NickyNicky commited on
Commit
ef6fb41
·
verified ·
1 Parent(s): 90e9da3

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,839 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Teams across Delta have worked together to make an impact through
35
+ enhanced landing procedures, optimizations to flight routing and speed, and weight
36
+ reduction initiatives, saving over 20 million gallons of jet fuel in 2022 and
37
+ 2023.
38
+ sentences:
39
+ - What was the percentage increase in Services net sales from 2022 to 2023?
40
+ - How much jet fuel did Delta Air Lines save between 2022 and 2023 through optimizations
41
+ in aircraft operations?
42
+ - How did Ford Pro's EBIT in 2023 compare to the previous year, and what contributed
43
+ to this change?
44
+ - source_sentence: On February 14, 2022, the State of Texas filed a lawsuit against
45
+ us in Texas state court (Texas v. Meta Platforms, Inc.) alleging that "tag suggestions"
46
+ and other uses of facial recognition technology violated the Texas Capture or
47
+ Use of Biometric Identifiers Act and the Texas Deceptive Trade Practices-Consumer
48
+ Protection Act, and seeking statutory damages and injunctive relief.
49
+ sentences:
50
+ - What did the auditor’s report dated February 9, 2024, state about the effectiveness
51
+ of Enphase Energy’s internal control over financial reporting as of December 31,
52
+ 2023?
53
+ - What legal action did the State of Texas initiate against Meta Platforms, Inc.
54
+ on February 14, 2022?
55
+ - What caused the pretax loss in the Corporate & Other segment to increase in 2023
56
+ compared to 2022?
57
+ - source_sentence: Our two operating segments are "Compute & Networking" and "Graphics."
58
+ Refer to Note 17 of the Notes to the Consolidated Financial Statements in Part
59
+ IV, Item 15 of this Annual Report on Form 10-K for additional information.
60
+ sentences:
61
+ - What are the two operating segments of NVIDIA as mentioned in the text?
62
+ - How much did the gross margin increase in 2023 compared to 2022?
63
+ - What is the total assets and shareholders' equity of Chubb Limited as of December
64
+ 31, 2023?
65
+ - source_sentence: The increase in marketing and sales expenses in fiscal year 2023
66
+ was mainly due to higher advertising and promotional spending related to Apex
67
+ Legends Mobile and the FIFA franchise.
68
+ sentences:
69
+ - What are included in Part IV, Item 15(a)(1) of the Annual Report on Form 10-K?
70
+ - What was the net income reported for the fiscal year ending in August 2023?
71
+ - What was the primary cause of the increase in marketing and sales expenses in
72
+ fiscal year 2023?
73
+ - source_sentence: 'Information on legal proceedings is included in Contact Email PRIOR
74
+ HISTORY: None PLACEHOLDER FOR ARBITRATION.'
75
+ sentences:
76
+ - Where can information about legal proceedings be found in the financial statements?
77
+ - What remaining authorization amount was available for share repurchases as of
78
+ January 28, 2023?
79
+ - What is the total amount authorized for the repurchase of common stock up to December
80
+ 2023?
81
+ model-index:
82
+ - name: BGE base Financial Matryoshka
83
+ results:
84
+ - task:
85
+ type: information-retrieval
86
+ name: Information Retrieval
87
+ dataset:
88
+ name: dim 768
89
+ type: dim_768
90
+ metrics:
91
+ - type: cosine_accuracy@1
92
+ value: 0.71
93
+ name: Cosine Accuracy@1
94
+ - type: cosine_accuracy@3
95
+ value: 0.8428571428571429
96
+ name: Cosine Accuracy@3
97
+ - type: cosine_accuracy@5
98
+ value: 0.8771428571428571
99
+ name: Cosine Accuracy@5
100
+ - type: cosine_accuracy@10
101
+ value: 0.9142857142857143
102
+ name: Cosine Accuracy@10
103
+ - type: cosine_precision@1
104
+ value: 0.71
105
+ name: Cosine Precision@1
106
+ - type: cosine_precision@3
107
+ value: 0.28095238095238095
108
+ name: Cosine Precision@3
109
+ - type: cosine_precision@5
110
+ value: 0.1754285714285714
111
+ name: Cosine Precision@5
112
+ - type: cosine_precision@10
113
