Upload of improved PPO model on LunarLander-v2
Browse files- README.md +1 -1
- config.json +1 -1
- lunar_ppo_NVE_v2.zip +3 -0
- lunar_ppo_NVE_v2/_stable_baselines3_version +1 -0
- lunar_ppo_NVE_v2/data +94 -0
- lunar_ppo_NVE_v2/policy.optimizer.pth +3 -0
- lunar_ppo_NVE_v2/policy.pth +3 -0
- lunar_ppo_NVE_v2/pytorch_variables.pth +3 -0
- lunar_ppo_NVE_v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 291.89 +/- 24.14
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff481ae160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff481ae1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff481ae280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff481ae310>", "_build": "<function ActorCriticPolicy._build at 0x7eff481ae3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff481ae430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff481ae4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff481ae550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff481ae5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff481ae670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff481ae700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff481a8cf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAKUc+JHMdz6ZhcoqmOEAjiXTGzohDncz73VDXnL9O+ffH6E607mZ4mEyBNHM0wdv3xjR8hAZc8FevO6OAyOuz8L8KB2SdYgmP6CiThib5xHx5P5CnNawTm/ynd6xtklahF9kjFcqyOei+hBc2VL3uLZ/hqNGNey21lD4Kv2vfg8ZH1zBr2fA74l16dv+0GkOnuF9fB9TqBIqts8piU8p4S6PpcWDKqKl+YIwCbBGRRACamYfQdZ0RMZ9MU9KkQ+h4RLVnTOZvVtuGPqbITxHkziG8LCjb1YqgIIFHX+fSdD52tU940W6t/g1BdQEL3LTVTknL0tCC4+WWCFmbfvJ5TXAzme2EslL8SgkoyC1FOHqZ9fOaSP2lsxzFqYVzjMyV/MqGlnAJEDpcKkTfz1x/S0QA5gsxxCF3NyxBO6mtqYbsRrBbspF8hDxydw5fMRTLlh6C7HKF6AjXojA81ccAv/Zlk4BR7c4XjJ1xfWHpx27wfhAX72SZCh2UXX8QG/xe3Y8kxCvHwdnJV5lRxt9BB64jCspsVJxSFG/9yarRMrWKb6qO4eEHGgUkeAYQFVb/9aiE+b4S/SIw4zkZBY4JIOQiADWDDw1sCDzfCS6rsJuLW3gcWuaCAS5zQl9PZd7fGI21aSQXZcx4l9kv4ua2QShwmuxzMEfb2VU243IXv80j3yrCD7e7isfkzjYFQkveOCzXVIyzWRPCTUcmqtYTf7xPvJL8+EaBM/kvQopk8MT4i2UQtE2xAZO1sMHNpOTfzTLZ8OngVBftpaUZ1+nBG50JXiC/F7fbFzAjih/hpgI0YBUM5HCGn69NG5O9E4tl7cFRQAJbj9llIEKZyX0QS36WWAURcL3sXl+jDqIohV2kYYSU3ra/sPIc5SHYeST4zyFLCfttU7hBlgNOWAJL2mLOHo+FdHhDFFbODUdSCai2mOdYApp7Q892YimL6Ho+p5Qkluxeh3aH+t2ciX6/ODTzeX+LF/PMwR2PBz6s2VloesChZUVygN6HaKJBRr5uA43CX522dc6G0ixfl4PGtovvbAKiM0s5mMHkw+m81AK5W2xxF4LzOyckTA3OsTxgXDu4H0ccNspoGGfeOz4ciNRAqeLuZi5WLfI0gxNi33TlHqa25bANW8LyypAUgvPMLcTXelSWszUK2nVN9H9Mj9WU/hMyvIQiORm+rFYAt+t8ViVUgEMAuMpSk+qHYhYYdXH5vPJnOE3kgBfH4zCFYozBQWQHk8N2QyP4vfrvY6w2Msa89/1PYZcE0nsiJ1KCHnNuSA8XheLPOkqLKqN18pvzru/RfprgfrsjwvY6/T/1tVJWAw9JlG4NgT7pxbisDOT8mYyhdvK6JXPgGtNDIWFW4oZ/hXz87X3vHdZeeSzf9+cGznapE4KWdvZVGhO8NiwYg7oM+uOHNNwHtX+ZUROulK1pud7J7USxIclu77Anub//VDyQAorAEoZMS7jJ8pMdRvWlTRNqE4D4Qcftv34p3B+ZGj1Il7f4aw8qs0oGu+WpcUz3OniS8KK8XaUC3YSwOtwkHc7Oc853OT7Q5/5QG9/l6979F1Zh8zWPjzjwiBZJl5Cl1TMDLnAp/XYA0E2PSZXk2sy1+jM2znAgdHAZEqCbjH1KMtqzR0onFQrCx3gOYJYo9xo7XFIRiCkquNJ/LiL5GRnjKQPiCk307pA9JUIRxamIE317aWM21jtmaowZ6N4btFazhCPfiI0KeIJfkmEKDA6uGNuN4gVHjpskZGJgM7uUeKTOHamODaZZGSBLlmDy458jlrYyhxIrnjLapZhR48nJXY28KyNJO0i7muG5Ju7HftRHxPe9HCrpYvxR/UndG3+IRaarTZR+/wMiTCy63x21zmhL2abl2tH/5RE9pGYc+p4N2beogaOtjonsUCKSXWxTPZvTFR12YnfhiHy3sd9k4RfpPIrh5pVt1poQmVpSw/nKPDPyH00vtFmHqS3cs3rDg0LC5EDHVO03popeQn2ICAbhaTA1uUxfSQv1Ddo2yoPxxhmvUEgAqgw+frDjfhY6drCgdtXcrBTLz3lh/z2vSOTxGbzhigM/R/EhSQfTTAesskKG7w+f4RH64gm5bL+ldc+buQQMxQ7fn2VExGWdaSZZfjLEJVqCks92K+6pUJOLc5ZSeFU6bCGj6nGtfzJIcPS7TInt6TLOVvanrLvj25HwPsiRDics4nkLFn6dVRl+eeSiUSnnr5gIw0z0ZIa/zAYMkx1UoJc4ZqzQDZ9UaI3yvUcVfPvYJ9PONiOVNpy6o5gHFv1xycjBLjzIaPY7g3dBFZtgYTvf+mdB52cVt2avyVu2sGYlwyeayQsMfQEBDL5tB+RwtNmMagOnmEXDu5EwrtFlhJMw1TW7ZCyfMkGr3k5uKmkgoGvKa21GUYRU266U4Dd4HB5WULG8eRZqfR2zvCdaSEx6Fr6CGDupTuqdKjsa1L7rDeEiYedQbS7mtwygOpx0ChYAzC06WMRvpfIx/RktKfCBVm0RKpkVXDAKI1/4pS8+0UGdJOipOmfXJ0JEqswhH4fAlPfiP6GSM9y6XuT7AZeBkUf6qQpWdtPsHnnWjjgDZT6RY8LIs6pMsAg4v72BtyMJEGAf3qaot4aO465ZjvzjygCnx7FjIsSdvOp5DqWZm/zqOsiiK5/PL871gJ4ot2/Zp6V09Jx6WDcwcq2rDBYrmgl4FdWw1iEiTS2zRUw6yHqbcIUemrHJ3wjJz82foC1guFxSwe0NTFXisGDOZfWuSN70iij2A8gSAZUpOWPrtx7+UlvFPSdsWMP+WlfXAE/NktNrHjldJW9EVX+yFuqihL89s/QSuv7AWXPIKad84yPnMFN9mP/7B3U6bNKRlHwZ0SNA7UFYgUNct3fGwswYEWR3U4Q5+bB++ab6G+49VS0VWbdJdL4aYAzDn67MwudGx5q/E6AxMxZkFoxzZPiGlWiIhZOQibRbgxxCyBmjYSIv83+rAb3tbN8E0atpSj80OSdHJOhggme2UrVu0aWndqFIAu29TlAa5Rc7ak/onQCD9OUbrfP/LImGm0G6q2Jp+Q7tC75Jn+sP9zs3syXDFyKvxQBfjui6NGXAQ15XmsH2du1BRB3EwfznMIm7ptB2YwfqaYmTJ62P1lvpyOXiACqINanixUCv+w1AbYnrDNbcgbcJjb+4QdZwXjLWVdSZHehX5cx4P3OWvjcA4Fxv9qfOfoQYylbdy+EycyEPCdAcJPdMc4jHWyDvFsJ8WBC5z+VvasOfRWHJEal0ypZgFbS2YyWXDLDqG7/jcvr0pga0cSOOzaL1fhgL3jxTAQauhGO9qK40T0OOncgUlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLFHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dd43efca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dd43efd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dd43efdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dd43efe50>", "_build": "<function