlGgVSzJoFkdAqDkUYoAn2XV9lChoBmgJaA9DCAg57//jRAPAlIaUUpRoFUsyaBZHQKg4xxR2r4p1fZQoaAZoCWgPQwg+tI8V/NYGwJSGlFKUaBVLMmgWR0CoOHKxC6YmdX2UKGgGaAloD0MIv0NRoE+EBcCUhpRSlGgVSzJoFkdAqDghvitJWnV9lChoBmgJaA9DCPm6DP/ppg/AlIaUUpRoFUsyaBZHQKg8XICEHt51fZQoaAZoCWgPQwh9BtSbURMEwJSGlFKUaBVLMmgWR0CoPA9ycTakdX2UKGgGaAloD0MIBg5o6Qo2A8CUhpRSlGgVSzJoFkdAqDu7CiyprHV9lChoBmgJaA9DCE5+i06WOgjAlIaUUpRoFUsyaBZHQKg7agwGnoB1fZQoaAZoCWgPQwh8fa1LjTADwJSGlFKUaBVLMmgWR0CoP6V4HHFQdX2UKGgGaAloD0MIOe0pOSdWA8CUhpRSlGgVSzJoFkdAqD9YR28qWnV9lChoBmgJaA9DCBnJHqFmKAfAlIaUUpRoFUsyaBZHQKg/A+Ofdyl1fZQoaAZoCWgPQwg/G7luStkKwJSGlFKUaBVLMmgWR0CoPrK+zt1IdX2UKGgGaAloD0MIARk6dlCpCsCUhpRSlGgVSzJoFkdAqELsNjLB9HV9lChoBmgJaA9DCC6RC87gjw/AlIaUUpRoFUsyaBZHQKhCnzJZGKB1fZQoaAZoCWgPQwhYHqSnyEEOwJSGlFKUaBVLMmgWR0CoQkrBCUosdX2UKGgGaAloD0MIWG/UCtMXCcCUhpRSlGgVSzJoFkdAqEH5wyZa3nV9lChoBmgJaA9DCOenOA68mg/AlIaUUpRoFUsyaBZHQKhGMwWWQfZ1fZQoaAZoCWgPQwhb7swEw1kPwJSGlFKUaBVLMmgWR0CoReYOtnwodX2UKGgGaAloD0MI/U6TGW+LAcCUhpRSlGgVSzJoFkdAqEWRh8Yyf3V9lChoBmgJaA9DCA6+MJkq2AjAlIaUUpRoFUsyaBZHQKhFQIToMa11fZQoaAZoCWgPQwgSa/EpAIb/v5SGlFKUaBVLMmgWR0CoSXrjo6jndX2UKGgGaAloD0MIN/3ZjxQxB8CUhpRSlGgVSzJoFkdAqEktxp+MInV9lChoBmgJaA9DCD+O5sjK7/u/lIaUUpRoFUsyaBZHQKhI2VO9FnZ1fZQoaAZoCWgPQwjfo/56hSUNwJSGlFKUaBVLMmgWR0CoSIg+yJKrdX2UKGgGaAloD0MI+dwJ9l+HAcCUhpRSlGgVSzJoFkdAqEzB8rqdH3V9lChoBmgJaA9DCB11dFyNzAjAlIaUUpRoFUsyaBZHQKhMdMnqmj11fZQoaAZoCWgPQwiVtU3xuKgDwJSGlFKUaBVLMmgWR0CoTCBNucc3dX2UKGgGaAloD0MI6pPcYROZ+7+UhpRSlGgVSzJoFkdAqEvPatcOb3V9lChoBmgJaA9DCCl4CrlSLxHAlIaUUpRoFUsyaBZHQKhQCWfseGR1fZQoaAZoCWgPQwj6eyk8aLb6v5SGlFKUaBVLMmgWR0CoT7wS8J2MdX2UKGgGaAloD0MIXyf1ZWkHAMCUhpRSlGgVSzJoFkdAqE9nrMTviXV9lChoBmgJaA9DCLQglPdxdAnAlIaUUpRoFUsyaBZHQKhPFr6+FlF1fZQoaAZoCWgPQwiOBYVBmYYKwJSGlFKUaBVLMmgWR0CoU1PbGm1qdX2UKGgGaAloD0MIy52ZYDj3A8CUhpRSlGgVSzJoFkdAqFMGnjyWiXV9lChoBmgJaA9DCP0xrU1jCxLAlIaUUpRoFUsyaBZHQKhSsjyFwkx1fZQoaAZoCWgPQwiRfZBlwfQSwJSGlFKUaBVLMmgWR0CoUmFWwNb1dX2UKGgGaAloD0MICFqBIas7BcCUhpRSlGgVSzJoFkdAqFaepZOi4HV9lChoBmgJaA9DCL4xBADHnhDAlIaUUpRoFUsyaBZHQKhWUYplSTB1fZQoaAZoCWgPQwgMlX8tr7wNwJSGlFKUaBVLMmgWR0CoVf09QoCudX2UKGgGaAloD0MIJ0ut9xuNEcCUhpRSlGgVSzJoFkdAqFWsSK3uu3V9lChoBmgJaA9DCN1bkZigBv2/lIaUUpRoFUsyaBZHQKhZ51tfoid1fZQoaAZoCWgPQwigcHZrmUwGwJSGlFKUaBVLMmgWR0CoWZop6QeWdX2UKGgGaAloD0MIc7osJjbfD8CUhpRSlGgVSzJoFkdAqFlFum78N3V9lChoBmgJaA9DCK3cC8wKBQvAlIaUUpRoFUsyaBZHQKhY9OE/Spl1fZQoaAZoCWgPQwhyxcVRuYkPwJSGlFKUaBVLMmgWR0CoXTPRqoIfdX2UKGgGaAloD0MIWB6kp8jBBsCUhpRSlGgVSzJoFkdAqFzm3x4IKXV9lChoBmgJaA9DCIKN69/1uQjAlIaUUpRoFUsyaBZHQKhckmNR3vB1fZQoaAZoCWgPQwhMiSR6GeUGwJSGlFKUaBVLMmgWR0CoXEFyJbdKdX2UKGgGaAloD0MIvmckQiPY/7+UhpRSlGgVSzJoFkdAqGCV4oqkM3V9lChoBmgJaA9DCHAIVWr2oAXAlIaUUpRoFUsyaBZHQKhgSM+eOGV1fZQoaAZoCWgPQwjPTgZHyasNwJSGlFKUaBVLMmgWR0CoX/ROtW+5dX2UKGgGaAloD0MIU67wLhcx/7+UhpRSlGgVSzJoFkdAqF+jdrO7hHV9lChoBmgJaA9DCJKyRdJu9Py/lIaUUpRoFUsyaBZHQKhj7nOjZct1fZQoaAZoCWgPQwiNKVjjbHr/v5SGlFKUaBVLMmgWR0CoY6FBppN9dX2UKGgGaAloD0MIzO80mfGWEMCUhpRSlGgVSzJoFkdAqGNM0xdpqXV9lChoBmgJaA9DCI6PFmcMkwfAlIaUUpRoFUsyaBZHQKhi+9Iwudx1fZQoaAZoCWgPQwgPfAxWnKr/v5SGlFKUaBVLMmgWR0CoZzYwh4dIdX2UKGgGaAloD0MIgo/BilNt9r+UhpRSlGgVSzJoFkdAqGbpKraM73V9lChoBmgJaA9DCPJCOjyEMQPAlIaUUpRoFUsyaBZHQKhmlIGQjlh1fZQoaAZoCWgPQwjtgywLJt4CwJSGlFKUaBVLMmgWR0CoZkOoxYaHdX2UKGgGaAloD0MIyXISSl8IDsCUhpRSlGgVSzJoFkdAqGqAu01IiHV9lChoBmgJaA9DCO3yrQ/rLQfAlIaUUpRoFUsyaBZHQKhqM68QI2R1fZQoaAZoCWgPQwi0lCwnoRQOwJSGlFKUaBVLMmgWR0Coad82itaIdX2UKGgGaAloD0MInmLVIMwt/r+UhpRSlGgVSzJoFkdAqGmN6NVBEHV9lChoBmgJaA9DCNE7FXDPswLAlIaUUpRoFUsyaBZHQKhtyl9Brvd1fZQoaAZoCWgPQwjdQexMofMQwJSGlFKUaBVLMmgWR0CobX09IPK/dX2UKGgGaAloD0MIrFPle0YCBMCUhpRSlGgVSzJoFkdAqG0omG/N7nV9lChoBmgJaA9DCDGzz2OUhwXAlIaUUpRoFUsyaBZHQKhs14keIVN1fZQoaAZoCWgPQwg42nHD76YGwJSGlFKUaBVLMmgWR0CocRKaPS2IdX2UKGgGaAloD0MID5wzorRXAcCUhpRSlGgVSzJoFkdAqHDFLrX18XV9lChoBmgJaA9DCCb+KOrMvQHAlIaUUpRoFUsyaBZHQKhwcGUOd5J1fZQoaAZoCWgPQwiXOPJAZFEGwJSGlFKUaBVLMmgWR0CocB+b/ffodX2UKGgGaAloD0MIB13CobdYCMCUhpRSlGgVSzJoFkdAqHRQetCAtnV9lChoBmgJaA9DCK8mT1lN1wTAlIaUUpRoFUsyaBZHQKh0A19fCyh1fZQoaAZoCWgPQwiDbcST3UwCwJSGlFKUaBVLMmgWR0Coc66q0dBCdX2UKGgGaAloD0MIxqLp7GRQA8CUhpRSlGgVSzJoFkdAqHNdehPCVXV9lChoBmgJaA9DCBoZ5C7C9AHAlIaUUpRoFUsyaBZHQKh3gNn5BTp1fZQoaAZoCWgPQwjyejApPv79v5SGlFKUaBVLMmgWR0CodzOBlMAWdX2UKGgGaAloD0MISwSqfxDpAMCUhpRSlGgVSzJoFkdAqHbetKZlWnV9lChoBmgJaA9DCMuGNZVFAQPAlIaUUpRoFUsyaBZHQKh2jcFhXsB1fZQoaAZoCWgPQwjt9e6P92oGwJSGlFKUaBVLMmgWR0Coeszw+dK/dX2UKGgGaAloD0MIumqeI/L9AcCUhpRSlGgVSzJoFkdAqHp/jABT43V9lChoBmgJaA9DCN80fXbAJRHAlIaUUpRoFUsyaBZHQKh6KyVv/BF1fZQoaAZoCWgPQwjrbp7qkHsBwJSGlFKUaBVLMmgWR0Coednk92X+dX2UKGgGaAloD0MIxw+VRszsA8CUhpRSlGgVSzJoFkdAqH4JkXk5qHV9lChoBmgJaA9DCE64V+at+vy/lIaUUpRoFUsyaBZHQKh9vJ+2E011fZQoaAZoCWgPQwjmzeFa7SEFwJSGlFKUaBVLMmgWR0CofWgE2YOUdX2UKGgGaAloD0MI5EhnYOQFA8CUhpRSlGgVSzJoFkdAqH0WxSpBHHV9lChoBmgJaA9DCIicvp6vuQPAlIaUUpRoFUsyaBZHQKiBOkpI+W51fZQoaAZoCWgPQwgJa2PshNcLwJSGlFKUaBVLMmgWR0CogO0L+glGdX2UKGgGaAloD0MInplgONewBcCUhpRSlGgVSzJoFkdAqICYX/HYH3V9lChoBmgJaA9DCP8iaMwk6gTAlIaUUpRoFUsyaBZHQKiARzCk43p1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
 
69
  "ent_coef": 0.0,
70
  "vf_coef": 0.5,
71
  "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
  }
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:73719195e79ce047e51f57099523ad5663735140e9095e1853c0678a2799ffb7