+ value: 0.09142857142857141
114
+ name: Cosine Precision@10
115
+ - type: cosine_recall@1
116
+ value: 0.71
117
+ name: Cosine Recall@1
118
+ - type: cosine_recall@3
119
+ value: 0.8428571428571429
120
+ name: Cosine Recall@3
121
+ - type: cosine_recall@5
122
+ value: 0.8771428571428571
123
+ name: Cosine Recall@5
124
+ - type: cosine_recall@10
125
+ value: 0.9142857142857143
126
+ name: Cosine Recall@10
127
+ - type: cosine_ndcg@10
128
+ value: 0.8151955748060781
129
+ name: Cosine Ndcg@10
130
+ - type: cosine_mrr@10
131
+ value: 0.783174603174603
132
+ name: Cosine Mrr@10
133
+ - type: cosine_map@100
134
+ value: 0.7866554834362436
135
+ name: Cosine Map@100
136
+ - task:
137
+ type: information-retrieval
138
+ name: Information Retrieval
139
+ dataset:
140
+ name: dim 512
141
+ type: dim_512
142
+ metrics:
143
+ - type: cosine_accuracy@1
144
+ value: 0.7028571428571428
145
+ name: Cosine Accuracy@1
146
+ - type: cosine_accuracy@3
147
+ value: 0.8457142857142858
148
+ name: Cosine Accuracy@3
149
+ - type: cosine_accuracy@5
150
+ value: 0.88
151
+ name: Cosine Accuracy@5
152
+ - type: cosine_accuracy@10
153
+ value: 0.9157142857142857
154
+ name: Cosine Accuracy@10
155
+ - type: cosine_precision@1
156
+ value: 0.7028571428571428
157
+ name: Cosine Precision@1
158
+ - type: cosine_precision@3
159
+ value: 0.2819047619047619
160
+ name: Cosine Precision@3
161
+ - type: cosine_precision@5
162
+ value: 0.176
163
+ name: Cosine Precision@5
164
+ - type: cosine_precision@10
165
+ value: 0.09157142857142857
166
+ name: Cosine Precision@10
167
+ - type: cosine_recall@1
168
+ value: 0.7028571428571428
169
+ name: Cosine Recall@1
170
+ - type: cosine_recall@3
171
+ value: 0.8457142857142858
172
+ name: Cosine Recall@3
173
+ - type: cosine_recall@5
174
+ value: 0.88
175
+ name: Cosine Recall@5
176
+ - type: cosine_recall@10
177
+ value: 0.9157142857142857
178
+ name: Cosine Recall@10
179
+ - type: cosine_ndcg@10
180
+ value: 0.8131832672898918
181
+ name: Cosine Ndcg@10
182
+ - type: cosine_mrr@10
183
+ value: 0.7799625850340134
184
+ name: Cosine Mrr@10
185
+ - type: cosine_map@100
186
+ value: 0.7833067978748278
187
+ name: Cosine Map@100
188
+ - task:
189
+ type: information-retrieval
190
+ name: Information Retrieval
191
+ dataset:
192
+ name: dim 256
193
+ type: dim_256
194
+ metrics:
195
+ - type: cosine_accuracy@1
196
+ value: 0.6985714285714286
197
+ name: Cosine Accuracy@1
198
+ - type: cosine_accuracy@3
199
+ value: 0.8457142857142858
200
+ name: Cosine Accuracy@3
201
+ - type: cosine_accuracy@5
202
+ value: 0.8785714285714286
203
+ name: Cosine Accuracy@5
204
+ - type: cosine_accuracy@10
205
+ value: 0.9071428571428571
206
+ name: Cosine Accuracy@10
207
+ - type: cosine_precision@1
208
+ value: 0.6985714285714286
209
+ name: Cosine Precision@1
210
+ - type: cosine_precision@3
211
+ value: 0.2819047619047619
212
+ name: Cosine Precision@3
213
+ - type: cosine_precision@5
214
+ value: 0.17571428571428568
215
+ name: Cosine Precision@5
216
+ - type: cosine_precision@10
217
+ value: 0.0907142857142857
218
+ name: Cosine Precision@10
219
+ - type: cosine_recall@1
220
+ value: 0.6985714285714286
221
+ name: Cosine Recall@1
222
+ - type: cosine_recall@3
223
+ value: 0.8457142857142858
224
+ name: Cosine Recall@3
225
+ - type: cosine_recall@5
226
+ value: 0.8785714285714286
227
+ name: Cosine Recall@5
228
+ - type: cosine_recall@10
229
+ value: 0.9071428571428571
230
+ name: Cosine Recall@10
231
+ - type: cosine_ndcg@10
232
+ value: 0.8072080679843728
233
+ name: Cosine Ndcg@10
234
+ - type: cosine_mrr@10
235
+ value: 0.7746224489795912
236
+ name: Cosine Mrr@10
237
+ - type: cosine_map@100
238
+ value: 0.7782328948106179
239
+ name: Cosine Map@100
240
+ - task:
241
+ type: information-retrieval
242
+ name: Information Retrieval
243
+ dataset:
244
+ name: dim 128
245
+ type: dim_128
246
+ metrics:
247
+ - type: cosine_accuracy@1
248
+ value: 0.6914285714285714
249
+ name: Cosine Accuracy@1
250
+ - type: cosine_accuracy@3
251
+ value: 0.8428571428571429