ActorCriticPolicy._build at 0x7f6dd43efee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6dd43eff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dd43f3040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6dd43f30d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dd43f3160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dd43f31f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dd43f3280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6dd43ec4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671558591973002554, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrq6DyPMbk/Tnl1Pj3hU7y75+08Mi7ePAAAAAAAAAAAzdhKPJiVkj9QXJo9vycSv12aFTy0d5g9AAAAAAAAAADtZQw+sRxtPtilbr63LLG+g2bAvEvDTjsAAAAAAAAAAFougL1PbR+8Lrg0PnYL2b3Unji9CXEbvwAAgD8AAIA/ppTDPew6kD4/GgW+IaWzvkyYhj22oFG9AAAAAAAAAAAArrw8582wPt75Dz4tR/e+iiaUOVrk+D0AAAAAAAAAAACqgz4RtXs/jutHPS5n5755m4Q+JVRBvQAAAAAAAAAAWmkCPi7vkD/IxXE+p0//vvFXVD5wik89AAAAAAAAAACzcBI+JvemPg+IoL51uLu+FURwve5Q+L0AAAAAAAAAAGbRTD3M4Zg/vQp8PsozJL//jLE9opsiPgAAAAAAAAAAs4DBvY+EZj3Wtqg+iZCQvrxwTD4eAiY+AAAAAAAAAAAAlJ27roGPutZOLjM+txCqRIOmutDt0rMAAIA/AACAPwBYVTu4VYS7govdOypfTzy0uuS8jmE0PQAAgD8AAIA/zY1YvXv+s7qmEY04rHmAM4XcDToU7aC3AACAPwAAgD8DO2K+iBsQP6CJRT72Vf6+iT0WvoNSWD4AAAAAAAAAAPrAED7AC+U+Cit5vrvv6b5XbZa8EdWwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwVjfwOR6cUCUhpRSlIwBbJRL3owBdJRHQKLnfel9Brx1fZQoaAZoCWgPQwi3CffKfBByQJSGlFKUaBVLz2gWR0Ci548ry1/ldX2UKGgGaAloD0MILoz0orY8cECUhpRSlGgVS8FoFkdAoufMa0hNd3V9lChoBmgJaA9DCL+er1lu33BAlIaUUpRoFUvJaBZHQKLn2TcqOLl1fZQoaAZoCWgPQwhUbqKWZp9tQJSGlFKUaBVLwWgWR0Ci6Cw1zhgmdX2UKGgGaAloD0MI0v2cgjzqcECUhpRSlGgVS+RoFkdAougyC8OCoXV9lChoBmgJaA9DCO4JEttdgHBAlIaUUpRoFUvCaBZHQKLoa4y44Id1fZQoaAZoCWgPQwjZmULn9ZVyQJSGlFKUaBVL2WgWR0Ci6HJiRW92dX2UKGgGaAloD0MIE0VI3c76ckCUhpRSlGgVS8poFkdAouivPomoi3V9lChoBmgJaA9DCAHAsWePnnNAlIaUUpRoFUvQaBZHQKLpIGZ/kNp1fZQoaAZoCWgPQwjcniCxXQJzQJSGlFKUaBVL22gWR0Ci6be/5+H8dX2UKGgGaAloD0MI5L1qZQJWc0CUhpRSlGgVS8loFkdAounhwfhddHV9lChoBmgJaA9DCLLzNjZ7/HJAlIaUUpRoFUu8aBZHQKLp7o0Q9Rt1fZQoaAZoCWgPQwiJz51gf/ptQJSGlFKUaBVLu2gWR0Ci6jezMRpUdX2UKGgGaAloD0MIGArYDgbZcUCUhpRSlGgVS9NoFkdAoupDz9S/CnV9lChoBmgJaA9DCF/tKM7RTXFAlIaUUpRoFUuxaBZHQKLqYjv/io91fZQoaAZoCWgPQwgU56ijo3BzQJSGlFKUaBVL0WgWR0Ci6niiZfD2dX2UKGgGaAloD0MIOxxdpXvncECUhpRSlGgVS8xoFkdAouq8YXO4X3V9lChoBmgJaA9DCDGVfsLZOG9AlIaUUpRoFUvCaBZHQKLq8od+5OJ1fZQoaAZoCWgPQwiFz9bBQfRuQJSGlFKUaBVLwGgWR0Ci6zh5HEuQdX2UKGgGaAloD0MIfO2ZJcHcckCUhpRSlGgVS99oFkdAoutguAZsK3V9lChoBmgJaA9DCAiUTbkCz3BAlIaUUpRoFUvcaBZHQKLrlxH5Jsh1fZQoaAZoCWgPQwjqsMItnxhwQJSGlFKUaBVLzmgWR0Ci67N6PbPAdX2UKGgGaAloD0MIP3Jr0q0TcECUhpRSlGgVS7toFkdAouvdQQ+UyHV9lChoBmgJaA9DCNSZe0j4V3FAlIaUUpRoFUu0aBZHQKLseOPNmlJ1fZQoaAZoCWgPQwgYfJqT13xwQJSGlFKUaBVLrmgWR0Ci7LEpZwGXdX2UKGgGaAloD0MIGTvhJbhnc0CUhpRSlGgVTbMDaBZHQKLs0BDG96F1fZQoaAZoCWgPQwj5oGez6iRzQJSGlFKUaBVLv2gWR0Ci7Qg4ffXPdX2UKGgGaAloD0MIxf8dUWFDcUCUhpRSlGgVS+loFkdAou0USGrS3XV9lChoBmgJaA9DCK9A9KSMgHFAlIaUUpRoFUu9aBZHQKLtNykKu0V1fZQoaAZoCWgPQwif5A6bCPBxQJSGlFKUaBVL7mgWR0Ci7UwGOdXldX2UKGgGaAloD0MI8S4X8R1hckCUhpRSlGgVS9BoFkdAou1iAH3UQXV9lChoBmgJaA9DCBVSflLthm9AlIaUUpRoFUu7aBZHQKLtl0nPVut1fZQoaAZoCWgPQwjDSC9qNwRyQJSGlFKUaBVL6GgWR0Ci7fivgWJrdX2UKGgGaAloD0MIAHUDBV7ackCUhpRSlGgVS8xoFkdAou4RjFyaNXV9lChoBmgJaA9DCMTSwI/qxHNAlIaUUpRoFUvHaBZHQKLuJ44ZMtd1fZQoaAZoCWgPQwgsKXefozlzQJSGlFKUaBVL1GgWR0Ci7obx3FDOdX2UKGgGaAloD0MIev1JfO4qcUCUhpRSlGgVS89oFkdAou6Nk6Lfk3V9lChoBmgJaA9DCNkFg2tuBW9AlIaUUpRoFUvHaBZHQKLumtvn8sN1fZQoaAZoCWgPQwi1UZ0O5GxzQJSGlFKUaBVL0GgWR0Ci71x15jYqdX2UKGgGaAloD0MILv62J8ijcECUhpRSlGgVS79oFkdAou9u8dxQznV9lChoBmgJaA9DCIZ1493RU3BAlIaUUpRoFUu+aBZHQKLvoTtb9qF1fZQoaAZoCWgPQwhXQKGevtByQJSGlFKUaBVL2WgWR0Ci77niFTNudX2UKGgGaAloD0MIHQWIgpmQb0CUhpRSlGgVS8doFkdAou/QHHFPznV9lChoBmgJaA9DCIm0jT8RLnFAlIaUUpRoFUvIaBZHQKLv7UtI0651fZQoaAZoCWgPQwgPmfIhKLZuQJSGlFKUaBVLwmgWR0Ci8AYqG1x9dX2UKGgGaAloD0MI8RDGT6MJc0CUhpRSlGgVS8loFkdAovBbxy4nW3V9lChoBmgJaA9DCLqj/+WamnJAlIaUUpRoFUvsaBZHQKLwigFotcx1fZQoaAZoCWgPQwjU1ohgXKVyQJSGlFKUaBVLv2gWR0Ci8KDUutfYdX2UKGgGaAloD0MIguFcw8yWcUCUhpRSlGgVS7poFkdAovC++M6zV3V9lChoBmgJaA9DCAzqW+a0/3FAlIaUUpRoFUuwaBZHQKLw9wMpgCx1fZQoaAZoCWgPQwgx0ova/fFyQJSGlFKUaBVL42gWR0Ci8Spu2qkudX2UKGgGaAloD0MId2nDYentckCUhpRSlGgVS7xoFkdAovE1K7I1cnV9lChoBmgJaA9DCG5PkNjuR3FAlIaUUpRoFUvCaBZHQKLxPOX3QD51fZQoaAZoCWgPQwii0LLuny9tQJSGlFKUaBVLuWgWR0Ci8fTewcHXdX2UKGgGaAloD0MIznADPr/hb0CUhpRSlGgVS7toFkdAovIvllsguHV9lChoBmgJaA9DCAGIu3oVynNAlIaUUpRoFUu9aBZHQKLyZQCSzPd1fZQoaAZoCWgPQwjbvkf9df9zQJSGlFKUaBVLyWgWR0Ci8niiZfD2dX2UKGgGaAloD0MIEayql195cUCUhpRSlGgVS8RoFkdAovK0M1CPZXV9lChoBmgJaA9DCCu9NhurtXJAlIaUUpRoFUv9aBZHQKLy5Z39rGl1fZQoaAZoCWgPQwjqWnufqqJxQJSGlFKUaBVLvmgWR0Ci8wDiwSrYdX2UKGgGaAloD0MIxLMEGUGTc0CUhpRSlGgVS+1oFkdAovM3j0cwQHV9lChoBmgJaA9DCP+SVKaYpnBAlIaUUpRoFUu+aBZHQKLzY9Mbm2d1fZQoaAZoCWgPQwgXZMvydbFxQJSGlFKUaBVL22gWR0Ci849Ynv2HdX2UKGgGaAloD0MI196nqtDycUCUhpRSlGgVS+NoFkdAovPJOSGJvnV9lChoBmgJaA9DCCWUvhByq2dAlIaUUpRoFU3oA2gWR0Ci89YD9wWFdX2UKGgGaAloD0MIgQhx5exnc0CUhpRSlGgVS9JoFkdAovPmMyad+XV9lChoBmgJaA9DCBjt8