Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,8 @@
|
|
2 |
language: vi
|
3 |
datasets:
|
4 |
- common_voice
|
5 |
-
-
|
|
|
6 |
metrics:
|
7 |
- wer
|
8 |
tags:
|
@@ -26,22 +27,16 @@ model-index:
|
|
26 |
type: wer
|
27 |
value: 52.48
|
28 |
---
|
29 |
-
|
30 |
# Wav2Vec2-Large-XLSR-53-Vietnamese
|
31 |
-
|
32 |
-
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), and [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4).
|
33 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
34 |
-
|
35 |
## Usage
|
36 |
-
|
37 |
The model can be used directly (without a language model) as follows:
|
38 |
-
|
39 |
```python
|
40 |
import torch
|
41 |
import torchaudio
|
42 |
from datasets import load_dataset
|
43 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
44 |
-
|
45 |
ENCODER = {
|
46 |
"ia ": "iê ",
|
47 |
"ìa ": "iề ",
|
@@ -149,46 +144,32 @@ def decode_string(x):
|
|
149 |
for k, v in list(reversed(list(ENCODER.items()))):
|
150 |
x = x.replace(v, k)
|
151 |
return x
|
152 |
-
|
153 |
-
|
154 |
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
|
155 |
-
|
156 |
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
157 |
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
158 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
159 |
-
|
160 |
# Preprocessing the datasets.
|
161 |
# We need to read the aduio files as arrays
|
162 |
def speech_file_to_array_fn(batch):
|
163 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
164 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
165 |
return batch
|
166 |
-
|
167 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
168 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
169 |
-
|
170 |
with torch.no_grad():
|
171 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
172 |
-
|
173 |
predicted_ids = torch.argmax(logits, dim=-1)
|
174 |
-
|
175 |
print("Prediction:", [decode_string(x) for x in processor.batch_decode(predicted_ids)])
|
176 |
print("Reference:", test_dataset["sentence"][:2])
|
177 |
```
|
178 |
-
|
179 |
-
|
180 |
## Evaluation
|
181 |
-
|
182 |
The model can be evaluated as follows on the Vietnamese test data of Common Voice.
|
183 |
-
|
184 |
-
|
185 |
```python
|
186 |
import torch
|
187 |
import torchaudio
|
188 |
from datasets import load_dataset, load_metric
|
189 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
190 |
import re
|
191 |
-
|
192 |
ENCODER = {
|
193 |
"ia ": "iê ",
|
194 |
"ìa ": "iề ",
|
@@ -296,11 +277,8 @@ def decode_string(x):
|
|
296 |
for k, v in list(reversed(list(ENCODER.items()))):
|
297 |
x = x.replace(v, k)
|
298 |
return x
|
299 |
-
|
300 |
-
|
301 |
test_dataset = load_dataset("common_voice", "vi", split="test")
|
302 |
wer = load_metric("wer")
|
303 |
-
|
304 |
processor = Wav2Vec2Processor.from_pretrained(MODEL)
|
305 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL)
|
306 |
model.to("cuda")
|
@@ -308,29 +286,30 @@ model.to("cuda")
|
|
308 |
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
309 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
# Preprocessing the datasets.
|
312 |
# We need to read the aduio files as arrays
|
313 |
def evaluate(batch):
|
314 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
315 |
-
|
316 |
with torch.no_grad():
|
317 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
318 |
-
|
319 |
pred_ids = torch.argmax(logits, dim=-1)
|
320 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
321 |
# decode_string: We replace the encoded letter with the initial letters
|
322 |
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]]
|
323 |
return batch
|
324 |
-
|
325 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
326 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
327 |
```
|
328 |
-
|
329 |
**Test Result**: 52.48 %
|
330 |
-
|
331 |
-
|
332 |
## Training
|
333 |
-
|
334 |
-
The Common Voice `train`, `validation`, and FOSD datasets were used for training as well.