252
+ name: Cosine Accuracy@3
253
+ - type: cosine_accuracy@5
254
+ value: 0.8714285714285714
255
+ name: Cosine Accuracy@5
256
+ - type: cosine_accuracy@10
257
+ value: 0.9057142857142857
258
+ name: Cosine Accuracy@10
259
+ - type: cosine_precision@1
260
+ value: 0.6914285714285714
261
+ name: Cosine Precision@1
262
+ - type: cosine_precision@3
263
+ value: 0.28095238095238095
264
+ name: Cosine Precision@3
265
+ - type: cosine_precision@5
266
+ value: 0.17428571428571427
267
+ name: Cosine Precision@5
268
+ - type: cosine_precision@10
269
+ value: 0.09057142857142855
270
+ name: Cosine Precision@10
271
+ - type: cosine_recall@1
272
+ value: 0.6914285714285714
273
+ name: Cosine Recall@1
274
+ - type: cosine_recall@3
275
+ value: 0.8428571428571429
276
+ name: Cosine Recall@3
277
+ - type: cosine_recall@5
278
+ value: 0.8714285714285714
279
+ name: Cosine Recall@5
280
+ - type: cosine_recall@10
281
+ value: 0.9057142857142857
282
+ name: Cosine Recall@10
283
+ - type: cosine_ndcg@10
284
+ value: 0.80532196181792
285
+ name: Cosine Ndcg@10
286
+ - type: cosine_mrr@10
287
+ value: 0.7725623582766435
288
+ name: Cosine Mrr@10
289
+ - type: cosine_map@100
290
+ value: 0.7764353709024747
291
+ name: Cosine Map@100
292
+ - task:
293
+ type: information-retrieval
294
+ name: Information Retrieval
295
+ dataset:
296
+ name: dim 64
297
+ type: dim_64
298
+ metrics:
299
+ - type: cosine_accuracy@1
300
+ value: 0.6757142857142857
301
+ name: Cosine Accuracy@1
302
+ - type: cosine_accuracy@3
303
+ value: 0.8114285714285714
304
+ name: Cosine Accuracy@3
305
+ - type: cosine_accuracy@5
306
+ value: 0.85
307
+ name: Cosine Accuracy@5
308
+ - type: cosine_accuracy@10
309
+ value: 0.8842857142857142
310
+ name: Cosine Accuracy@10
311
+ - type: cosine_precision@1
312
+ value: 0.6757142857142857
313
+ name: Cosine Precision@1
314
+ - type: cosine_precision@3
315
+ value: 0.2704761904761904
316
+ name: Cosine Precision@3
317
+ - type: cosine_precision@5
318
+ value: 0.16999999999999998
319
+ name: Cosine Precision@5
320
+ - type: cosine_precision@10
321
+ value: 0.08842857142857141
322
+ name: Cosine Precision@10
323
+ - type: cosine_recall@1
324
+ value: 0.6757142857142857
325
+ name: Cosine Recall@1
326
+ - type: cosine_recall@3
327
+ value: 0.8114285714285714
328
+ name: Cosine Recall@3
329
+ - type: cosine_recall@5
330
+ value: 0.85
331
+ name: Cosine Recall@5
332
+ - type: cosine_recall@10
333
+ value: 0.8842857142857142
334
+ name: Cosine Recall@10
335
+ - type: cosine_ndcg@10
336
+ value: 0.7835900962247281
337
+ name: Cosine Ndcg@10
338
+ - type: cosine_mrr@10
339
+ value: 0.7508775510204081
340
+ name: Cosine Mrr@10
341
+ - type: cosine_map@100
342
+ value: 0.7557906355020412
343
+ name: Cosine Map@100
344
+ ---
345
+
346
+ # BGE base Financial Matryoshka
347
+
348
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
349
+
350
+ ## Model Details
351
+
352
+ ### Model Description
353
+ - **Model Type:** Sentence Transformer
354
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
355
+ - **Maximum Sequence Length:** 512 tokens
356
+ - **Output Dimensionality:** 768 tokens
357
+ - **Similarity Function:** Cosine Similarity
358
+ <!-- - **Training Dataset:** Unknown -->
359
+ - **Language:** en
360
+ - **License:** apache-2.0
361
+
362
+ ### Model Sources
363
+
364
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
365
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
366
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
367
+
368
+ ### Full Model Architecture
369
+
370
+ ```
371
+ SentenceTransformer(
372
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
373
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
374
+ (2): Normalize()
375
+ )
376
+ ```
377
+
378
+ ## Usage
379
+
380
+ ### Direct Usage (Sentence Transformers)
381
+
382
+ First install the Sentence Transformers library:
383
+
384
+ ```bash
385
+ pip install -U sentence-transformers
386
+ ```
387
+
388
+ Then you can load this model and run inference.