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:853e3afa59bb76e90ff5bb62ff1446745e2e61824317f8d192bdcb9860a2fc5e
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:935845edde584a0e2c379eb87284996bae6fa0cc83ec075a0df1f159c1bc50b7
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5303d9a232560181bf8806bbd410abbb4ea499619272af3bd6cdc3febfc9e1d2
3
  size 46014
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- - Python: 3.9.16
3
- - Stable-Baselines3: 1.7.0
4
- - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
1
+ - OS: Linux-5.4.0-100-generic-x86_64-with-glibc2.17 # 113-Ubuntu SMP Thu Feb 3 18:43:29 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu117
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb37aa05550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb37aa02f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680506946002050552, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANd7zPl7dbbvlbCc/Nd7zPl7dbbvlbCc/Nd7zPl7dbbvlbCc/Nd7zPl7dbbvlbCc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm+HlvrrOI7/Dgra/tH4yPnsFn7/U6V+/VgC6v89pQL4RW8Y/MqKZPyU0tT8sCw++lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA13vM+Xt1tu+VsJz8oU0U7P5Qdu8Aruzw13vM+Xt1tu+VsJz8oU0U7P5Qdu8Aruzw13vM+Xt1tu+VsJz8oU0U7P5Qdu8Aruzw13vM+Xt1tu+VsJz8oU0U7P5Qdu8AruzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.47630468 -0.00362953 0.65400535]\n [ 0.47630468 -0.00362953 0.65400535]\n [ 0.47630468 -0.00362953 0.65400535]\n [ 0.47630468 -0.00362953 0.65400535]]", "desired_goal": "[[-0.44898686 -0.63987315 -1.4258655 ]\n [ 0.17431146 -1.2423548 -0.8746617 ]\n [-1.4531353 -0.18790363 1.5496541 ]\n [ 1.2002623 1.4156538 -0.13969105]]", "observation": "[[ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]\n [ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]\n [ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]\n [ 0.47630468 -0.00362953 0.65400535 0.00301094 -0.00240447 0.02284801]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxzmZvGV6SDylpn4+5tzlPW6xfDwycJU+xzhaPVTF2T3B6q490A8/vD88wrxF2Ig9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01870431 0.01223621 0.24868257]\n [ 0.11223774 0.01542316 0.2918716 ]\n [ 0.0532768 0.1063334 0.0854087 ]\n [-0.01166148 -0.02371037 