ppo-LunarLander-v2_v0 / config.json
NicolasNP's picture
First try on training the lunar lander
0dc3892
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f264eb5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f264eb670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f264eb700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f264eb790>", "_build": "<function ActorCriticPolicy._build at 0x7f7f264eb820>", "forward": "<function ActorCriticPolicy.forward at 0x7f7f264eb8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f264eb940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7f264eb9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f264eba60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f264ebaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f264ebb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7f26562e40>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670500741217993136, "learning_rate": 0.003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoPYj4q5h+9LhKvOydoabqZxYu+iAcuuwAAgD8AAIA/4wx9viornD9EThm/m4ATv5oWzb74AVi+AAAAAAAAAADG2l8+vrDiPiZgfrvg39m+8OALPgBO1r0AAAAAAAAAAM1xFL2PAiO6m55iPL3YPbLeShs7ygoCtAAAgD8AAIA/jWJkPmSiGL2OydS65d2OOdq7hr4LyxM6AACAPwAAgD9N0Io99rgCus/qyr3RlIS4Tq5xO32r9DcAAIA/AACAP5qzkr2UstI7Ww/wPR7l9r32qYI9kEYRvQAAAAAAAAAAc10ZPs9YXLwuM5Q9RCY6vErexL0+Rxe9AACAPwAAgD9Ni6A9bAfYuz2uDr277Xo93M8KPXf4Dr0AAIA/AACAP6D/uj4HMhQ/zJfLvp4Exb4ek3E+2hqXvgAAAAAAAAAAZjilvOEErbrG+ho9AHl9OP6/o7gdt2k3AACAPwAAgD9zkpi9CblYPVnVhz5bJ3O+XXBPPvv1AT4AAAAAAAAAAPPPsb1F1sE8WxB4Puc+tL4xkao95hK5PQAAAAAAAAAAgMGHPhtbkT/C6RQ/70wjv9tawz4W7JU+AAAAAAAAAABmsHU9e0KIuhrhg71GgEu1JAhYO56zuTQAAIA/AACAP7Cpgz55sgg/GOjEvomXHL81Kvk8sl9DvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0sWmlcLTcECUhpRSlIwBbJRLv4wBdJRHQJ3mcURFqi51fZQoaAZoCWgPQwhnDHOCtvNyQJSGlFKUaBVLtGgWR0Cd5wdTo+wDdX2UKGgGaAloD0MIxhnDnCC/ckCUhpRSlGgVS51oFkdAnecOk56t1nV9lChoBmgJaA9DCFYo0v1cK3JAlIaUUpRoFUu3aBZHQJ3nxWbPQfJ1fZQoaAZoCWgPQwjtLHqnQmVyQJSGlFKUaBVLlmgWR0Cd6AeSSvC/dX2UKGgGaAloD0MIPEuQEVD7cUCUhpRSlGgVS8RoFkdAnehp8KG+K3V9lChoBmgJaA9DCDs0LEadz3JAlIaUUpRoFUvZaBZHQJ3o1tSAH3V1fZQoaAZoCWgPQwi2Zisv+Q9xQJSGlFKUaBVLq2gWR0Cd6QkBS1mbdX2UKGgGaAloD0MIukxNgjc4ckCUhpRSlGgVS9VoFkdAnem51zQu3HV9lChoBmgJaA9DCOSHSiMmM3NAlIaUUpRoFUuqaBZHQJ3qGSjgydp1fZQoaAZoCWgPQwiCx7d3jQdzQJSGlFKUaBVLu2gWR0Cd6mh5gPVedX2UKGgGaAloD0MIURToEznncUCUhpRSlGgVS79oFkdAnesFMuez2XV9lChoBmgJaA9DCJONB1vsdnNAlIaUUpRoFUvSaBZHQJ3rEKx9oex1fZQoaAZoCWgPQwgt6SgHM1dyQJSGlFKUaBVLtmgWR0Cd60hXr+o+dX2UKGgGaAloD0MIbwwBwDEockCUhpRSlGgVS+toFkdAnexNgrpaBHV9lChoBmgJaA9DCBLBOLg0gHFAlIaUUpRoFUu1aBZHQJ3srd2xIJ91fZQoaAZoCWgPQwhupkI8knRzQJSGlFKUaBVL4WgWR0Cd7TnTy8SPdX2UKGgGaAloD0MIatyb37BlckCUhpRSlGgVS6VoFkdAne13DR+jM3V9lChoBmgJaA9DCNleC3pva3FAlIaUUpRoFUvDaBZHQJ3td07r9l51fZQoaAZoCWgPQwhgHccPFeBwQJSGlFKUaBVL8GgWR0Cd7a0Yj0L/dX2UKGgGaAloD0MIJa5jXLEEckCUhpRSlGgVS8doFkdAne3rqptJnXV9lChoBmgJaA9DCJjD7jvGxnFAlIaUUpRoFUuaaBZHQJ3uABRyfcx1fZQoaAZoCWgPQwgq5Eo9Sx9wQJSGlFKUaBVLnWgWR0CeCevx6OYIdX2UKGgGaAloD0MIycfuAiW0ckCUhpRSlGgVS9JoFkdAngnoI0IkaHV9lChoBmgJaA9DCEJg5dBiR3JAlIaUUpRoFUubaBZHQJ4KbbCaZx91fZQoaAZoCWgPQwh2ieqtQbBxQJSGlFKUaBVLz2gWR0CeCuUFSsKcdX2UKGgGaAloD0MIbAVNSyyVckCUhpRSlGgVS4poFkdAngsjq4YrKHV9lChoBmgJaA9DCDlFR3I51nFAlIaUUpRoFUvcaBZHQJ4MRITXarZ1fZQoaAZoCWgPQwjULNDukIxxQJSGlFKUaBVLj2gWR0CeDGcqvvBrdX2UKGgGaAloD0MID2CRX795b0CUhpRSlGgVS61oFkdAngyRKQJXyXV9lChoBmgJaA9DCCCZDp3eK3FAlIaUUpRoFU0OAWgWR0CeDf+KCQLedX2UKGgGaAloD0MIbXAi+rWlOUCUhpRSlGgVS2RoFkdAng4isny/bnV9lChoBmgJaA9DCI+LahFRvHFAlIaUUpRoFUuaaBZHQJ4OPT8YQ8R1fZQoaAZoCWgPQwjG3/YESR1yQJSGlFKUaBVLxmgWR0CeDpi3G4qgdX2UKGgGaAloD0MI3/3xXrWlckCUhpRSlGgVS9poFkdAng6m87IT5HV9lChoBmgJaA9DCLyt9NpsXnJAlIaUUpRoFUvnaBZHQJ4O3ER8MNN1fZQoaAZoCWgPQwh/hjdrsBdyQJSGlFKUaBVL2GgWR0CeDuOtnwocdX2UKGgGaAloD0MIRMTNqWQxUkCUhpRSlGgVS1doFkdAng8d7jT8YXV9lChoBmgJaA9DCBL6mXqdgHNAlIaUUpRoFUvXaBZHQJ4PJ8XvYvp1fZQoaAZoCWgPQwiZSGk2zyVzQJSGlFKUaBVLwWgWR0CeD1xYaHbidX2UKGgGaAloD0MIp3Sw/s/Ic0CUhpRSlGgVS91oFkdAnhCXrY5DJHV9lChoBmgJaA9DCIApAwd0rnBAlIaUUpRoFUuhaBZHQJ4QwSJ0nw51fZQoaAZoCWgPQwgQzqeO1ehxQJSGlFKUaBVLtmgWR0CeEXP557gLdX2UKGgGaAloD0MIks1V85xDckCUhpRSlGgVS+1oFkdAnhF+v+wTunV9lChoBmgJaA9DCCLi5lQyVG9AlIaUUpRoFUuSaBZHQJ4SBuyeI2x1fZQoaAZoCWgPQwgH0zB8RAZyQJSGlFKUaBVLkGgWR0CeEhMglnh9dX2UKGgGaAloD0MIwRvSqICkckCUhpRSlGgVS5toFkdAnhKtCJGe+XV9lChoBmgJaA9DCJCeIocIW3JAlIaUUpRoFUu1aBZHQJ4S1aNdZ7p1fZQoaAZoCWgPQwhuwOeHkbVvQJSGlFKUaBVLlGgWR0CeEzvmYBvKdX2UKGgGaAloD0MI5XrbTIUNb0CUhpRSlGgVS6hoFkdAnhNCIxgy/XV9lChoBmgJaA9DCMNEgxT81XFAlIaUUpRoFUuqaBZHQJ4TR3u/k/91fZQoaAZoCWgPQwjesG1RJiZzQJSGlFKUaBVLrWgWR0CeE7Dw6QvIdX2UKGgGaAloD0MIptHkYgxIcECUhpRSlGgVS7RoFkdAnhPRas6q83V9lChoBmgJaA9DCEjA6PImDXNAlIaUUpRoFUvXaBZHQJ4UQ7jkuHx1fZQoaAZoCWgPQwiAnDBhdF1yQJSGlFKUaBVLmWgWR0CeFvkHUtqYdX2UKGgGaAloD0MIP+Hs1rIJYkCUhpRSlGgVTegDaBZHQJ4W/Vz6rNp1fZQoaAZoCWgPQwgzpIriVaNvQJSGlFKUaBVLs2gWR0CeFxEJ0GNadX2UKGgGaAloD0MIonprYOswc0CUhpRSlGgVS99oFkdAnhe95IH1OHV9lChoBmgJaA9DCEkO2NVkXHBAlIaUUpRoFUv+aBZHQJ4X2kIomXx1fZQoaAZoCWgPQwjiqx3FOWpzQJSGlFKUaBVL5WgWR0CeF+G5tm+TdX2UKGgGaAloD0MIEcXkDbAgcECUhpRSlGgVS6BoFkdAnhfcS00FbHV9lChoBmgJaA9DCKfmcoOhRXBAlIaUUpRoFU0LAWgWR0CeF/1BMSK4dX2UKGgGaAloD0MIToBh+XMUc0CUhpRSlGgVS9hoFkdAnhgcO5J9RnV9lChoBmgJaA9DCJ2E0hfCTXFAlIaUUpRoFUuzaBZHQJ4YU5CF9KF1fZQoaAZoCWgPQwiALESHwPRwQJSGlFKUaBVLsWgWR0CeGMd9Ujs2dX2UKGgGaAloD0MIZmmn5nLXcUCUhpRSlGgVS9toFkdAnhjYt16mf3V9lChoBmgJaA9DCCUDQBU3F3FAlIaUUpRoFUukaBZHQJ4Y5BF/hEV1fZQoaAZoCWgPQwgxmL9C5mtyQJSGlFKUaBVL2GgWR0CeGS0th/iHdX2UKGgGaAloD0MI+7DeqBWIYUCUhpRSlGgVTegDaBZHQJ4ZUrd30PJ1fZQoaAZoCWgPQwikpfJ2xMFyQJSGlFKUaBVL9GgWR0CeGjDdxhlUdX2UKGgGaAloD0MI5s+3BcvrcUCUhpRSlGgVS59oFkdAnhrrfUF0P3V9lChoBmgJaA9DCJfJcDzfP3BAlIaUUpRoFUuUaBZHQJ4bcDIRywR1fZQoaAZoCWgPQwi77Ned7u1wQJSGlFKUaBVLnmgWR0CeG41gpjMFdX2UKGgGaAloD0MIaOp1i8Ccc0CUhpRSlGgVS6NoFkdAnhu3n2ZiNXV9lChoBmgJaA9DCLSOqiYIAXFAlIaUUpRoFUujaBZHQJ4bsgjhUBJ1fZQoaAZoCWgPQwjzHfzEAVlzQJSGlFKUaBVL0WgWR0CeHB6e5Fw2dX2UKGgGaAloD0MIQBTMmIJacECUhpRSlGgVS6VoFkdAnhzDwYtQK3V9lChoBmgJaA9DCHzuBPtvwnJAlIaUUpRoFUvhaBZHQJ4dGntOVPh1fZQoaAZoCWgPQwguPZrqCUlyQJSGlFKUaBVLymgWR0CeHR6AOJ+EdX2UKGgGaAloD0MIDDz3Hi7acECUhpRSlGgVS6loFkdAnh0rQkX1rnV9lChoBmgJaA9DCCfYf52bvEVAlIaUUpRoFUtaaBZHQJ4dJnkDIR11fZQoaAZoCWgPQwgav/BK0lZzQJSGlFKUaBVL5mgWR0CeHYbTtsvadX2UKGgGaAloD0MIpUv/ktRmckCUhpRSlGgVS9toFkdAnh384xUNrnV9lChoBmgJaA9DCFJkraHU1HNAlIaUUpRoFUvraBZHQJ4efVJ+UhV1fZQoaAZoCWgPQwhQcLGihp9yQJSGlFKUaBVLyGgWR0CeHy1mJ3xGdX2UKGgGaAloD0MIsDcxJKfeb0CUhpRSlGgVS5NoFkdAnh9qVyFPBXV9lChoBmgJaA9DCJG5Mqg2+3BAlIaUUpRoFUu1aBZHQJ4gaDbrTph1fZQoaAZoCWgPQwi1i2mmuzZwQJSGlFKUaBVLvmgWR0CeIGL0jC53dX2UKGgGaAloD0MIE4HqH8QOcECUhpRSlGgVS9BoFkdAniDvs/pt8HV9lChoBmgJaA9DCGNDN/vDgnFAlIaUUpRoFUuraBZHQJ4hTuNPxhF1fZQoaAZoCWgPQwjRyyiWm3tyQJSGlFKUaBVLx2gWR0CeIUn9NvfkdX2UKGgGaAloD0MI7ZxmgXZJckCUhpRSlGgVS6JoFkdAniFx5LRKH3V9lChoBmgJaA9DCLcLzXXaSXBAlIaUUpRoFUuZaBZHQJ4hpGRV6u51fZQoaAZoCWgPQwiYLy/AfrFxQJSGlFKUaBVLr2gWR0CeIb2GIsRQdX2UKGgGaAloD0MICrq9pPECckCUhpRSlGgVS7BoFkdAniHM0DU3GXV9lChoBmgJaA9DCKTjamRXzHNAlIaUUpRoFUu8aBZHQJ4iF6iTMaF1fZQoaAZoCWgPQwhg5GVN7GNxQJSGlFKUaBVLi2gWR0CeIkdjXnQqdX2UKGgGaAloD0MIFRxeEJG1ckCUhpRSlGgVS71oFkdAniMbLhaTwHV9lChoBmgJaA9DCDQPYJFfbnBAlIaUUpRoFUuqaBZHQJ4kCTkhib51fZQoaAZoCWgPQwj3WWWmtPJNQJSGlFKUaBVLV2gWR0CeJB61stTUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 355, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}