389
+ ```python
390
+ from sentence_transformers import SentenceTransformer
391
+
392
+ # Download from the 🤗 Hub
393
+ model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
394
+ # Run inference
395
+ sentences = [
396
+ 'Information on legal proceedings is included in Contact Email PRIOR HISTORY: None PLACEHOLDER FOR ARBITRATION.',
397
+ 'Where can information about legal proceedings be found in the financial statements?',
398
+ 'What remaining authorization amount was available for share repurchases as of January 28, 2023?',
399
+ ]
400
+ embeddings = model.encode(sentences)
401
+ print(embeddings.shape)
402
+ # [3, 768]
403
+
404
+ # Get the similarity scores for the embeddings
405
+ similarities = model.similarity(embeddings, embeddings)
406
+ print(similarities.shape)
407
+ # [3, 3]
408
+ ```
409
+
410
+ <!--
411
+ ### Direct Usage (Transformers)
412
+
413
+ <details><summary>Click to see the direct usage in Transformers</summary>
414
+
415
+ </details>
416
+ -->
417
+
418
+ <!--
419
+ ### Downstream Usage (Sentence Transformers)
420
+
421
+ You can finetune this model on your own dataset.
422
+
423
+ <details><summary>Click to expand</summary>
424
+
425
+ </details>
426
+ -->
427
+
428
+ <!--
429
+ ### Out-of-Scope Use
430
+
431
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
432
+ -->
433
+
434
+ ## Evaluation
435
+
436
+ ### Metrics
437
+
438
+ #### Information Retrieval
439
+ * Dataset: `dim_768`
440
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
441
+
442
+ | Metric | Value |
443
+ |:--------------------|:-----------|
444
+ | cosine_accuracy@1 | 0.71 |
445
+ | cosine_accuracy@3 | 0.8429 |
446
+ | cosine_accuracy@5 | 0.8771 |
447
+ | cosine_accuracy@10 | 0.9143 |
448
+ | cosine_precision@1 | 0.71 |
449
+ | cosine_precision@3 | 0.281 |
450
+ | cosine_precision@5 | 0.1754 |
451
+ | cosine_precision@10 | 0.0914 |
452
+ | cosine_recall@1 | 0.71 |
453
+ | cosine_recall@3 | 0.8429 |
454
+ | cosine_recall@5 | 0.8771 |
455
+ | cosine_recall@10 | 0.9143 |
456
+ | cosine_ndcg@10 | 0.8152 |
457
+ | cosine_mrr@10 | 0.7832 |
458
+ | **cosine_map@100** | **0.7867** |
459
+
460
+ #### Information Retrieval
461
+ * Dataset: `dim_512`
462
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
463
+
464
+ | Metric | Value |
465
+ |:--------------------|:-----------|
466
+ | cosine_accuracy@1 | 0.7029 |
467
+ | cosine_accuracy@3 | 0.8457 |
468
+ | cosine_accuracy@5 | 0.88 |
469
+ | cosine_accuracy@10 | 0.9157 |
470
+ | cosine_precision@1 | 0.7029 |
471
+ | cosine_precision@3 | 0.2819 |
472
+ | cosine_precision@5 | 0.176 |
473
+ | cosine_precision@10 | 0.0916 |
474
+ | cosine_recall@1 | 0.7029 |
475
+ | cosine_recall@3 | 0.8457 |
476
+ | cosine_recall@5 | 0.88 |
477
+ | cosine_recall@10 | 0.9157 |
478
+ | cosine_ndcg@10 | 0.8132 |
479
+ | cosine_mrr@10 | 0.78 |
480
+ | **cosine_map@100** | **0.7833** |
481
+
482
+ #### Information Retrieval
483
+ * Dataset: `dim_256`
484
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
485
+
486
+ | Metric | Value |
487
+ |:--------------------|:-----------|
488
+ | cosine_accuracy@1 | 0.6986 |
489
+ | cosine_accuracy@3 | 0.8457 |
