JaviBJ commited on
Commit
384cda4
1 Parent(s): 97593ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -4
README.md CHANGED
@@ -25,8 +25,20 @@ A value between 0 and 1 is predicted for each signal.
25
  The model can be used directly with a text-classification pipeline:
26
 
27
  ```python
28
- text = "Es usted un auténtico impresentable, su señoría."
 
 
 
29
 
30
- pipe = pipeline("text-classification", model="Newtral/xlm-r-finetuned-toxic-political-tweets-es")
31
- pipe(text, return_all_scores=True)
32
- ```
 
 
 
 
 
 
 
 
 
 
25
  The model can be used directly with a text-classification pipeline:
26
 
27
  ```python
28
+ >>> from transformers import pipeline
29
+ >>> text = "Es usted un auténtico impresentable, su señoría."
30
+ >>> pipe = pipeline("text-classification", model="Newtral/xlm-r-finetuned-toxic-political-tweets-es")
31
+ >>> pipe(text, return_all_scores=True)
32
 
33
+ [[{'label': 'toxic', 'score': 0.92560875415802},
34
+ {'label': 'very toxic', 'score': 0.8310967683792114}]]
35
+ ```
36
+
37
+ ### Training procedure
38
+ The pre-trained model was fine-tuned for sequence classification using the following hyperparameters, which were selected from a validation set:
39
+
40
+ * Batch size = 32
41
+ * Learning rate = 2e-5
42
+ * Epochs = 5
43
+
44
+ The optimizer used was AdamW and the loss optimized was binary cross-entropy with class weights proportional to the class imbalance.