UJ6JnJAlIaUUpRoFUvFaBZHQKLz9rdFfAt1fZQoaAZoCWgPQwiBsilXOGVxQJSGlFKUaBVL0mgWR0Ci9CPgvUSadX2UKGgGaAloD0MIrp/+s2YbckCUhpRSlGgVS9VoFkdAovQkbxVhkXV9lChoBmgJaA9DCOTaUDFOp3BAlIaUUpRoFUvEaBZHQKL015Jsfq51fZQoaAZoCWgPQwj8Ny9O/NFvQJSGlFKUaBVLu2gWR0Ci9ObNbC79dX2UKGgGaAloD0MINxrAW+AVcUCUhpRSlGgVS9xoFkdAovTy0MPSUnV9lChoBmgJaA9DCEPIef+fbXNAlIaUUpRoFUvFaBZHQKL1HdO6/Zd1fZQoaAZoCWgPQwh6jzNNGAdyQJSGlFKUaBVLxWgWR0Ci9YNCRfWudX2UKGgGaAloD0MI2gQYlj/UcECUhpRSlGgVS8poFkdAovWt1W8yvnV9lChoBmgJaA9DCCV1ApqI33FAlIaUUpRoFUvnaBZHQKL1zvxYq5N1fZQoaAZoCWgPQwgiMxe4vB5xQJSGlFKUaBVLtGgWR0Ci9e1/c32mdX2UKGgGaAloD0MIza57K5L9cUCUhpRSlGgVS9NoFkdAovYl6qsEJXV9lChoBmgJaA9DCHptNlYiznJAlIaUUpRoFUvjaBZHQKL2MpNsWO91fZQoaAZoCWgPQwj2KFyPQs5xQJSGlFKUaBVLuWgWR0Ci9jQnhKlIdX2UKGgGaAloD0MIxmmIKvxJc0CUhpRSlGgVS7doFkdAovZRpg1FY3V9lChoBmgJaA9DCDl/EwoRBnBAlIaUUpRoFUvQaBZHQKL2cf6oESx1fZQoaAZoCWgPQwhPdjOjnxZyQJSGlFKUaBVL2mgWR0Ci9rGdI5HVdX2UKGgGaAloD0MIjUXT2clSbkCUhpRSlGgVS89oFkdAovbMyLyc1HV9lChoBmgJaA9DCMNmgAtyQXBAlIaUUpRoFUvWaBZHQKL23wBo24x1fZQoaAZoCWgPQwhVhQZiWdxxQJSGlFKUaBVLx2gWR0Ci93E56t1ZdX2UKGgGaAloD0MIWfs722PNckCUhpRSlGgVS91oFkdAovfNOsT37HV9lChoBmgJaA9DCIo5CDoaknJAlIaUUpRoFUvnaBZHQKL30Y3vQWx1fZQoaAZoCWgPQwi9bhEYayVyQJSGlFKUaBVLwGgWR0Ci9/AsbvPUdX2UKGgGaAloD0MIwxA5ff2uckCUhpRSlGgVS/FoFkdAovg6MYMvy3V9lChoBmgJaA9DCOqxLQPOcHFAlIaUUpRoFUu+aBZHQKL4OTnq3Vl1fZQoaAZoCWgPQwhK06Bo3gtyQJSGlFKUaBVLz2gWR0Ci+Eujh1kldX2UKGgGaAloD0MIjzf5LXqucECUhpRSlGgVS7loFkdAovh8zImw7nV9lChoBmgJaA9DCEykNJsHnHFAlIaUUpRoFUvLaBZHQKL4ffReC051fZQoaAZoCWgPQwg0EMtmDhZuQJSGlFKUaBVLxWgWR0Ci+LZCF9KFdX2UKGgGaAloD0MIxCedSDB7bkCUhpRSlGgVS9BoFkdAovknQyAQQXV9lChoBmgJaA9DCMuEX+qnkHJAlIaUUpRoFUvwaBZHQKL5SDkELYx1fZQoaAZoCWgPQwhkV1pGKqJzQJSGlFKUaBVL72gWR0Ci+WxyOq//dX2UKGgGaAloD0MI0084u7U7ckCUhpRSlGgVS85oFkdAovl/E4vN/3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.995, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_ppo_NVE_v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:019d83034f2ae9ce863c58dc389e61b70a6056d044292d4a5de1f42f4f904e0a
|
3 |
+
size 147219
|
lunar_ppo_NVE_v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
lunar_ppo_NVE_v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dd43efca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dd43efd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dd43efdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dd43efe50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6dd43efee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6dd43eff70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dd43f3040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6dd43f30d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dd43f3160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dd43f31f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dd43f3280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6dd43ec4b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2031616,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671558591973002554,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrq6DyPMbk/Tnl1Pj3hU7y75+08Mi7ePAAAAAAAAAAAzdhKPJiVkj9QXJo9vycSv12aFTy0d5g9AAAAAAAAAADtZQw+sRxtPtilbr63LLG+g2bAvEvDTjsAAAAAAAAAAFougL1PbR+8Lrg0PnYL2b3Unji9CXEbvwAAgD8AAIA/ppTDPew6kD4/GgW+IaWzvkyYhj22oFG9AAAAAAAAAAAArrw8582wPt75Dz4tR/e+iiaUOVrk+D0AAAAAAAAAAACqgz4RtXs/jutHPS5n5755m4Q+JVRBvQAAAAAAAAAAWmkCPi7vkD/IxXE+p0//vvFXVD5wik89AAAAAAAAAACzcBI+JvemPg+IoL51uLu+FURwve5Q+L0AAAAAAAAAAGbRTD3M4Zg/vQp8PsozJL//jLE9opsiPgAAAAAAAAAAs4DBvY+EZj3Wtqg+iZCQvrxwTD4eAiY+AAAAAAAAAAAAlJ27roGPutZOLjM+txCqRIOmutDt0rMAAIA/AACAPwBYVTu4VYS7govdOypfTzy0uuS8jmE0PQAAgD8AAIA/zY1YvXv+s7qmEY04rHmAM4XcDToU7aC3AACAPwAAgD8DO2K+iBsQP6CJRT72Vf6+iT0WvoNSWD4AAAAAAAAAAPrAED7AC+U+Cit5vrvv6b5XbZa8EdWwvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwVjfwOR6cUCUhpRSlIwBbJRL3owBdJRHQKLnfel9Brx1fZQoaAZoCWgPQwi3CffKfBByQJSGlFKUaBVLz2gWR0Ci548ry1/ldX2UKGgGaAloD0MILoz0orY8cECUhpRSlGgVS8FoFkdAoufMa0hNd3V9lChoBmgJaA9DCL+er1lu33BAlIaUUpRoFUvJaBZHQKLn2TcqOLl1fZQoaAZoCWgPQwhUbqKWZp9tQJSGlFKUaBVLwWgWR0Ci6Cw1zhgmdX2UKGgGaAloD0MI0v2cgjzqcECUhpRSlGgVS+RoFkdAougyC8OCoXV9lChoBmgJaA9DCO4JEttdgHBAlIaUUpRoFUvCaBZHQKLoa4y44Id1fZQoaAZoCWgPQwjZmULn9ZVyQJSGlFKUaBVL2WgWR0Ci6HJiRW92dX2UKGgGaAloD0MIE0VI3c76ckCUhpRSlGgVS8poFkdAouivPomoi3V9lChoBmgJaA9DCAHAsWePnnNAlIaUUpRoFUvQaBZHQKLpIGZ/kNp1fZQoaAZoCWgPQwjcniCxXQJzQJSGlFKUaBVL22gWR0Ci6be/5+H8dX2UKGgGaAloD0MI5L1qZQJWc0CUhpRSlGgVS8loFkdAounhwfhddHV9lChoBmgJaA9DCLLzNjZ7/HJAlIaUUpRoFUu8aBZHQKLp7o0Q9Rt1fZQoaAZoCWgPQwiJz51gf/ptQJSGlFKUaBVLu2gWR0Ci6jezMRpUdX2UKGgGaAloD0MIGArYDgbZcUCUhpRSlGgVS9NoFkdAoupDz9S/CnV9lChoBmgJaA9DCF/tKM7RTXFAlIaUUpRoFUuxaBZHQKLqYjv/io91fZQoaAZoCWgPQwgU56ijo3BzQJSGlFKUaBVL0WgWR0Ci6niiZfD2dX2UKGgGaAloD0MIOxxdpXvncECUhpRSlGgVS8xoFkdAouq8YXO4X3V9lChoBmgJaA9DCDGVfsLZOG9AlIaUUpRoFUvCaBZHQKLq8od+5OJ1fZQoaAZoCWgPQwiFz9bBQfRuQJSGlFKUaBVLwGgWR0Ci6zh5HEuQdX2UKGgGaAloD0MIfO2ZJcHcckCUhpRSlGgVS99oFkdAoutguAZsK3V9lChoBmgJaA9DCAiUTbkCz3BAlIaUUpRoFUvcaBZHQKLrlxH