490
+ | cosine_accuracy@5 | 0.8786 |
491
+ | cosine_accuracy@10 | 0.9071 |
492
+ | cosine_precision@1 | 0.6986 |
493
+ | cosine_precision@3 | 0.2819 |
494
+ | cosine_precision@5 | 0.1757 |
495
+ | cosine_precision@10 | 0.0907 |
496
+ | cosine_recall@1 | 0.6986 |
497
+ | cosine_recall@3 | 0.8457 |
498
+ | cosine_recall@5 | 0.8786 |
499
+ | cosine_recall@10 | 0.9071 |
500
+ | cosine_ndcg@10 | 0.8072 |
501
+ | cosine_mrr@10 | 0.7746 |
502
+ | **cosine_map@100** | **0.7782** |
503
+
504
+ #### Information Retrieval
505
+ * Dataset: `dim_128`
506
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
507
+
508
+ | Metric | Value |
509
+ |:--------------------|:-----------|
510
+ | cosine_accuracy@1 | 0.6914 |
511
+ | cosine_accuracy@3 | 0.8429 |
512
+ | cosine_accuracy@5 | 0.8714 |
513
+ | cosine_accuracy@10 | 0.9057 |
514
+ | cosine_precision@1 | 0.6914 |
515
+ | cosine_precision@3 | 0.281 |
516
+ | cosine_precision@5 | 0.1743 |
517
+ | cosine_precision@10 | 0.0906 |
518
+ | cosine_recall@1 | 0.6914 |
519
+ | cosine_recall@3 | 0.8429 |
520
+ | cosine_recall@5 | 0.8714 |
521
+ | cosine_recall@10 | 0.9057 |
522
+ | cosine_ndcg@10 | 0.8053 |
523
+ | cosine_mrr@10 | 0.7726 |
524
+ | **cosine_map@100** | **0.7764** |
525
+
526
+ #### Information Retrieval
527
+ * Dataset: `dim_64`
528
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
529
+
530
+ | Metric | Value |
531
+ |:--------------------|:-----------|
532
+ | cosine_accuracy@1 | 0.6757 |
533
+ | cosine_accuracy@3 | 0.8114 |
534
+ | cosine_accuracy@5 | 0.85 |
535
+ | cosine_accuracy@10 | 0.8843 |
536
+ | cosine_precision@1 | 0.6757 |
537
+ | cosine_precision@3 | 0.2705 |
538
+ | cosine_precision@5 | 0.17 |
539
+ | cosine_precision@10 | 0.0884 |
540
+ | cosine_recall@1 | 0.6757 |
541
+ | cosine_recall@3 | 0.8114 |
542
+ | cosine_recall@5 | 0.85 |
543
+ | cosine_recall@10 | 0.8843 |
544
+ | cosine_ndcg@10 | 0.7836 |
545
+ | cosine_mrr@10 | 0.7509 |
546
+ | **cosine_map@100** | **0.7558** |
547
+
548
+ <!--
549
+ ## Bias, Risks and Limitations
550
+
551
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
552
+ -->
553
+
554
+ <!--
555
+ ### Recommendations
556
+
557
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
558
+ -->
559
+
560
+ ## Training Details
561
+
562
+ ### Training Dataset
563
+
564
+ #### Unnamed Dataset
565
+
566
+
567
+ * Size: 6,300 training samples
568
+ * Columns: <code>positive</code> and <code>anchor</code>
569
+ * Approximate statistics based on the first 1000 samples:
570
+ | | positive | anchor |
571
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
572
+ | type | string | string |
573
+ | details | <ul><li>min: 4 tokens</li><li>mean: 47.19 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.59 tokens</li><li>max: 41 tokens</li></ul> |
574
+ * Samples:
575
+ | positive | anchor |
576
+ |:----------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
577
+ | <code>For the year ended December 31, 2023, $305 million was recorded as a distribution against retained earnings for dividends.</code> | <code>How much in dividends was recorded against retained earnings in 2023?</code> |
578
