|
import time |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from typing import Iterable, Optional |
|
|
|
from funasr.register import tables |
|
from funasr.models.ctc.ctc import CTC |
|
from funasr.utils.datadir_writer import DatadirWriter |
|
from funasr.models.paraformer.search import Hypothesis |
|
from funasr.train_utils.device_funcs import force_gatherable |
|
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss |
|
from funasr.metrics.compute_acc import compute_accuracy, th_accuracy |
|
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank |
|
|
|
|
|
class SinusoidalPositionEncoder(torch.nn.Module): |
|
""" """ |
|
|
|
def __int__(self, d_model=80, dropout_rate=0.1): |
|
pass |
|
|
|
def encode( |
|
self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32 |
|
): |
|
batch_size = positions.size(0) |
|
positions = positions.type(dtype) |
|
device = positions.device |
|
log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype, device=device)) / ( |
|
depth / 2 - 1 |
|
) |
|
inv_timescales = torch.exp( |
|
torch.arange(depth / 2, device=device).type(dtype) * (-log_timescale_increment) |
|
) |
|
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) |
|
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( |
|
inv_timescales, [1, 1, -1] |
|
) |
|
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) |
|
return encoding.type(dtype) |
|
|
|
def forward(self, x): |
|
batch_size, timesteps, input_dim = x.size() |
|
positions = torch.arange(1, timesteps + 1, device=x.device)[None, :] |
|
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) |
|
|
|
return x + position_encoding |
|
|
|
|
|
class PositionwiseFeedForward(torch.nn.Module): |
|
"""Positionwise feed forward layer. |
|
|
|
Args: |
|
idim (int): Input dimenstion. |
|
hidden_units (int): The number of hidden units. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, idim, hidden_units, dropout_rate, activation=torch.nn.ReLU()): |
|
"""Construct an PositionwiseFeedForward object.""" |
|
super(PositionwiseFeedForward, self).__init__() |
|
self.w_1 = torch.nn.Linear(idim, hidden_units) |
|
self.w_2 = torch.nn.Linear(hidden_units, idim) |
|
self.dropout = torch.nn.Dropout(dropout_rate) |
|
self.activation = activation |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
return self.w_2(self.dropout(self.activation(self.w_1(x)))) |
|
|
|
|
|
class MultiHeadedAttentionSANM(nn.Module): |
|
"""Multi-Head Attention layer. |
|
|
|
Args: |
|
n_head (int): The number of heads. |
|
n_feat (int): The number of features. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_head, |
|
in_feat, |
|
n_feat, |
|
dropout_rate, |
|
kernel_size, |
|
sanm_shfit=0, |
|
lora_list=None, |
|
lora_rank=8, |
|
lora_alpha=16, |
|
lora_dropout=0.1, |
|
): |
|
"""Construct an MultiHeadedAttention object.""" |
|
super().__init__() |
|
assert n_feat % n_head == 0 |
|
|
|
self.d_k = n_feat // n_head |
|
self.h = n_head |
|
|
|
|
|
|
|
|
|
self.linear_out = nn.Linear(n_feat, n_feat) |
|
self.linear_q_k_v = nn.Linear(in_feat, n_feat * 3) |
|
self.attn = None |
|
self.dropout = nn.Dropout(p=dropout_rate) |
|
|
|
self.fsmn_block = nn.Conv1d( |
|
n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False |
|
) |
|
|
|
left_padding = (kernel_size - 1) // 2 |
|
if sanm_shfit > 0: |
|
left_padding = left_padding + sanm_shfit |
|
right_padding = kernel_size - 1 - left_padding |
|
self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0) |
|
|
|
def forward_fsmn(self, inputs, mask, mask_shfit_chunk=None): |
|
b, t, d = inputs.size() |
|
if mask is not None: |
|