|
335 |
-
|
336 |
The script used for training can be found [here](https://colab.research.google.com/drive/11pP4uVJj4SYZTzGjlCUtOHywlhYqs0cPx)
|
|
|
2 |
language: vi
|
3 |
datasets:
|
4 |
- common_voice
|
5 |
+
- FOSD: https://data.mendeley.com/datasets/k9sxg2twv4/4
|
6 |
+
- VIVOS: https://ailab.hcmus.edu.vn/vivos
|
7 |
metrics:
|
8 |
- wer
|
9 |
tags:
|
|
|
27 |
type: wer
|
28 |
value: 52.48
|
29 |
---
|
|
|
30 |
# Wav2Vec2-Large-XLSR-53-Vietnamese
|
31 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4) and [VIVOS](https://ailab.hcmus.edu.vn/vivos).
|
|
|
32 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
|
|
33 |
## Usage
|
|
|
34 |
The model can be used directly (without a language model) as follows:
|
|
|
35 |
```python
|
36 |
import torch
|
37 |
import torchaudio
|
38 |
from datasets import load_dataset
|
39 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
40 |
ENCODER = {
|
41 |
"ia ": "iê ",
|
42 |
"ìa ": "iề ",
|
|
|
144 |
for k, v in list(reversed(list(ENCODER.items()))):
|
145 |
x = x.replace(v, k)
|
146 |
return x
|
|
|
|
|
147 |
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
|
|
|
148 |
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
149 |
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
150 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
|
151 |
# Preprocessing the datasets.
|
152 |
# We need to read the aduio files as arrays
|
153 |
def speech_file_to_array_fn(batch):
|
154 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
155 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
156 |
return batch
|
|
|
157 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
158 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|
|
159 |
with torch.no_grad():
|
160 |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
|
|
161 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
162 |
print("Prediction:", [decode_string(x) for x in processor.batch_decode(predicted_ids)])
|
163 |
print("Reference:", test_dataset["sentence"][:2])
|
164 |
```
|
|
|
|
|
165 |
## Evaluation
|
|
|
166 |
The model can be evaluated as follows on the Vietnamese test data of Common Voice.
|
|
|
|
|
167 |
```python
|
168 |
import torch
|
169 |
import torchaudio
|
170 |
from datasets import load_dataset, load_metric
|
171 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
172 |
import re
|
|
|
173 |
ENCODER = {
|
174 |
"ia ": "iê ",
|
175 |
"ìa ": "iề ",
|
|
|
277 |
for k, v in list(reversed(list(ENCODER.items()))):
|
278 |
x = x.replace(v, k)
|
279 |
return x
|
|
|
|
|
280 |
test_dataset = load_dataset("common_voice", "vi", split="test")
|
281 |
wer = load_metric("wer")
|
|
|
282 |
processor = Wav2Vec2Processor.from_pretrained(MODEL)
|
283 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL)
|
284 |
model.to("cuda")
|
|
|
286 |
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
287 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
288 |
|
289 |
+
# Preprocessing the datasets.
|
290 |
+
# We need to read the aduio files as arrays
|
291 |
+
def speech_file_to_array_fn(batch):
|
292 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
293 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
294 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
295 |
+
return batch
|
296 |
+
|
297 |
+
|
298 |
# Preprocessing the datasets.
|
299 |
# We need to read the aduio files as arrays
|
300 |
def evaluate(batch):
|
301 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|
|
302 |
with torch.no_grad():
|
303 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
|
|
304 |
pred_ids = torch.argmax(logits, dim=-1)
|
305 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
306 |
# decode_string: We replace the encoded letter with the initial letters
|
307 |
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]]
|
308 |
return batch
|
|
|
309 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
310 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
311 |
```
|
|
|
312 |
**Test Result**: 52.48 %
|
|
|
|
|
313 |
## Training
|
314 |
+
The Common Voice `train`, `validation` and FOSD datasets and VIVOS datasets were used for training as well.
|
|
|
|
|
315 |
The script used for training can be found [here](https://colab.research.google.com/drive/11pP4uVJj4SYZTzGjlCUtOHywlhYqs0cPx)
|