+ | <code>In February 2023, we announced a 10% increase in our quarterly cash dividend to $2.09 per share.</code> | <code>By how much did the company increase its quarterly cash dividend in February 2023?</code> |
579
+ | <code>Depreciation and amortization totaled $4,856 as recorded in the financial statements.</code> | <code>How much did depreciation and amortization total to in the financial statements?</code> |
580
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
581
+ ```json
582
+ {
583
+ "loss": "MultipleNegativesRankingLoss",
584
+ "matryoshka_dims": [
585
+ 768,
586
+ 512,
587
+ 256,
588
+ 128,
589
+ 64
590
+ ],
591
+ "matryoshka_weights": [
592
+ 1,
593
+ 1,
594
+ 1,
595
+ 1,
596
+ 1
597
+ ],
598
+ "n_dims_per_step": -1
599
+ }
600
+ ```
601
+
602
+ ### Training Hyperparameters
603
+ #### Non-Default Hyperparameters
604
+
605
+ - `eval_strategy`: epoch
606
+ - `per_device_train_batch_size`: 40
607
+ - `per_device_eval_batch_size`: 16
608
+ - `gradient_accumulation_steps`: 16
609
+ - `learning_rate`: 2e-05
610
+ - `num_train_epochs`: 20
611
+ - `lr_scheduler_type`: cosine
612
+ - `warmup_ratio`: 0.1
613
+ - `bf16`: True
614
+ - `tf32`: True
615
+ - `optim`: adamw_torch_fused
616
+ - `batch_sampler`: no_duplicates
617
+
618
+ #### All Hyperparameters
619
+ <details><summary>Click to expand</summary>
620
+
621
+ - `overwrite_output_dir`: False
622
+ - `do_predict`: False
623
+ - `eval_strategy`: epoch
624
+ - `prediction_loss_only`: True
625
+ - `per_device_train_batch_size`: 40
626
+ - `per_device_eval_batch_size`: 16
627
+ - `per_gpu_train_batch_size`: None
628
+ - `per_gpu_eval_batch_size`: None
629
+ - `gradient_accumulation_steps`: 16
630
+ - `eval_accumulation_steps`: None
631
+ - `learning_rate`: 2e-05
632
+ - `weight_decay`: 0.0
633
+ - `adam_beta1`: 0.9
634
+ - `adam_beta2`: 0.999
635
+ - `adam_epsilon`: 1e-08
636
+ - `max_grad_norm`: 1.0
637
+ - `num_train_epochs`: 20
638
+ - `max_steps`: -1
639
+ - `lr_scheduler_type`: cosine
640
+ - `lr_scheduler_kwargs`: {}
641
+ - `warmup_ratio`: 0.1
642
+ - `warmup_steps`: 0
643
+ - `log_level`: passive
644
+ - `log_level_replica`: warning
645
+ - `log_on_each_node`: True
646
+ - `logging_nan_inf_filter`: True
647
+ - `save_safetensors`: True
648
+ - `save_on_each_node`: False
649
+ - `save_only_model`: False
650
+ - `restore_callback_states_from_checkpoint`: False
651
+ - `no_cuda`: False
652
+ - `use_cpu`: False
653
+ - `use_mps_device`: False
654
+ - `seed`: 42
655
+ - `data_seed`: None
656
+ - `jit_mode_eval`: False
657
+ - `use_ipex`: False
658
+ - `bf16`: True
659
+ - `fp16`: False
660
+ - `fp16_opt_level`: O1
661
+ - `half_precision_backend`: auto
662
+ - `bf16_full_eval`: False
663
+ - `fp16_full_eval`: False
664
+ - `tf32`: True
665
+ - `local_rank`: 0
666
+ - `ddp_backend`: None
667
+ - `tpu_num_cores`: None
668
+ - `tpu_metrics_debug`: False
669
+ - `debug`: []
670
+ - `dataloader_drop_last`: False
671
+ - `dataloader_num_workers`: 0
672
+ - `dataloader_prefetch_factor`: None
673
+ - `past_index`: -1
674
+ - `disable_tqdm`: False
675
+ - `remove_unused_columns`: True
676
+ - `label_names`: None
677
+ - `load_best_model_at_end`: False