mask = torch.reshape(mask, (b, -1, 1)) |
|
if mask_shfit_chunk is not None: |
|
mask = mask * mask_shfit_chunk |
|
inputs = inputs * mask |
|
|
|
x = inputs.transpose(1, 2) |
|
x = self.pad_fn(x) |
|
x = self.fsmn_block(x) |
|
x = x.transpose(1, 2) |
|
x += inputs |
|
x = self.dropout(x) |
|
if mask is not None: |
|
x = x * mask |
|
return x |
|
|
|
def forward_qkv(self, x): |
|
"""Transform query, key and value. |
|
|
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
|
|
Returns: |
|
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). |
|
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). |
|
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). |
|
|
|
""" |
|
b, t, d = x.size() |
|
q_k_v = self.linear_q_k_v(x) |
|
q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1) |
|
q_h = torch.reshape(q, (b, t, self.h, self.d_k)).transpose( |
|
1, 2 |
|
) |
|
k_h = torch.reshape(k, (b, t, self.h, self.d_k)).transpose( |
|
1, 2 |
|
) |
|
v_h = torch.reshape(v, (b, t, self.h, self.d_k)).transpose( |
|
1, 2 |
|
) |
|
|
|
return q_h, k_h, v_h, v |
|
|
|
def forward_attention(self, value, scores, mask, mask_att_chunk_encoder=None): |
|
"""Compute attention context vector. |
|
|
|
Args: |
|
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). |
|
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). |
|
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). |
|
|
|
Returns: |
|
torch.Tensor: Transformed value (#batch, time1, d_model) |
|
weighted by the attention score (#batch, time1, time2). |
|
|
|
""" |
|
n_batch = value.size(0) |
|
if mask is not None: |
|
if mask_att_chunk_encoder is not None: |
|
mask = mask * mask_att_chunk_encoder |
|
|
|
mask = mask.unsqueeze(1).eq(0) |
|
|
|
min_value = -float( |
|
"inf" |
|
) |
|
scores = scores.masked_fill(mask, min_value) |
|
attn = torch.softmax(scores, dim=-1).masked_fill( |
|
mask, 0.0 |
|
) |
|
else: |
|
attn = torch.softmax(scores, dim=-1) |
|
|
|
p_attn = self.dropout(attn) |
|
x = torch.matmul(p_attn, value) |
|
x = ( |
|
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) |
|
) |
|
|
|
return self.linear_out(x) |
|
|
|
def forward(self, x, mask, mask_shfit_chunk=None, mask_att_chunk_encoder=None): |
|
"""Compute scaled dot product attention. |
|
|
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
(#batch, time1, time2). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
|
|
""" |
|
q_h, k_h, v_h, v = self.forward_qkv(x) |
|
fsmn_memory = self.forward_fsmn(v, mask, mask_shfit_chunk) |
|
q_h = q_h * self.d_k ** (-0.5) |
|
scores = torch.matmul(q_h, k_h.transpose(-2, -1)) |
|
att_outs = self.forward_attention(v_h, scores, mask, mask_att_chunk_encoder) |
|
return att_outs + fsmn_memory |
|
|
|
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0): |
|
"""Compute scaled dot product attention. |
|
|
|
Args: |
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
(#batch, time1, time2). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
|
|
""" |
|
q_h, k_h, v_h, v = self.forward_qkv(x) |
|
if chunk_size is not None and look_back > 0 or look_back == -1: |
|
if cache is not None: |
|
k_h_stride = k_h[:, :, : -(chunk_size[2]), :] |
|
v_h_stride = v_h[:, :, : -(chunk_size[2]), :] |
|
k_h = torch.cat((cache["k"], k_h), dim=2) |
|
v_h = torch.cat((cache["v"], v_h), dim=2) |
|
|
|
cache["k"] = torch.cat((cache["k"], k_h_stride), dim=2) |
|
cache["v"] = torch.cat((cache["v"], v_h_stride), dim=2) |
|
if look_back != -1: |
|
cache["k"] = cache["k"][:, :, -(look_back * chunk_size[1]) :, :] |
|
cache["v"] = cache["v"][:, :, -(look_back * chunk_size[1]) :, :] |