5Jsh1fZQoaAZoCWgPQwjqsMItnxhwQJSGlFKUaBVLzmgWR0Ci67N6PbPAdX2UKGgGaAloD0MIP3Jr0q0TcECUhpRSlGgVS7toFkdAouvdQQ+UyHV9lChoBmgJaA9DCNSZe0j4V3FAlIaUUpRoFUu0aBZHQKLseOPNmlJ1fZQoaAZoCWgPQwgYfJqT13xwQJSGlFKUaBVLrmgWR0Ci7LEpZwGXdX2UKGgGaAloD0MIGTvhJbhnc0CUhpRSlGgVTbMDaBZHQKLs0BDG96F1fZQoaAZoCWgPQwj5oGez6iRzQJSGlFKUaBVLv2gWR0Ci7Qg4ffXPdX2UKGgGaAloD0MIxf8dUWFDcUCUhpRSlGgVS+loFkdAou0USGrS3XV9lChoBmgJaA9DCK9A9KSMgHFAlIaUUpRoFUu9aBZHQKLtNykKu0V1fZQoaAZoCWgPQwif5A6bCPBxQJSGlFKUaBVL7mgWR0Ci7UwGOdXldX2UKGgGaAloD0MI8S4X8R1hckCUhpRSlGgVS9BoFkdAou1iAH3UQXV9lChoBmgJaA9DCBVSflLthm9AlIaUUpRoFUu7aBZHQKLtl0nPVut1fZQoaAZoCWgPQwjDSC9qNwRyQJSGlFKUaBVL6GgWR0Ci7fivgWJrdX2UKGgGaAloD0MIAHUDBV7ackCUhpRSlGgVS8xoFkdAou4RjFyaNXV9lChoBmgJaA9DCMTSwI/qxHNAlIaUUpRoFUvHaBZHQKLuJ44ZMtd1fZQoaAZoCWgPQwgsKXefozlzQJSGlFKUaBVL1GgWR0Ci7obx3FDOdX2UKGgGaAloD0MIev1JfO4qcUCUhpRSlGgVS89oFkdAou6Nk6Lfk3V9lChoBmgJaA9DCNkFg2tuBW9AlIaUUpRoFUvHaBZHQKLumtvn8sN1fZQoaAZoCWgPQwi1UZ0O5GxzQJSGlFKUaBVL0GgWR0Ci71x15jYqdX2UKGgGaAloD0MILv62J8ijcECUhpRSlGgVS79oFkdAou9u8dxQznV9lChoBmgJaA9DCIZ1493RU3BAlIaUUpRoFUu+aBZHQKLvoTtb9qF1fZQoaAZoCWgPQwhXQKGevtByQJSGlFKUaBVL2WgWR0Ci77niFTNudX2UKGgGaAloD0MIHQWIgpmQb0CUhpRSlGgVS8doFkdAou/QHHFPznV9lChoBmgJaA9DCIm0jT8RLnFAlIaUUpRoFUvIaBZHQKLv7UtI0651fZQoaAZoCWgPQwgPmfIhKLZuQJSGlFKUaBVLwmgWR0Ci8AYqG1x9dX2UKGgGaAloD0MI8RDGT6MJc0CUhpRSlGgVS8loFkdAovBbxy4nW3V9lChoBmgJaA9DCLqj/+WamnJAlIaUUpRoFUvsaBZHQKLwigFotcx1fZQoaAZoCWgPQwjU1ohgXKVyQJSGlFKUaBVLv2gWR0Ci8KDUutfYdX2UKGgGaAloD0MIguFcw8yWcUCUhpRSlGgVS7poFkdAovC++M6zV3V9lChoBmgJaA9DCAzqW+a0/3FAlIaUUpRoFUuwaBZHQKLw9wMpgCx1fZQoaAZoCWgPQwgx0ova/fFyQJSGlFKUaBVL42gWR0Ci8Spu2qkudX2UKGgGaAloD0MId2nDYentckCUhpRSlGgVS7xoFkdAovE1K7I1cnV9lChoBmgJaA9DCG5PkNjuR3FAlIaUUpRoFUvCaBZHQKLxPOX3QD51fZQoaAZoCWgPQwii0LLuny9tQJSGlFKUaBVLuWgWR0Ci8fTewcHXdX2UKGgGaAloD0MIznADPr/hb0CUhpRSlGgVS7toFkdAovIvllsguHV9lChoBmgJaA9DCAGIu3oVynNAlIaUUpRoFUu9aBZHQKLyZQCSzPd1fZQoaAZoCWgPQwjbvkf9df9zQJSGlFKUaBVLyWgWR0Ci8niiZfD2dX2UKGgGaAloD0MIEayql195cUCUhpRSlGgVS8RoFkdAovK0M1CPZXV9lChoBmgJaA9DCCu9NhurtXJAlIaUUpRoFUv9aBZHQKLy5Z39rGl1fZQoaAZoCWgPQwjqWnufqqJxQJSGlFKUaBVLvmgWR0Ci8wDiwSrYdX2UKGgGaAloD0MIxLMEGUGTc0CUhpRSlGgVS+1oFkdAovM3j0cwQHV9lChoBmgJaA9DCP+SVKaYpnBAlIaUUpRoFUu+aBZHQKLzY9Mbm2d1fZQoaAZoCWgPQwgXZMvydbFxQJSGlFKUaBVL22gWR0Ci849Ynv2HdX2UKGgGaAloD0MI196nqtDycUCUhpRSlGgVS+NoFkdAovPJOSGJvnV9lChoBmgJaA9DCCWUvhByq2dAlIaUUpRoFU3oA2gWR0Ci89YD9wWFdX2UKGgGaAloD0MIgQhx5exnc0CUhpRSlGgVS9JoFkdAovPmMyad+XV9lChoBmgJaA9DCBjt8UJ6JnJAlIaUUpRoFUvFaBZHQKLz9rdFfAt1fZQoaAZoCWgPQwiBsilXOGVxQJSGlFKUaBVL0mgWR0Ci9CPgvUSadX2UKGgGaAloD0MIrp/+s2YbckCUhpRSlGgVS9VoFkdAovQkbxVhkXV9lChoBmgJaA9DCOTaUDFOp3BAlIaUUpRoFUvEaBZHQKL015Jsfq51fZQoaAZoCWgPQwj8Ny9O/NFvQJSGlFKUaBVLu2gWR0Ci9ObNbC79dX2UKGgGaAloD0MINxrAW+AVcUCUhpRSlGgVS9xoFkdAovTy0MPSUnV9lChoBmgJaA9DCEPIef+fbXNAlIaUUpRoFUvFaBZHQKL1HdO6/Zd1fZQoaAZoCWgPQwh6jzNNGAdyQJSGlFKUaBVLxWgWR0Ci9YNCRfWudX2UKGgGaAloD0MI2gQYlj/UcECUhpRSlGgVS8poFkdAovWt1W8yvnV9lChoBmgJaA9DCCV1ApqI33FAlIaUUpRoFUvnaBZHQKL1zvxYq5N1fZQoaAZoCWgPQwgiMxe4vB5xQJSGlFKUaBVLtGgWR0Ci9e1/c32mdX2UKGgGaAloD0MIza57K5L9cUCUhpRSlGgVS9NoFkdAovYl6qsEJXV9lChoBmgJaA9DCHptNlYiznJAlIaUUpRoFUvjaBZHQKL2MpNsWO91fZQoaAZoCWgPQwj2KFyPQs5xQJSGlFKUaBVLuWgWR0Ci9jQnhKlIdX2UKGgGaAloD0MIxmmIKvxJc0CUhpRSlGgVS7doFkdAovZRpg1FY3V9lChoBmgJaA9DCDl/EwoRBnBAlIaUUpRoFUvQaBZHQKL2cf6oESx1fZQoaAZoCWgPQwhPdjOjnxZyQJSGlFKUaBVL2mgWR0Ci9rGdI5HVdX2UKGgGaAloD0MIjUXT2clSbkCUhpRSlGgVS89oFkdAovbMyLyc1HV9lChoBmgJaA9DCMNmgAtyQXBAlIaUUpRoFUvWaBZHQKL23wBo24x1fZQoaAZoCWgPQwhVhQZiWdxxQJSGlFKUaBVLx2gWR0Ci93E56t1ZdX2UKGgGaAloD0MIWfs722PNckCUhpRSlGgVS91oFkdAovfNOsT37HV9lChoBmgJaA9DCIo5CDoaknJAlIaUUpRoFUvnaBZHQKL30Y3vQWx1fZQoaAZoCWgPQwi9bhEYayVyQJSGlFKUaBVLwGgWR0Ci9/AsbvPUdX2UKGgGaAloD0MIwxA5ff2uckCUhpRSlGgVS/FoFkdAovg6MYMvy3V9lChoBmgJaA9DCOqxLQPOcHFAlIaUUpRoFUu+aBZHQKL4OTnq3Vl1fZQoaAZoCWgPQwhK06Bo3gtyQJSGlFKUaBVLz2gWR0Ci+Eujh1kldX2UKGgGaAloD0MIjzf5LXqucECUhpRSlGgVS7loFkdAovh8zImw7nV9lChoBmgJaA9DCEykNJsHnHFAlIaUUpRoFUvLaBZHQKL4ffReC051fZQoaAZoCWgPQwg0EMtmDhZuQJSGlFKUaBVLxWgWR0Ci+LZCF9KFdX2UKGgGaAloD0MIxCedSDB7bkCUhpRSlGgVS9BoFkdAovknQyAQQXV9lChoBmgJaA9DCMuEX+qnkHJAlIaUUpRoFUvwaBZHQKL5SDkELYx1fZQoaAZoCWgPQwhkV1pGKqJzQJSGlFKUaBVL72gWR0Ci+WxyOq//dX2UKGgGaAloD0MI0084u7U7ckCUhpRSlGgVS85oFkdAovl/E4vN/3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 620,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.995,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_ppo_NVE_v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb98f6d0b36c8679a2501ba9d0153ce9b5d1d212f9e5d84fe85b12b1c969fe43
|
3 |
+
size 88057
|
lunar_ppo_NVE_v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:837e7dc43a45bb84d6e0776824efc9eaf24841674f76321e7a13051cecb5bfa5
|
3 |
+
size 43201
|
lunar_ppo_NVE_v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_ppo_NVE_v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 291.88713288005647, "std_reward": 24.142264743708, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T18:40:27.588822"}
|