678
+ - `ignore_data_skip`: False
679
+ - `fsdp`: []
680
+ - `fsdp_min_num_params`: 0
681
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
682
+ - `fsdp_transformer_layer_cls_to_wrap`: None
683
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
684
+ - `deepspeed`: None
685
+ - `label_smoothing_factor`: 0.0
686
+ - `optim`: adamw_torch_fused
687
+ - `optim_args`: None
688
+ - `adafactor`: False
689
+ - `group_by_length`: False
690
+ - `length_column_name`: length
691
+ - `ddp_find_unused_parameters`: None
692
+ - `ddp_bucket_cap_mb`: None
693
+ - `ddp_broadcast_buffers`: False
694
+ - `dataloader_pin_memory`: True
695
+ - `dataloader_persistent_workers`: False
696
+ - `skip_memory_metrics`: True
697
+ - `use_legacy_prediction_loop`: False
698
+ - `push_to_hub`: False
699
+ - `resume_from_checkpoint`: None
700
+ - `hub_model_id`: None
701
+ - `hub_strategy`: every_save
702
+ - `hub_private_repo`: False
703
+ - `hub_always_push`: False
704
+ - `gradient_checkpointing`: False
705
+ - `gradient_checkpointing_kwargs`: None
706
+ - `include_inputs_for_metrics`: False
707
+ - `eval_do_concat_batches`: True
708
+ - `fp16_backend`: auto
709
+ - `push_to_hub_model_id`: None
710
+ - `push_to_hub_organization`: None
711
+ - `mp_parameters`:
712
+ - `auto_find_batch_size`: False
713
+ - `full_determinism`: False
714
+ - `torchdynamo`: None
715
+ - `ray_scope`: last
716
+ - `ddp_timeout`: 1800
717
+ - `torch_compile`: False
718
+ - `torch_compile_backend`: None
719
+ - `torch_compile_mode`: None
720
+ - `dispatch_batches`: None
721
+ - `split_batches`: None
722
+ - `include_tokens_per_second`: False
723
+ - `include_num_input_tokens_seen`: False
724
+ - `neftune_noise_alpha`: None
725
+ - `optim_target_modules`: None
726
+ - `batch_eval_metrics`: False
727
+ - `batch_sampler`: no_duplicates
728
+ - `multi_dataset_batch_sampler`: proportional
729
+
730
+ </details>
731
+
732
+ ### Training Logs
733
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
734
+ |:-------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
735
+ | 0.9114 | 9 | - | 0.7124 | 0.7361 | 0.7366 | 0.6672 | 0.7443 |
736
+ | 1.0127 | 10 | 2.0952 | - | - | - | - | - |
737
+ | 1.9241 | 19 | - | 0.7437 | 0.7561 | 0.7628 | 0.7172 | 0.7653 |
738
+ | 2.0253 | 20 | 1.1175 | - | - | - | - | - |
739
+ | 2.9367 | 29 | - | 0.7623 | 0.7733 | 0.7694 | 0.7288 | 0.7723 |
740
+ | 3.0380 | 30 | 0.6104 | - | - | - | - | - |
741
+ | 3.9494 | 39 | - | 0.7723 | 0.7746 | 0.7804 | 0.7405 | 0.7789 |
742
+ | 4.0506 | 40 | 0.4106 | - | - | - | - | - |
743
+ | 4.9620 | 49 | - | 0.7777 | 0.7759 | 0.7820 | 0.7475 | 0.7842 |
744
+ | 5.0633 | 50 | 0.314 | - | - | - | - | - |
745
+ | 5.9747 | 59 | - | 0.7802 | 0.7796 | 0.7856 | 0.7548 | 0.7839 |
746
+ | 6.0759 | 60 | 0.2423 | - | - | - | - | - |
747
+ | 6.9873 | 69 | - | 0.7756 | 0.7772 | 0.7834 | 0.7535 | 0.7818 |
748
+ | 7.0886 | 70 | 0.1962 | - | - | - | - | - |
749
+ | 8.0 | 79 | - | 0.7741 | 0.7774 | 0.7841 | 0.7551 | 0.7822 |
750
+ | 8.1013 | 80 | 0.1627 | - | - | - | - | - |
751
+ | 8.9114 | 88 | - | 0.7724 | 0.7752 | 0.7796 | 0.7528 | 0.7816 |
752
+ | 9.1139 | 90 | 0.1379 | - | - | - | - | - |
