|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from tqdm import tqdm |
|
|
|
from torchvision import transforms |
|
import torchvision |
|
|
|
from torch.utils.data import DataLoader |
|
|
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((512, 512)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
|
|
def make_dir(path): |
|
import os |
|
dir = os.path.exists(path) |
|
if not dir: |
|
os.makedirs(path) |
|
make_dir('models') |
|
|
|
batch_size = 8 |
|
|
|
train_set = torchvision.datasets.ImageFolder(root='data/cat_vs_dog/train', transform=transform) |
|
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, |
|
num_workers=0) |
|
|
|
val_dataset = torchvision.datasets.ImageFolder(root='data/cat_vs_dog/val', transform=transform) |
|
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, |
|
num_workers=0) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
net = torchvision.models.resnet18(weights=True) |
|
num_ftrs = net.fc.in_features |
|
net.fc = nn.Linear(num_ftrs, 2) |
|
|
|
criterion = nn.CrossEntropyLoss() |
|
net = net.to(device) |
|
optimizer = torch.optim.AdamW(lr=0.0001, params=net.parameters()) |
|
eposhs = 100 |
|
|
|
for epoch in range(eposhs): |
|
print(f'--------------------{epoch}--------------------') |
|
correct_train = 0 |
|
sum_loss_train = 0 |
|
total_correct_train = 0 |
|
for inputs, labels in tqdm(train_loader): |
|
inputs = inputs.to(device) |
|
labels = labels.to(device) |
|
|
|
output = net(inputs) |
|
loss = criterion(output, labels) |
|
sum_loss_train = sum_loss_train + loss.item() |
|
total_correct_train = total_correct_train + labels.size(0) |
|
optimizer.zero_grad() |
|
_, predicted = torch.max(output.data, 1) |
|
loss.backward() |
|
optimizer.step() |
|
correct_train = correct_train + (predicted == labels).sum().item() |
|
|
|
acc_train = correct_train / total_correct_train |
|
print('训练准确率是{:.3f}%:'.format(acc_train*100) ) |
|
|
|
net.eval() |
|
correct_val = 0 |
|
sum_loss_val = 0 |
|
total_correct_val = 0 |
|
for inputs, labels in tqdm(val_loader): |
|
inputs = inputs.to(device) |
|
labels = labels.to(device) |
|
output = net(inputs) |
|
loss = criterion(output, labels) |
|
sum_loss_val = sum_loss_val + loss.item() |
|
|
|
output = net(inputs) |
|
total_correct_val = total_correct_val + labels.size(0) |
|
optimizer.zero_grad() |
|
_, predicted = torch.max(output.data, 1) |
|
correct_val = correct_val + (predicted == labels).sum().item() |
|
|
|
acc_val = correct_val / total_correct_val |
|
print('验证准确率是{:.3f}%:'.format(acc_val*100) ) |
|
|
|
torch.save(net,'models/{}-{:.5f}_{:.3f}%_{:.5f}_{:.3f}%.pth'.format(epoch,sum_loss_train,acc_train *100,sum_loss_val,acc_val*100)) |
|
|
|
|