|
else: |
|
cache_tmp = { |
|
"k": k_h[:, :, : -(chunk_size[2]), :], |
|
"v": v_h[:, :, : -(chunk_size[2]), :], |
|
} |
|
cache = cache_tmp |
|
fsmn_memory = self.forward_fsmn(v, None) |
|
q_h = q_h * self.d_k ** (-0.5) |
|
scores = torch.matmul(q_h, k_h.transpose(-2, -1)) |
|
att_outs = self.forward_attention(v_h, scores, None) |
|
return att_outs + fsmn_memory, cache |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, input): |
|
output = F.layer_norm( |
|
input.float(), |
|
self.normalized_shape, |
|
self.weight.float() if self.weight is not None else None, |
|
self.bias.float() if self.bias is not None else None, |
|
self.eps, |
|
) |
|
return output.type_as(input) |
|
|
|
|
|
def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None): |
|
if maxlen is None: |
|
maxlen = lengths.max() |
|
row_vector = torch.arange(0, maxlen, 1).to(lengths.device) |
|
matrix = torch.unsqueeze(lengths, dim=-1) |
|
mask = row_vector < matrix |
|
mask = mask.detach() |
|
|
|
return mask.type(dtype).to(device) if device is not None else mask.type(dtype) |
|
|
|
|
|
class EncoderLayerSANM(nn.Module): |
|
def __init__( |
|
self, |
|
in_size, |
|
size, |
|
self_attn, |
|
feed_forward, |
|
dropout_rate, |
|
normalize_before=True, |
|
concat_after=False, |
|
stochastic_depth_rate=0.0, |
|
): |
|
"""Construct an EncoderLayer object.""" |
|
super(EncoderLayerSANM, self).__init__() |
|
self.self_attn = self_attn |
|
self.feed_forward = feed_forward |
|
self.norm1 = LayerNorm(in_size) |
|
self.norm2 = LayerNorm(size) |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.in_size = in_size |
|
self.size = size |
|
self.normalize_before = normalize_before |
|
self.concat_after = concat_after |
|
if self.concat_after: |
|
self.concat_linear = nn.Linear(size + size, size) |
|
self.stochastic_depth_rate = stochastic_depth_rate |
|
self.dropout_rate = dropout_rate |
|
|
|
def forward(self, x, mask, cache=None, mask_shfit_chunk=None, mask_att_chunk_encoder=None): |
|
"""Compute encoded features. |
|
|
|
Args: |
|
x_input (torch.Tensor): Input tensor (#batch, time, size). |
|
mask (torch.Tensor): Mask tensor for the input (#batch, time). |
|
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, size). |
|
torch.Tensor: Mask tensor (#batch, time). |
|
|
|
""" |
|
skip_layer = False |
|
|
|
|
|
stoch_layer_coeff = 1.0 |
|
if self.training and self.stochastic_depth_rate > 0: |
|
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate |
|
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) |
|
|
|
if skip_layer: |
|
if cache is not None: |
|
x = torch.cat([cache, x], dim=1) |
|
return x, mask |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm1(x) |
|
|
|
if self.concat_after: |
|
x_concat = torch.cat( |
|
( |
|
x, |
|
self.self_attn( |
|
x, |
|
mask, |
|
mask_shfit_chunk=mask_shfit_chunk, |
|
mask_att_chunk_encoder=mask_att_chunk_encoder, |
|
), |
|
), |
|
dim=-1, |
|
) |
|
if self.in_size == self.size: |
|
x = residual + stoch_layer_coeff * self.concat_linear(x_concat) |
|
else: |
|
x = stoch_layer_coeff * self.concat_linear(x_concat) |
|
else: |
|
if self.in_size == self.size: |
|
x = residual + stoch_layer_coeff * self.dropout( |
|
self.self_attn( |
|
x, |
|
mask, |
|
mask_shfit_chunk=mask_shfit_chunk, |
|
mask_att_chunk_encoder=mask_att_chunk_encoder, |
|
) |
|
) |
|
else: |
|
x = stoch_layer_coeff * self.dropout( |
|
self.self_attn( |
|
x, |
|
mask, |
|
mask_shfit_chunk=mask_shfit_chunk, |
|
mask_att_chunk_encoder=mask_att_chunk_encoder, |
|
) |
|
) |
|
if not self.normalize_before: |
|
x = self.norm1(x) |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm2(x) |
|
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) |
|
if not self.normalize_before: |
|
x = self.norm2(x) |
|
|
|
return x, mask, cache, mask_shfit_chunk, mask_att_chunk_encoder |
|
|
|
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0): |
|
"""Compute encoded features. |
|
|
|
Args: |
|
x_input (torch.Tensor): Input tensor (#batch, time, size). |
|
mask (torch.Tensor): Mask tensor for the input (#batch, time). |
|
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, size). |
|
torch.Tensor: Mask tensor (#batch, time). |
|
|
|
""" |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm1(x) |
|
|
|
if self.in_size == self.size: |
|
attn, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back) |
|
x = residual + attn |
|
else: |
|
x, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back) |
|
|
|
if not self.normalize_before: |
|
x = self.norm1(x) |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm2(x) |
|
x = residual + self.feed_forward(x) |
|
if not self.normalize_before: |
|
x = self.norm2(x) |
|
|
|
return x, cache |
|
|
|
|
|
@tables.register("encoder_classes", "SenseVoiceEncoderSmall") |
|
class SenseVoiceEncoderSmall(nn.Module): |
|
""" |
|
Author: Speech Lab of DAMO Academy, Alibaba Group |
|
SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition |
|
https://arxiv.org/abs/2006.01713 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 256, |
|
attention_heads: int = 4, |
|
linear_units: int = 2048, |
|
num_blocks: int = 6, |
|
tp_blocks: int = 0, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
stochastic_depth_rate: float = 0.0, |
|
input_layer: Optional[str] = "conv2d", |
|
pos_enc_class=SinusoidalPositionEncoder, |
|
normalize_before: bool = True, |
|
concat_after: bool = False, |
|
positionwise_layer_type: str = "linear", |
|
positionwise_conv_kernel_size: int = 1, |
|
padding_idx: int = -1, |
|
kernel_size: int = 11, |
|
sanm_shfit: int = 0, |
|
selfattention_layer_type: str = "sanm", |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self._output_size = output_size |
|
|
|
self.embed = SinusoidalPositionEncoder() |
|
|
|
self.normalize_before = normalize_before |
|
|
|
positionwise_layer = PositionwiseFeedForward |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
dropout_rate, |
|
) |
|
|
|
encoder_selfattn_layer = MultiHeadedAttentionSANM |
|
encoder_selfattn_layer_args0 = ( |
|
attention_heads, |
|
input_size, |
|
output_size, |
|
attention_dropout_rate, |
|
kernel_size, |
|
sanm_shfit, |
|
) |
|
encoder_selfattn_layer_args = ( |
|
attention_heads, |
|
output_size, |
|
output_size, |
|
attention_dropout_rate, |
|
kernel_size, |
|
sanm_shfit, |
|
) |
|
|
|
self.encoders0 = nn.ModuleList( |
|
[ |
|
EncoderLayerSANM( |
|
input_size, |
|
output_size, |
|
encoder_selfattn_layer(*encoder_selfattn_layer_args0), |
|
positionwise_layer(*positionwise_layer_args), |
|
dropout_rate, |
|
) |
|
for i in range(1) |
|
] |
|
) |
|
self.encoders = nn.ModuleList( |
|
[ |
|
EncoderLayerSANM( |
|
output_size, |
|
output_size, |
|
encoder_selfattn_layer(*encoder_selfattn_layer_args), |
|
positionwise_layer(*positionwise_layer_args), |
|
dropout_rate, |
|
) |
|
for i in range(num_blocks - 1) |
|
] |
|
) |
|
|
|
self.tp_encoders = nn.ModuleList( |
|
[ |
|
EncoderLayerSANM( |
|
output_size, |
|
output_size, |
|
encoder_selfattn_layer(*encoder_selfattn_layer_args), |
|
positionwise_layer(*positionwise_layer_args), |
|
dropout_rate, |
|
) |
|
for i in range(tp_blocks) |
|
] |
|
) |
|
|
|
self.after_norm = LayerNorm(output_size) |
|
|
|
self.tp_norm = LayerNorm(output_size) |
|
|
|
def output_size(self) -> int: |
|
return self._output_size |
|
|
|
def forward( |
|
self, |
|
xs_pad: torch.Tensor, |
|
ilens: torch.Tensor, |
|
): |
|
"""Embed positions in tensor.""" |
|
masks = sequence_mask(ilens, device=ilens.device)[:, None, :] |
|
|
|
xs_pad *= self.output_size() ** 0.5 |
|
|
|
xs_pad = self.embed(xs_pad) |
|
|
|
|
|
for layer_idx, encoder_layer in enumerate(self.encoders0): |
|
encoder_outs = encoder_layer(xs_pad, masks) |
|
xs_pad, masks = encoder_outs[0], encoder_outs[1] |
|
|
|
for layer_idx, encoder_layer in enumerate(self.encoders): |
|
encoder_outs = encoder_layer(xs_pad, masks) |
|
xs_pad, masks = encoder_outs[0], encoder_outs[1] |
|
|
|
xs_pad = self.after_norm(xs_pad) |
|
|
|
|
|
olens = masks.squeeze(1).sum(1).int() |
|
|
|
for layer_idx, encoder_layer in enumerate(self.tp_encoders): |
|
encoder_outs = encoder_layer(xs_pad, masks) |
|
xs_pad, masks = encoder_outs[0], encoder_outs[1] |
|
|
|
xs_pad = self.tp_norm(xs_pad) |
|
return xs_pad, olens |
|
|
|
|
|
@tables.register("model_classes", "SenseVoiceSmall") |
|
class SenseVoiceSmall(nn.Module): |
|
"""CTC-attention hybrid Encoder-Decoder model""" |
|
|
|
def __init__( |
|
self, |
|
specaug: str = None, |
|
specaug_conf: dict = None, |
|
normalize: str = None, |
|
normalize_conf: dict = None, |
|
encoder: str = None, |
|
encoder_conf: dict = None, |
|
ctc_conf: dict = None, |
|
input_size: int = 80, |
|
vocab_size: int = -1, |
|
ignore_id: int = -1, |
|
blank_id: int = 0, |
|
sos: int = 1, |
|
eos: int = 2, |
|
length_normalized_loss: bool = False, |
|
**kwargs, |
|
): |
|
|
|
super().__init__() |
|
|
|
if specaug is not None: |
|
specaug_class = tables.specaug_classes.get(specaug) |
|
specaug = specaug_class(**specaug_conf) |
|
if normalize is not None: |
|
normalize_class = tables.normalize_classes.get(normalize) |
|
normalize = normalize_class(**normalize_conf) |
|
encoder_class = tables.encoder_classes.get(encoder) |
|
encoder = encoder_class(input_size=input_size, **encoder_conf) |
|
encoder_output_size = encoder.output_size() |
|
|
|
if ctc_conf is None: |
|
ctc_conf = {} |
|
ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf) |
|
|
|
self.blank_id = blank_id |
|
self.sos = sos if sos is not None else vocab_size - 1 |
|
self.eos = eos if eos is not None else vocab_size - 1 |
|
self.vocab_size = vocab_size |
|
self.ignore_id = ignore_id |
|
self.specaug = specaug |
|
self.normalize = normalize |
|
self.encoder = encoder |
|
self.error_calculator = None |
|
|
|
self.ctc = ctc |
|
|
|
self.length_normalized_loss = length_normalized_loss |
|
self.encoder_output_size = encoder_output_size |
|
|
|
self.lid_dict = {"auto": 0, "zh": 3, "en": 4, "yue": 7, "ja": 11, "ko": 12, "nospeech": 13} |
|
self.lid_int_dict = {24884: 3, 24885: 4, 24888: 7, 24892: 11, 24896: 12, 24992: 13} |
|
self.textnorm_dict = {"withitn": 14, "woitn": 15} |
|
self.textnorm_int_dict = {25016: 14, 25017: 15} |
|
self.embed = torch.nn.Embedding(7 + len(self.lid_dict) + len(self.textnorm_dict), input_size) |
|
self.emo_dict = {"unk": 25009, "happy": 25001, "sad": 25002, "angry": 25003, "neutral": 25004} |
|
|
|
self.criterion_att = LabelSmoothingLoss( |
|
size=self.vocab_size, |
|
padding_idx=self.ignore_id, |
|
smoothing=kwargs.get("lsm_weight", 0.0), |
|
normalize_length=self.length_normalized_loss, |
|
) |
|
|
|
@staticmethod |
|
def from_pretrained(model:str=None, **kwargs): |
|
from funasr import AutoModel |
|
model, kwargs = AutoModel.build_model(model=model, trust_remote_code=True, **kwargs) |
|
|
|
return model, kwargs |
|
|
|
def forward( |
|
self, |
|
speech: torch.Tensor, |
|
speech_lengths: torch.Tensor, |
|
text: torch.Tensor, |
|
text_lengths: torch.Tensor, |
|
**kwargs, |
|
): |
|
"""Encoder + Decoder + Calc loss |
|
Args: |
|
speech: (Batch, Length, ...) |
|
speech_lengths: (Batch, ) |
|
text: (Batch, Length) |
|
text_lengths: (Batch,) |
|
""" |
|
|
|
|
|
if len(text_lengths.size()) > 1: |
|
text_lengths = text_lengths[:, 0] |
|
if len(speech_lengths.size()) > 1: |
|
speech_lengths = speech_lengths[:, 0] |
|
|
|
batch_size = speech.shape[0] |
|
|
|
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, text) |
|
|
|
loss_ctc, cer_ctc = None, None |
|
loss_rich, acc_rich = None, None |
|
stats = dict() |
|
|
|
loss_ctc, cer_ctc = self._calc_ctc_loss( |
|
encoder_out[:, 4:, :], encoder_out_lens - 4, text[:, 4:], text_lengths - 4 |
|
) |
|
|
|
loss_rich, acc_rich = self._calc_rich_ce_loss( |
|
encoder_out[:, :4, :], text[:, :4] |
|
) |
|
|
|
loss = loss_ctc + loss_rich |
|
|
|
stats["loss_ctc"] = torch.clone(loss_ctc.detach()) if loss_ctc is not None else None |
|
stats["loss_rich"] = torch.clone(loss_rich.detach()) if loss_rich is not None else None |
|
stats["loss"] = torch.clone(loss.detach()) if loss is not None else None |
|
stats["acc_rich"] = acc_rich |
|
|
|
|
|
if self.length_normalized_loss: |
|
batch_size = int((text_lengths + 1).sum()) |
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) |
|
return loss, stats, weight |
|
|
|
def encode( |
|
self, |
|
speech: torch.Tensor, |
|
speech_lengths: torch.Tensor, |
|
text: torch.Tensor, |
|
**kwargs, |
|
): |
|
"""Frontend + Encoder. Note that this method is used by asr_inference.py |
|
Args: |
|
speech: (Batch, Length, ...) |
|
speech_lengths: (Batch, ) |
|
ind: int |
|
""" |
|
|
|
|
|
if self.specaug is not None and self.training: |
|
speech, speech_lengths = self.specaug(speech, speech_lengths) |
|
|
|
|
|
if self.normalize is not None: |
|
speech, speech_lengths = self.normalize(speech, speech_lengths) |
|
|
|
|
|
lids = torch.LongTensor([[self.lid_int_dict[int(lid)] if torch.rand(1) > 0.2 and int(lid) in self.lid_int_dict else 0 ] for lid in text[:, 0]]).to(speech.device) |
|
language_query = self.embed(lids) |
|
|
|
styles = torch.LongTensor([[self.textnorm_int_dict[int(style)]] for style in text[:, 3]]).to(speech.device) |
|
style_query = self.embed(styles) |
|
speech = torch.cat((style_query, speech), dim=1) |
|
speech_lengths += 1 |
|
|
|
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(speech.size(0), 1, 1) |
|
input_query = torch.cat((language_query, event_emo_query), dim=1) |
|
speech = torch.cat((input_query, speech), dim=1) |
|
speech_lengths += 3 |
|
|
|
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths) |
|
|
|
return encoder_out, encoder_out_lens |
|
|
|
def _calc_ctc_loss( |
|
self, |
|
encoder_out: torch.Tensor, |
|
encoder_out_lens: torch.Tensor, |
|
ys_pad: torch.Tensor, |
|
ys_pad_lens: torch.Tensor, |
|
): |
|
|
|
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) |
|
|
|
|
|
cer_ctc = None |
|
if not self.training and self.error_calculator is not None: |
|
ys_hat = self.ctc.argmax(encoder_out).data |
|
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) |
|
return loss_ctc, cer_ctc |
|
|
|
def _calc_rich_ce_loss( |
|
self, |
|
encoder_out: torch.Tensor, |
|
ys_pad: torch.Tensor, |
|
): |
|
decoder_out = self.ctc.ctc_lo(encoder_out) |
|
|
|
loss_rich = self.criterion_att(decoder_out, ys_pad.contiguous()) |
|
acc_rich = th_accuracy( |
|
decoder_out.view(-1, self.vocab_size), |
|
ys_pad.contiguous(), |
|
ignore_label=self.ignore_id, |
|
) |
|
|
|
return loss_rich, acc_rich |
|
|
|
|
|
def inference( |
|
self, |
|
data_in, |
|
data_lengths=None, |
|
key: list = ["wav_file_tmp_name"], |
|
tokenizer=None, |
|
frontend=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
meta_data = {} |
|
if ( |
|
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank" |
|
): |
|
speech, speech_lengths = data_in, data_lengths |
|
if len(speech.shape) < 3: |
|
speech = speech[None, :, :] |
|
if speech_lengths is None: |
|
speech_lengths = speech.shape[1] |
|
else: |
|
|
|
time1 = time.perf_counter() |
|
audio_sample_list = load_audio_text_image_video( |
|
data_in, |
|
fs=frontend.fs, |
|
audio_fs=kwargs.get("fs", 16000), |
|
data_type=kwargs.get("data_type", "sound"), |
|
tokenizer=tokenizer, |
|
) |
|
time2 = time.perf_counter() |
|
meta_data["load_data"] = f"{time2 - time1:0.3f}" |
|
speech, speech_lengths = extract_fbank( |
|
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend |
|
) |
|
time3 = time.perf_counter() |
|
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" |
|
meta_data["batch_data_time"] = ( |
|
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 |
|
) |
|
|
|
speech = speech.to(device=kwargs["device"]) |
|
speech_lengths = speech_lengths.to(device=kwargs["device"]) |
|
|
|
language = kwargs.get("language", "auto") |
|
language_query = self.embed( |
|
torch.LongTensor( |
|
[[self.lid_dict[language] if language in self.lid_dict else 0]] |
|
).to(speech.device) |
|
).repeat(speech.size(0), 1, 1) |
|
|
|
use_itn = kwargs.get("use_itn", False) |
|
textnorm = kwargs.get("text_norm", None) |
|
if textnorm is None: |
|
textnorm = "withitn" if use_itn else "woitn" |
|
textnorm_query = self.embed( |
|
torch.LongTensor([[self.textnorm_dict[textnorm]]]).to(speech.device) |
|
).repeat(speech.size(0), 1, 1) |
|
speech = torch.cat((textnorm_query, speech), dim=1) |
|
speech_lengths += 1 |
|
|
|
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat( |
|
speech.size(0), 1, 1 |
|
) |
|
input_query = torch.cat((language_query, event_emo_query), dim=1) |
|
speech = torch.cat((input_query, speech), dim=1) |
|
speech_lengths += 3 |
|
|
|
|
|
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths) |
|
if isinstance(encoder_out, tuple): |
|
encoder_out = encoder_out[0] |
|
|
|
|
|
ctc_logits = self.ctc.log_softmax(encoder_out) |
|
if kwargs.get("ban_emo_unk", False): |
|
ctc_logits[:, :, self.emo_dict["unk"]] = -float("inf") |
|
|
|
results = [] |
|
b, n, d = encoder_out.size() |
|
if isinstance(key[0], (list, tuple)): |
|
key = key[0] |
|
if len(key) < b: |
|
key = key * b |
|
for i in range(b): |
|
x = ctc_logits[i, : encoder_out_lens[i].item(), :] |
|
yseq = x.argmax(dim=-1) |
|
yseq = torch.unique_consecutive(yseq, dim=-1) |
|
|
|
ibest_writer = None |
|
if kwargs.get("output_dir") is not None: |
|
if not hasattr(self, "writer"): |
|
self.writer = DatadirWriter(kwargs.get("output_dir")) |
|
ibest_writer = self.writer[f"1best_recog"] |
|
|
|
mask = yseq != self.blank_id |
|
token_int = yseq[mask].tolist() |
|
|
|
|
|
text = tokenizer.decode(token_int) |
|
|
|
result_i = {"key": key[i], "text": text} |
|
results.append(result_i) |
|
|
|
if ibest_writer is not None: |
|
ibest_writer["text"][key[i]] = text |
|
|
|
return results, meta_data |
|
|
|
def export(self, **kwargs): |
|
from export_meta import export_rebuild_model |
|
|
|
if "max_seq_len" not in kwargs: |
|
kwargs["max_seq_len"] = 512 |
|
models = export_rebuild_model(model=self, **kwargs) |
|
return models |
|
|