753
+ | 9.9241 | 98 | - | 0.7691 | 0.7782 | 0.7834 | 0.7559 | 0.7836 |
754
+ | 10.1266 | 100 | 0.1249 | - | - | - | - | - |
755
+ | 10.9367 | 108 | - | 0.7728 | 0.7802 | 0.7831 | 0.7536 | 0.7848 |
756
+ | 11.1392 | 110 | 0.1105 | - | - | - | - | - |
757
+ | 11.9494 | 118 | - | 0.7748 | 0.7785 | 0.7814 | 0.7558 | 0.7851 |
758
+ | 12.1519 | 120 | 0.1147 | - | - | - | - | - |
759
+ | 12.9620 | 128 | - | 0.7756 | 0.7788 | 0.7839 | 0.7550 | 0.7864 |
760
+ | 13.1646 | 130 | 0.098 | - | - | - | - | - |
761
+ | 13.9747 | 138 | - | 0.7767 | 0.7792 | 0.7828 | 0.7557 | 0.7873 |
762
+ | 14.1772 | 140 | 0.0927 | - | - | - | - | - |
763
+ | 14.9873 | 148 | - | 0.7758 | 0.7804 | 0.7847 | 0.7569 | 0.7892 |
764
+ | 15.1899 | 150 | 0.0921 | - | - | - | - | - |
765
+ | 16.0 | 158 | - | 0.7760 | 0.7794 | 0.7831 | 0.7551 | 0.7873 |
766
+ | 16.2025 | 160 | 0.0896 | - | - | - | - | - |
767
+ | 16.9114 | 167 | - | 0.7753 | 0.7799 | 0.7841 | 0.7570 | 0.7888 |
768
+ | 17.2152 | 170 | 0.0881 | - | - | - | - | - |
769
+ | 17.9241 | 177 | - | 0.7763 | 0.7787 | 0.7842 | 0.7561 | 0.7867 |
770
+ | 18.2278 | 180 | 0.0884 | 0.7764 | 0.7782 | 0.7833 | 0.7558 | 0.7867 |
771
+
772
+
773
+ ### Framework Versions
774
+ - Python: 3.10.12
775
+ - Sentence Transformers: 3.0.1
776
+ - Transformers: 4.41.2
777
+ - PyTorch: 2.2.0+cu121
778
+ - Accelerate: 0.31.0
779
+ - Datasets: 2.19.1
780
+ - Tokenizers: 0.19.1
781
+
782
+ ## Citation
783
+
784
+ ### BibTeX
785
+
786
+ #### Sentence Transformers
787
+ ```bibtex
788
+ @inproceedings{reimers-2019-sentence-bert,
789
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
790
+ author = "Reimers, Nils and Gurevych, Iryna",
791
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
792
+ month = "11",
793
+ year = "2019",
794
+ publisher = "Association for Computational Linguistics",
795
+ url = "https://arxiv.org/abs/1908.10084",
796
+ }
797
+ ```
798
+
799
+ #### MatryoshkaLoss
800
+ ```bibtex
801
+ @misc{kusupati2024matryoshka,
802
+ title={Matryoshka Representation Learning},
803
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
804
+ year={2024},
805
+ eprint={2205.13147},
806
+ archivePrefix={arXiv},
807
+ primaryClass={cs.LG}
808
+ }
809
+ ```
810
+
811
+ #### MultipleNegativesRankingLoss
812
+ ```bibtex
813
+ @misc{henderson2017efficient,
814
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
815
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
816
+ year={2017},
817
+ eprint={1705.00652},
818
+ archivePrefix={arXiv},
819
+ primaryClass={cs.CL}
820
+ }
821
+ ```
822
+
823
+ <!--
824
+ ## Glossary
825
+
826
+ *Clearly define terms in order to be accessible across audiences.*
827
+ -->
828
+
829
+ <!--
830
+ ## Model Card Authors
831
+
832
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
833
+ -->
834
+
835
+ <!--
836
+ ## Model Card Contact
837
+
838
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
839
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.2.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9586930770f11b532139c6aea28a9871ea31d9b0368b9416419bdd917e54fbd3
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff