NicoZenith
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Usage
|
2 |
+
```python
|
3 |
+
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
|
4 |
+
|
5 |
+
model = LlavaOnevisionForConditionalGeneration.from_pretrained("NicoZenith/onevision-7b-all-vqa-conv")
|
6 |
+
processor = AutoProcessor.from_pretrained("NicoZenith/onevision-7b-all-vqa-conv")i
|
7 |
+
|
8 |
+
conversation = [
|
9 |
+
{
|
10 |
+
|
11 |
+
"role": "user",
|
12 |
+
"content": [
|
13 |
+
{"type": "text", "text": "What can you say about this X-ray?"},
|
14 |
+
{"type": "image"},
|
15 |
+
],
|
16 |
+
},
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
21 |
+
|
22 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
23 |
+
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
24 |
+
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
|