0.06681875]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxY7GoX7XGMCUhpRSlIwBbJRLMowBdJRHQKieUzByjpN1fZQoaAZoCWgPQwgJ+gs9YuQQwJSGlFKUaBVLMmgWR0ConhKzzErHdX2UKGgGaAloD0MIkX2QZcGkCMCUhpRSlGgVSzJoFkdAqJ3WXLNfPXV9lChoBmgJaA9DCLXdBN80zRDAlIaUUpRoFUsyaBZHQKidmJ0nw5N1fZQoaAZoCWgPQwjlettMhSgXwJSGlFKUaBVLMmgWR0Con2eAVfu1dX2UKGgGaAloD0MIN45Yi08BFsCUhpRSlGgVSzJoFkdAqJ8nMwDeTHV9lChoBmgJaA9DCOlfksoUGyLAlIaUUpRoFUsyaBZHQKie611GLDR1fZQoaAZoCWgPQwgqqn6l88EdwJSGlFKUaBVLMmgWR0Conq3C9AX3dX2UKGgGaAloD0MIC5xsA3fACcCUhpRSlGgVSzJoFkdAqKB/9Nvfj3V9lChoBmgJaA9DCO6TowBR8AvAlIaUUpRoFUsyaBZHQKigP5/LDAJ1fZQoaAZoCWgPQwjn4m97giQNwJSGlFKUaBVLMmgWR0CooANr9EThdX2UKGgGaAloD0MINnaJ6q2BEcCUhpRSlGgVSzJoFkdAqJ/GAmReTnV9lChoBmgJaA9DCCP0M/W65QnAlIaUUpRoFUsyaBZHQKihn72L5yl1fZQoaAZoCWgPQwjqCOBm8TIjwJSGlFKUaBVLMmgWR0CooV/Xf642dX2UKGgGaAloD0MICKwcWmR7EMCUhpRSlGgVSzJoFkdAqKEkDyOJcnV9lChoBmgJaA9DCChiEcMO0xDAlIaUUpRoFUsyaBZHQKig5t9hJAd1fZQoaAZoCWgPQwgAOPbsuTwTwJSGlFKUaBVLMmgWR0CoosHbAUL2dX2UKGgGaAloD0MIwk8cQL8/EsCUhpRSlGgVSzJoFkdAqKKBcmjTKHV9lChoBmgJaA9DCC51kNeDSRfAlIaUUpRoFUsyaBZHQKiiRShrWRR1fZQoaAZoCWgPQwjGv8+4cDAXwJSGlFKUaBVLMmgWR0CoogfACW/rdX2UKGgGaAloD0MIEmvxKQCGHcCUhpRSlGgVSzJoFkdAqKRUZHd43XV9lChoBmgJaA9DCBVVv9L5QBHAlIaUUpRoFUsyaBZHQKikFI6r/851fZQoaAZoCWgPQwgQ5+EEpjMPwJSGlFKUaBVLMmgWR0Coo9i2MKkVdX2UKGgGaAloD0MIkGXBxB+FD8CUhpRSlGgVSzJoFkdAqKObzoUzsXV9lChoBmgJaA9DCPWc9L7xFQ7AlIaUUpRoFUsyaBZHQKimHnwG4Zx1fZQoaAZoCWgPQwjUm1HzVWIRwJSGlFKUaBVLMmgWR0Copd8W9DhMdX2UKGgGaAloD0MIlpLlJJQOE8CUhpRSlGgVSzJoFkdAqKWj1AZ88nV9lChoBmgJaA9DCBbD1QEQpxfAlIaUUpRoFUsyaBZHQKilZv/BFd91fZQoaAZoCWgPQwhmu0IfLOMFwJSGlFKUaBVLMmgWR0Cop/Ieo1k2dX2UKGgGaAloD0MIdZMYBFZeEcCUhpRSlGgVSzJoFkdAqKey+vhZQ3V9lChoBmgJaA9DCCeHTzqRABTAlIaUUpRoFUsyaBZHQKind19v0iB1fZQoaAZoCWgPQwhywRn8/TIRwJSGlFKUaBVLMmgWR0CopzreqJdjdX2UKGgGaAloD0MI8s6hDFVRC8CUhpRSlGgVSzJoFkdAqKnzL+xW1nV9lChoBmgJaA9DCOCdfHpsSxbAlIaUUpRoFUsyaBZHQKips+ajN6h1fZQoaAZoCWgPQwgJFRxeEHEUwJSGlFKUaBVLMmgWR0CoqXj0cwQEdX2UKGgGaAloD0MInZ53Y0HhJcCUhpRSlGgVSzJoFkdAqKk8bJfYz3V9lChoBmgJaA9DCODZHr3hXiDAlIaUUpRoFUsyaBZHQKisDR0lqrR1fZQoaAZoCWgPQwhc/67PnFUDwJSGlFKUaBVLMmgWR0Coq86wljVhdX2UKGgGaAloD0MIbHh6pSzDC8CUhpRSlGgVSzJoFkdAqKuT5XU6P3V9lChoBmgJaA9DCAWjkjoBHRXAlIaUUpRoFUsyaBZHQKirV02cawV1fZQoaAZoCWgPQwi6SQwCK4ccwJSGlFKUaBVLMmgWR0CorgBYV6/qdX2UKGgGaAloD0MIgGQ6dHq+CcCUhpRSlGgVSzJoFkdAqK3BHiFTN3V9lChoBmgJaA9DCDz59NiWsRTAlIaUUpRoFUsyaBZHQKithX18LKF1fZQoaAZoCWgPQwjiIYyfxh0OwJSGlFKUaBVLMmgWR0CorUjg62fDdX2UKGgGaAloD0MIz0iERrDRDsCUhpRSlGgVSzJoFkdAqK85BX0Xg3V9lChoBmgJaA9DCPkTlQ1rShDAlIaUUpRoFUsyaBZHQKiu+NaQmu11fZQoaAZoCWgPQwhd3EYDeMsewJSGlFKUaBVLMmgWR0CorrzKs+3ZdX2UKGgGaAloD0MI8pcW9UmeHsCUhpRSlGgVSzJoFkdAqK5/AVO9FnV9lChoBmgJaA9DCPJ376gxARHAlIaUUpRoFUsyaBZHQKiwTied07t1fZQoaAZoCWgPQwj4cMlxpxQBwJSGlFKUaBVLMmgWR0CosA5xJd0JdX2UKGgGaAloD0MIjJ/GvflNEMCUhpRSlGgVSzJoFkdAqK/R/ViF03V9lChoBmgJaA9DCMkCJnDrxibAlIaUUpRoFUsyaBZHQKivlGdZq211fZQoaAZoCWgPQwhpxqLp7MQCwJSGlFKUaBVLMmgWR0CosalVDKHPdX2UKGgGaAloD0MIG4ANiBDX/b+UhpRSlGgVSzJoFkdAqLFp6yB063V9lChoBmgJaA9DCBHfiVkvth7AlIaUUpRoFUsyaBZHQKixLb/wRXh1fZQoaAZoCWgPQwjS4SGMnyYMwJSGlFKUaBVLMmgWR0CosPALApKBdX2UKGgGaAloD0MIyeU/pN8eDsCUhpRSlGgVSzJoFkdAqLMQKOT7mHV9lChoBmgJaA9DCFe0Oc5t8iTAlIaUUpRoFUsyaBZHQKiy0M2m52B1fZQoaAZoCWgPQwhvumWH+NcbwJSGlFKUaBVLMmgWR0CospR/d69kdX2UKGgGaAloD0MIKZKvBFKCEcCUhpRSlGgVSzJoFkdAqLJW5avA5HV9lChoBmgJaA9DCAVSYtf2tgbAlIaUUpRoFUsyaBZHQKi0UpBomHB1fZQoaAZoCWgPQwgRqP5BJFsgwJSGlFKUaBVLMmgWR0CotBJB5X2edX2UKGgGaAloD0MITP4nf/c+EcCUhpRSlGgVSzJoFkdAqLPV7pmmL3V9lChoBmgJaA9DCCXK3lLOhxvAlIaUUpRoFUsyaBZHQKizmHIp6Qh1fZQoaAZoCWgPQwgdkloomcwQwJSGlFKUaBVLMmgWR0CotXWjfvWpdX2UKGgGaAloD0MIwXCuYYa2FsCUhpRSlGgVSzJoFkdAqLU1oi9qUXV9lChoBmgJaA9DCNgQHJdxmyPAlIaUUpRoFUsyaBZHQKi0+XLNfPZ1fZQoaAZoCWgPQwitUKT7OaUMwJSGlFKUaBVLMmgWR0CotLyXUpd9dX2UKGgGaAloD0MIIsSVs3euJMCUhpRSlGgVSzJoFkdAqLawsiB5HHV9lChoBmgJaA9DCEw1s5YC8g3AlIaUUpRoFUsyaBZHQKi2cKKHfuV1fZQoaAZoCWgPQwjQRq6bUo4ZwJSGlFKUaBVLMmgWR0CotjUo0ALidX2UKGgGaAloD0MIhdBBl3CoAsCUhpRSlGgVSzJoFkdAqLX3fZVXFXV9lChoBmgJaA9DCDikUYGTDQXAlIaUUpRoFUsyaBZHQKi4VGTcIqt1fZQoaAZoCWgPQwjHSPYINUMuwJSGlFKUaBVLMmgWR0CouBUgbIcSdX2UKGgGaAloD0MImUuqtpvQHsCUhpRSlGgVSzJoFkdAqLfZrvb48HV9lChoBmgJaA9DCJaVJqWg2wnAlIaUUpRoFUsyaBZHQKi3nCxeLNx1fZQoaAZoCWgPQwj59xkXDsQXwJSGlFKUaBVLMmgWR0Coudeaa1CxdX2UKGgGaAloD0MIMe2b+6v3FcCUhpRSlGgVSzJoFkdAqLmYaef7JnV9lChoBmgJaA9DCKHa4ET0syjAlIaUUpRoFUsyaBZHQKi5XUONHYp1fZQoaAZoCWgPQwgBpDZxckcmwJSGlFKUaBVLMmgWR0CouR/+jua4dX2UKGgGaAloD0MIHyxjQzebDcCUhpRSlGgVSzJoFkdAqLtCkuYhMnV9lChoBmgJaA9DCFq8WBgiZx/AlIaUUpRoFUsyaBZHQKi7A15Sm651fZQoaAZoCWgPQwhlUG1wIroGwJSGlFKUaBVLMmgWR0CousckMTewdX2UKGgGaAloD0MIRrWIKCY/EMCUhpRSlGgVSzJoFkdAqLqJsqJ/G3V9lChoBmgJaA9DCLByaJHtLCzAlIaUUpRoFUsyaBZHQKi8cGzKLbZ1fZQoaAZoCWgPQwhZv5mYLiQUwJSGlFKUaBVLMmgWR0CovDBvaURndX2UKGgGaAloD0MIatyb3zBxC8CUhpRSlGgVSzJoFkdAqLv0CHRCyHV9lChoBmgJaA9DCO9054nnHB/AlIaUUpRoFUsyaBZHQKi7tnGKhtd1fZQoaAZoCWgPQwjKiXYVUv4HwJSGlFKUaBVLMmgWR0Covcts3yZsdX2UKGgGaAloD0MIDVTGv8+4DMCUhpRSlGgVSzJoFkdAqL2LXBguy3V9lChoBmgJaA9DCP6ABwYQPg/AlIaUUpRoFUsyaBZHQKi9T3Zf2K51fZQoaAZoCWgPQwiZKELqdjYKwJSGlFKUaBVLMmgWR0CovRHoxHoYdX2UKGgGaAloD0MIMEs7NZfbG8CUhpRSlGgVSzJoFkdAqL9OIVM233V9lChoBmgJaA9DCAFolC79UynAlIaUUpRoFUsyaBZHQKi/EBp5/sp1fZQoaAZoCWgPQwgN5NnlW58VwJSGlFKUaBVLMmgWR0CovtSTY/VzdX2UKGgGaAloD0MIBvUtc7rsLsCUhpRSlGgVSzJoFkdAqL6ZNqQA/HV9lChoBmgJaA9DCHhjQWFQhhvAlIaUUpRoFUsyaBZHQKjAsKjSG8F1fZQoaAZoCWgPQwjLhjWVRdEQwJSGlFKUaBVLMmgWR0CowHCU5dWydX2UKGgGaAloD0MIwoh9AiiGDMCUhpRSlGgVSzJoFkdAqMA0M5OrQ3V9lChoBmgJaA9DCJ6Xio15XQ7AlIaUUpRoFUsyaBZHQKi/9p+MIeJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f810d087c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f810d0834b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684915483957540253, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTi9yb290L21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMTi9yb290L21pbmljb25kYTMvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+bDXPmNYhTx9ZQ8/+bDXPmNYhTx9ZQ8/+bDXPmNYhTx9ZQ8/+bDXPmNYhTx9ZQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf2Hav+yYz7+qQli/pUe4v0Dbm7+4Aac+oojTv6lNj78egJo/fi7Lv5a/W7+bTJC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7v5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7v5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7v5sNc+Y1iFPH1lDz+GuJ46g2qcuSL1e7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42127207 0.0162775 0.56014234]\n [0.42127207 0.0162775 0.56014234]\n [0.42127207 0.0162775 0.56014234]\n [0.42127207 0.0162775 0.56014234]]", "desired_goal": "[[-1.7061003 -1.6218543 -0.8447672]\n [-1.4396864 -1.2176285 0.326185 ]\n [-1.6526072 -1.1195575 1.2070348]\n [-1.5873563 -0.8583921 -1.1273378]]", "observation": "[[ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]\n [ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]\n [ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]\n [ 4.2127207e-01 1.6277498e-02 5.6014234e-01 1.2109436e-03\n -2.9833996e-04 -3.8445671e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwAViPazPXj2eAko+IdXnveg+tzxF6qQ8AwiavRdLjb2xKQk+GfOHvCVHE73/NXo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05518126 0.05439727 0.19727561]\n [-0.11319948 0.02236886 0.02013124]\n [-0.07521059 -0.06899088 0.1339481 ]\n [-0.01659541 -0.03595652 0.2443466 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuFm8WBgiGMCUhpRSlIwBbJRLMowBdJRHQKgyg4xUNrl1fZQoaAZoCWgPQwjI7Cx6pyIAwJSGlFKUaBVLMmgWR0CoMjaRQrMDdX2UKGgGaAloD0MIB9Fa0eY4/r+UhpRSlGgVSzJoFkdAqDHiBun/DXV9lChoBmgJaA9DCGMMrOP4IRDAlIaUUpRoFUsyaBZHQKgxkRtgrpd1fZQoaAZoCWgPQwj/lZUmpaAGwJSGlFKUaBVLMmgWR0CoNcyCe2/jdX2UKGgGaAloD0MIbk26LZFLCMCUhpRSlGgVSzJoFkdAqDV/NNahYnV9lChoBmgJaA9DCLmMmxpoPg3AlIaUUpRoFUsyaBZHQKg1Ks052hZ1fZQoaAZoCWgPQwgBvXDnwugFwJSGlFKUaBVLMmgWR0CoNNmfwqiHdX2UKGgGaAloD0MIZacf1EVqAsCUhpRSlGgVSzJoFkdAqDkUYoAn2XV9lChoBmgJaA9DCAg57//jRAPAlIaUUpRoFUsyaBZHQKg4xxR2r4p1fZQoaAZoCWgPQwg+tI8V/NYGwJSGlFKUaBVLMmgWR0CoOHKxC6YmdX2UKGgGaAloD0MIv0NRoE+EBcCUhpRSlGgVSzJoFkdAqDghvitJWnV9lChoBmgJaA9DCPm6DP/ppg/AlIaUUpRoFUsyaBZHQKg8XICEHt51fZQoaAZoCWgPQwh9BtSbURMEwJSGlFKUaBVLMmgWR0CoPA9ycTakdX2UKGgGaAloD0MIBg5o6Qo2A8CUhpRSlGgVSzJoFkdAqDu7CiyprHV9lChoBmgJaA9DCE5+i06WOgjAlIaUUpRoFUsyaBZHQKg7agwGnoB1fZQoaAZoCWgPQwh8fa1LjTADwJSGlFKUaBVLMmgWR0CoP6V4HHFQdX2UKGgGaAloD0MIOe0pOSdWA8CUhpRSlGgVSzJoFkdAqD9YR28qWnV9lChoBmgJaA9DCBnJHqFmKAfAlIaUUpRoFUsyaBZHQKg/A+Ofdyl1fZQoaAZoCWgPQwg/G7luStkKwJSGlFKUaBVLMmgWR0CoPrK+zt1IdX2UKGgGaAloD0MIARk6dlCpCsCUhpRSlGgVSzJoFkdAqELsNjLB9HV9lChoBmgJaA9DCC6RC87gjw/AlIaUUpRoFUsyaBZHQKhCnzJZGKB1fZQoaAZoCWgPQwhYHqSnyEEOwJSGlFKUaBVLMmgWR0CoQkrBCUosdX2UKGgGaAloD0MIWG/UCtMXCcCUhpRSlGgVSzJoFkdAqEH5wyZa3nV9lChoBmgJaA9DCOenOA68mg/AlIaUUpRoFUsyaBZHQKhGMwWWQfZ1fZQoaAZoCWgPQwhb7swEw1kPwJSGlFKUaBVLMmgWR0CoReYOtnwodX2UKGgGaAloD0MI/U6TGW+LAcCUhpRSlGgVSzJoFkdAqEWRh8Yyf3V9lChoBmgJaA9DCA6+MJkq2AjAlIaUUpRoFUsyaBZHQKhFQIToMa11fZQoaAZoCWgPQwgSa/EpAIb/v5SGlFKUaBVLMmgWR0CoSXrjo6jndX2UKGgGaAloD0MIN/3ZjxQxB8CUhpRSlGgVSzJoFkdAqEktxp+MInV9lChoBmgJaA9DCD+O5sjK7/u/lIaUUpRoFUsyaBZHQKhI2VO9FnZ1fZQoaAZoCWgPQwjfo/56hSUNwJSGlFKUaBVLMmgWR0CoSIg+yJKrdX2UKGgGaAloD0MI+dwJ9l+HAcCUhpRSlGgVSzJoFkdAqEzB8rqdH3V9lChoBmgJaA9DCB11dFyNzAjAlIaUUpRoFUsyaBZHQKhMdMnqmj11fZQoaAZoCWgPQwiVtU3xuKgDwJSGlFKUaBVLMmgWR0CoTCBNucc3dX2UKGgGaAloD0MI6pPcYROZ+7+UhpRSlGgVSzJoFkdAqEvPatcOb3V9lChoBmgJaA9DCCl4CrlSLxHAlIaUUpRoFUsyaBZHQKhQCWfseGR1fZQoaAZoCWgPQwj6eyk8aLb6v5SGlFKUaBVLMmgWR0CoT7wS8J2MdX2UKGgGaAloD0MIXyf1ZWkHAMCUhpRSlGgVSzJoFkdAqE9nrMTviXV9lChoBmgJaA9DCLQglPdxdAnAlIaUUpRoFUsyaBZHQKhPFr6+FlF1fZQoaAZoCWgPQwiOBYVBmYYKwJSGlFKUaBVLMmgWR0CoU1PbGm1qdX2UKGgGaAloD0MIy52ZYDj3A8CUhpRSlGgVSzJoFkdAqFMGnjyWiXV9lChoBmgJaA9DCP0xrU1jCxLAlIaUUpRoFUsyaBZHQKhSsjyFwkx1fZQoaAZoCWgPQwiRfZBlwfQSwJSGlFKUaBVLMmgWR0CoUmFWwNb1dX2UKGgGaAloD0MICFqBIas7BcCUhpRSlGgVSzJoFkdAqFaepZOi4HV9lChoBmgJaA9DCL4xBADHnhDAlIaUUpRoFUsyaBZHQKhWUYplSTB1fZQoaAZoCWgPQwgMlX8tr7wNwJSGlFKUaBVLMmgWR0CoVf09QoCudX2UKGgGaAloD0MIJ0ut9xuNEcCUhpRSlGgVSzJoFkdAqFWsSK3uu3V9lChoBmgJaA9DCN1bkZigBv2/lIaUUpRoFUsyaBZHQKhZ51tfoid1fZQoaAZoCWgPQwigcHZrmUwGwJSGlFKUaBVLMmgWR0CoWZop6QeWdX2UKGgGaAloD0MIc7osJjbfD8CUhpRSlGgVSzJoFkdAqFlFum78N3V9lChoBmgJaA9DCK3cC8wKBQvAlIaUUpRoFUsyaBZHQKhY9OE/Spl1fZQoaAZoCWgPQwhyxcVRuYkPwJSGlFKUaBVLMmgWR0CoXTPRqoIfdX2UKGgGaAloD0MIWB6kp8jBBsCUhpRSlGgVSzJoFkdAqFzm3x4IKXV9lChoBmgJaA9DCIKN69/1uQjAlIaUUpRoFUsyaBZHQKhckmNR3vB1fZQoaAZoCWgPQwhMiSR6GeUGwJSGlFKUaBVLMmgWR0CoXEFyJbdKdX2UKGgGaAloD0MIvmckQiPY/7+UhpRSlGgVSzJoFkdAqGCV4oqkM3V9lChoBmgJaA9DCHAIVWr2oAXAlIaUUpRoFUsyaBZHQKhgSM+eOGV1fZQoaAZoCWgPQwjPTgZHyasNwJSGlFKUaBVLMmgWR0CoX/ROtW+5dX2UKGgGaAloD0MIU67wLhcx/7+UhpRSlGgVSzJoFkdAqF+jdrO7hHV9lChoBmgJaA9DCJKyRdJu9Py/lIaUUpRoFUsyaBZHQKhj7nOjZct1fZQoaAZoCWgPQwiNKVjjbHr/v5SGlFKUaBVLMmgWR0CoY6FBppN9dX2UKGgGaAloD0MIzO80mfGWEMCUhpRSlGgVSzJoFkdAqGNM0xdpqXV9lChoBmgJaA9DCI6PFmcMkwfAlIaUUpRoFUsyaBZHQKhi+9Iwudx1fZQoaAZoCWgPQwgPfAxWnKr/v5SGlFKUaBVLMmgWR0CoZzYwh4dIdX2UKGgGaAloD0MIgo/BilNt9r+UhpRSlGgVSzJoFkdAqGbpKraM73V9lChoBmgJaA9DCPJCOjyEMQPAlIaUUpRoFUsyaBZHQKhmlIGQjlh1fZQoaAZoCWgPQwjtgywLJt4CwJSGlFKUaBVLMmgWR0CoZkOoxYaHdX2UKGgGaAloD0MIyXISSl8IDsCUhpRSlGgVSzJoFkdAqGqAu01IiHV9lChoBmgJaA9DCO3yrQ/rLQfAlIaUUpRoFUsyaBZHQKhqM68QI2R1fZQoaAZoCWgPQwi0lCwnoRQOwJSGlFKUaBVLMmgWR0Coad82itaIdX2UKGgGaAloD0MInmLVIMwt/r+UhpRSlGgVSzJoFkdAqGmN6NVBEHV9lChoBmgJaA9DCNE7FXDPswLAlIaUUpRoFUsyaBZHQKhtyl9Brvd1fZQoaAZoCWgPQwjdQexMofMQwJSGlFKUaBVLMmgWR0CobX09IPK/dX2UKGgGaAloD0MIrFPle0YCBMCUhpRSlGgVSzJoFkdAqG0omG/N7nV9lChoBmgJaA9DCDGzz2OUhwXAlIaUUpRoFUsyaBZHQKhs14keIVN1fZQoaAZoCWgPQwg42nHD76YGwJSGlFKUaBVLMmgWR0CocRKaPS2IdX2UKGgGaAloD0MID5wzorRXAcCUhpRSlGgVSzJoFkdAqHDFLrX18XV9lChoBmgJaA9DCCb+KOrMvQHAlIaUUpRoFUsyaBZHQKhwcGUOd5J1fZQoaAZoCWgPQwiXOPJAZFEGwJSGlFKUaBVLMmgWR0CocB+b/ffodX2UKGgGaAloD0MIB13CobdYCMCUhpRSlGgVSzJoFkdAqHRQetCAtnV9lChoBmgJaA9DCK8mT1lN1wTAlIaUUpRoFUsyaBZHQKh0A19fCyh1fZQoaAZoCWgPQwiDbcST3UwCwJSGlFKUaBVLMmgWR0Coc66q0dBCdX2UKGgGaAloD0MIxqLp7GRQA8CUhpRSlGgVSzJoFkdAqHNdehPCVXV9lChoBmgJaA9DCBoZ5C7C9AHAlIaUUpRoFUsyaBZHQKh3gNn5BTp1fZQoaAZoCWgPQwjyejApPv79v5SGlFKUaBVLMmgWR0CodzOBlMAWdX2UKGgGaAloD0MISwSqfxDpAMCUhpRSlGgVSzJoFkdAqHbetKZlWnV9lChoBmgJaA9DCMuGNZVFAQPAlIaUUpRoFUsyaBZHQKh2jcFhXsB1fZQoaAZoCWgPQwjt9e6P92oGwJSGlFKUaBVLMmgWR0Coeszw+dK/dX2UKGgGaAloD0MIumqeI/L9AcCUhpRSlGgVSzJoFkdAqHp/jABT43V9lChoBmgJaA9DCN80fXbAJRHAlIaUUpRoFUsyaBZHQKh6KyVv/BF1fZQoaAZoCWgPQwjrbp7qkHsBwJSGlFKUaBVLMmgWR0Coednk92X+dX2UKGgGaAloD0MIxw+VRszsA8CUhpRSlGgVSzJoFkdAqH4JkXk5qHV9lChoBmgJaA9DCE64V+at+vy/lIaUUpRoFUsyaBZHQKh9vJ+2E011fZQoaAZoCWgPQwjmzeFa7SEFwJSGlFKUaBVLMmgWR0CofWgE2YOUdX2UKGgGaAloD0MI5EhnYOQFA8CUhpRSlGgVSzJoFkdAqH0WxSpBHHV9lChoBmgJaA9DCIicvp6vuQPAlIaUUpRoFUsyaBZHQKiBOkpI+W51fZQoaAZoCWgPQwgJa2PshNcLwJSGlFKUaBVLMmgWR0CogO0L+glGdX2UKGgGaAloD0MInplgONewBcCUhpRSlGgVSzJoFkdAqICYX/HYH3V9lChoBmgJaA9DCP8iaMwk6gTAlIaUUpRoFUsyaBZHQKiARzCk43p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.4.0-100-generic-x86_64-with-glibc2.17 # 113-Ubuntu SMP Thu Feb 3 18:43:29 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -5.208750932244584, "std_reward": 2.572446539272677, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T08:22:21.172397"}
 
1
+ {"mean_reward": -3.0325254963245243, "std_reward": 0.9259214390455653, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-24T17:00:55.205446"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:42e6c38585509f78a48a1145981733894c2be784d0c7ff0074953dfbe23a3c79
3
- size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d816d24e8542ae350b14077d444a8262b61e4fcec96f79bd9759d026e4290d
3
+ size 2464