Commit
·
5a4d956
1
Parent(s):
bde2a8d
Upload model
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +1086 -0
- added_tokens.json +4 -0
- config.json +24 -0
- config_sentence_transformers.json +50 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +74 -0
- vocab.txt +0 -0
1_Dense/config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"in_features": 128, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84ba720a1b4d7ce9fb1aaf6fc056db332fa2ee90456b5d6cdeaf0528d9187283
|
| 3 |
+
size 65624
|
README.md
ADDED
|
@@ -0,0 +1,1086 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- ColBERT
|
| 4 |
+
- PyLate
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- feature-extraction
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
- dataset_size:640000
|
| 10 |
+
- loss:Distillation
|
| 11 |
+
base_model: google/bert_uncased_L-2_H-128_A-2
|
| 12 |
+
datasets:
|
| 13 |
+
- lightonai/ms-marco-en-bge-gemma-unnormalized
|
| 14 |
+
pipeline_tag: sentence-similarity
|
| 15 |
+
library_name: PyLate
|
| 16 |
+
license: apache-2.0
|
| 17 |
+
metrics:
|
| 18 |
+
- MaxSim_accuracy@1
|
| 19 |
+
- MaxSim_accuracy@3
|
| 20 |
+
- MaxSim_accuracy@5
|
| 21 |
+
- MaxSim_accuracy@10
|
| 22 |
+
- MaxSim_precision@1
|
| 23 |
+
- MaxSim_precision@3
|
| 24 |
+
- MaxSim_precision@5
|
| 25 |
+
- MaxSim_precision@10
|
| 26 |
+
- MaxSim_recall@1
|
| 27 |
+
- MaxSim_recall@3
|
| 28 |
+
- MaxSim_recall@5
|
| 29 |
+
- MaxSim_recall@10
|
| 30 |
+
- MaxSim_ndcg@10
|
| 31 |
+
- MaxSim_mrr@10
|
| 32 |
+
- MaxSim_map@100
|
| 33 |
+
model-index:
|
| 34 |
+
- name: ColBERT MUVERA Micro
|
| 35 |
+
results:
|
| 36 |
+
- task:
|
| 37 |
+
type: py-late-information-retrieval
|
| 38 |
+
name: Py Late Information Retrieval
|
| 39 |
+
dataset:
|
| 40 |
+
name: NanoClimateFEVER
|
| 41 |
+
type: NanoClimateFEVER
|
| 42 |
+
metrics:
|
| 43 |
+
- type: MaxSim_accuracy@1
|
| 44 |
+
value: 0.26
|
| 45 |
+
name: Maxsim Accuracy@1
|
| 46 |
+
- type: MaxSim_accuracy@3
|
| 47 |
+
value: 0.36
|
| 48 |
+
name: Maxsim Accuracy@3
|
| 49 |
+
- type: MaxSim_accuracy@5
|
| 50 |
+
value: 0.4
|
| 51 |
+
name: Maxsim Accuracy@5
|
| 52 |
+
- type: MaxSim_accuracy@10
|
| 53 |
+
value: 0.58
|
| 54 |
+
name: Maxsim Accuracy@10
|
| 55 |
+
- type: MaxSim_precision@1
|
| 56 |
+
value: 0.26
|
| 57 |
+
name: Maxsim Precision@1
|
| 58 |
+
- type: MaxSim_precision@3
|
| 59 |
+
value: 0.12666666666666665
|
| 60 |
+
name: Maxsim Precision@3
|
| 61 |
+
- type: MaxSim_precision@5
|
| 62 |
+
value: 0.092
|
| 63 |
+
name: Maxsim Precision@5
|
| 64 |
+
- type: MaxSim_precision@10
|
| 65 |
+
value: 0.07800000000000001
|
| 66 |
+
name: Maxsim Precision@10
|
| 67 |
+
- type: MaxSim_recall@1
|
| 68 |
+
value: 0.11233333333333333
|
| 69 |
+
name: Maxsim Recall@1
|
| 70 |
+
- type: MaxSim_recall@3
|
| 71 |
+
value: 0.16066666666666665
|
| 72 |
+
name: Maxsim Recall@3
|
| 73 |
+
- type: MaxSim_recall@5
|
| 74 |
+
value: 0.184
|
| 75 |
+
name: Maxsim Recall@5
|
| 76 |
+
- type: MaxSim_recall@10
|
| 77 |
+
value: 0.3206666666666667
|
| 78 |
+
name: Maxsim Recall@10
|
| 79 |
+
- type: MaxSim_ndcg@10
|
| 80 |
+
value: 0.24408616743142095
|
| 81 |
+
name: Maxsim Ndcg@10
|
| 82 |
+
- type: MaxSim_mrr@10
|
| 83 |
+
value: 0.33196825396825397
|
| 84 |
+
name: Maxsim Mrr@10
|
| 85 |
+
- type: MaxSim_map@100
|
| 86 |
+
value: 0.18128382432733356
|
| 87 |
+
name: Maxsim Map@100
|
| 88 |
+
- task:
|
| 89 |
+
type: py-late-information-retrieval
|
| 90 |
+
name: Py Late Information Retrieval
|
| 91 |
+
dataset:
|
| 92 |
+
name: NanoDBPedia
|
| 93 |
+
type: NanoDBPedia
|
| 94 |
+
metrics:
|
| 95 |
+
- type: MaxSim_accuracy@1
|
| 96 |
+
value: 0.68
|
| 97 |
+
name: Maxsim Accuracy@1
|
| 98 |
+
- type: MaxSim_accuracy@3
|
| 99 |
+
value: 0.86
|
| 100 |
+
name: Maxsim Accuracy@3
|
| 101 |
+
- type: MaxSim_accuracy@5
|
| 102 |
+
value: 0.92
|
| 103 |
+
name: Maxsim Accuracy@5
|
| 104 |
+
- type: MaxSim_accuracy@10
|
| 105 |
+
value: 0.94
|
| 106 |
+
name: Maxsim Accuracy@10
|
| 107 |
+
- type: MaxSim_precision@1
|
| 108 |
+
value: 0.68
|
| 109 |
+
name: Maxsim Precision@1
|
| 110 |
+
- type: MaxSim_precision@3
|
| 111 |
+
value: 0.6066666666666667
|
| 112 |
+
name: Maxsim Precision@3
|
| 113 |
+
- type: MaxSim_precision@5
|
| 114 |
+
value: 0.56
|
| 115 |
+
name: Maxsim Precision@5
|
| 116 |
+
- type: MaxSim_precision@10
|
| 117 |
+
value: 0.502
|
| 118 |
+
name: Maxsim Precision@10
|
| 119 |
+
- type: MaxSim_recall@1
|
| 120 |
+
value: 0.05322585293904511
|
| 121 |
+
name: Maxsim Recall@1
|
| 122 |
+
- type: MaxSim_recall@3
|
| 123 |
+
value: 0.16789568954347403
|
| 124 |
+
name: Maxsim Recall@3
|
| 125 |
+
- type: MaxSim_recall@5
|
| 126 |
+
value: 0.22988072374930787
|
| 127 |
+
name: Maxsim Recall@5
|
| 128 |
+
- type: MaxSim_recall@10
|
| 129 |
+
value: 0.35043982767195947
|
| 130 |
+
name: Maxsim Recall@10
|
| 131 |
+
- type: MaxSim_ndcg@10
|
| 132 |
+
value: 0.6003406576207015
|
| 133 |
+
name: Maxsim Ndcg@10
|
| 134 |
+
- type: MaxSim_mrr@10
|
| 135 |
+
value: 0.7850000000000001
|
| 136 |
+
name: Maxsim Mrr@10
|
| 137 |
+
- type: MaxSim_map@100
|
| 138 |
+
value: 0.4687280514608297
|
| 139 |
+
name: Maxsim Map@100
|
| 140 |
+
- task:
|
| 141 |
+
type: py-late-information-retrieval
|
| 142 |
+
name: Py Late Information Retrieval
|
| 143 |
+
dataset:
|
| 144 |
+
name: NanoFEVER
|
| 145 |
+
type: NanoFEVER
|
| 146 |
+
metrics:
|
| 147 |
+
- type: MaxSim_accuracy@1
|
| 148 |
+
value: 0.72
|
| 149 |
+
name: Maxsim Accuracy@1
|
| 150 |
+
- type: MaxSim_accuracy@3
|
| 151 |
+
value: 0.78
|
| 152 |
+
name: Maxsim Accuracy@3
|
| 153 |
+
- type: MaxSim_accuracy@5
|
| 154 |
+
value: 0.84
|
| 155 |
+
name: Maxsim Accuracy@5
|
| 156 |
+
- type: MaxSim_accuracy@10
|
| 157 |
+
value: 0.9
|
| 158 |
+
name: Maxsim Accuracy@10
|
| 159 |
+
- type: MaxSim_precision@1
|
| 160 |
+
value: 0.72
|
| 161 |
+
name: Maxsim Precision@1
|
| 162 |
+
- type: MaxSim_precision@3
|
| 163 |
+
value: 0.2733333333333333
|
| 164 |
+
name: Maxsim Precision@3
|
| 165 |
+
- type: MaxSim_precision@5
|
| 166 |
+
value: 0.18
|
| 167 |
+
name: Maxsim Precision@5
|
| 168 |
+
- type: MaxSim_precision@10
|
| 169 |
+
value: 0.1
|
| 170 |
+
name: Maxsim Precision@10
|
| 171 |
+
- type: MaxSim_recall@1
|
| 172 |
+
value: 0.6866666666666668
|
| 173 |
+
name: Maxsim Recall@1
|
| 174 |
+
- type: MaxSim_recall@3
|
| 175 |
+
value: 0.7633333333333333
|
| 176 |
+
name: Maxsim Recall@3
|
| 177 |
+
- type: MaxSim_recall@5
|
| 178 |
+
value: 0.82
|
| 179 |
+
name: Maxsim Recall@5
|
| 180 |
+
- type: MaxSim_recall@10
|
| 181 |
+
value: 0.89
|
| 182 |
+
name: Maxsim Recall@10
|
| 183 |
+
- type: MaxSim_ndcg@10
|
| 184 |
+
value: 0.7955242043086649
|
| 185 |
+
name: Maxsim Ndcg@10
|
| 186 |
+
- type: MaxSim_mrr@10
|
| 187 |
+
value: 0.7731666666666667
|
| 188 |
+
name: Maxsim Mrr@10
|
| 189 |
+
- type: MaxSim_map@100
|
| 190 |
+
value: 0.7676133768765347
|
| 191 |
+
name: Maxsim Map@100
|
| 192 |
+
- task:
|
| 193 |
+
type: py-late-information-retrieval
|
| 194 |
+
name: Py Late Information Retrieval
|
| 195 |
+
dataset:
|
| 196 |
+
name: NanoFiQA2018
|
| 197 |
+
type: NanoFiQA2018
|
| 198 |
+
metrics:
|
| 199 |
+
- type: MaxSim_accuracy@1
|
| 200 |
+
value: 0.3
|
| 201 |
+
name: Maxsim Accuracy@1
|
| 202 |
+
- type: MaxSim_accuracy@3
|
| 203 |
+
value: 0.54
|
| 204 |
+
name: Maxsim Accuracy@3
|
| 205 |
+
- type: MaxSim_accuracy@5
|
| 206 |
+
value: 0.58
|
| 207 |
+
name: Maxsim Accuracy@5
|
| 208 |
+
- type: MaxSim_accuracy@10
|
| 209 |
+
value: 0.66
|
| 210 |
+
name: Maxsim Accuracy@10
|
| 211 |
+
- type: MaxSim_precision@1
|
| 212 |
+
value: 0.3
|
| 213 |
+
name: Maxsim Precision@1
|
| 214 |
+
- type: MaxSim_precision@3
|
| 215 |
+
value: 0.2333333333333333
|
| 216 |
+
name: Maxsim Precision@3
|
| 217 |
+
- type: MaxSim_precision@5
|
| 218 |
+
value: 0.17200000000000004
|
| 219 |
+
name: Maxsim Precision@5
|
| 220 |
+
- type: MaxSim_precision@10
|
| 221 |
+
value: 0.10800000000000001
|
| 222 |
+
name: Maxsim Precision@10
|
| 223 |
+
- type: MaxSim_recall@1
|
| 224 |
+
value: 0.1770793650793651
|
| 225 |
+
name: Maxsim Recall@1
|
| 226 |
+
- type: MaxSim_recall@3
|
| 227 |
+
value: 0.3453492063492064
|
| 228 |
+
name: Maxsim Recall@3
|
| 229 |
+
- type: MaxSim_recall@5
|
| 230 |
+
value: 0.4009047619047619
|
| 231 |
+
name: Maxsim Recall@5
|
| 232 |
+
- type: MaxSim_recall@10
|
| 233 |
+
value: 0.4740952380952381
|
| 234 |
+
name: Maxsim Recall@10
|
| 235 |
+
- type: MaxSim_ndcg@10
|
| 236 |
+
value: 0.38709436118795515
|
| 237 |
+
name: Maxsim Ndcg@10
|
| 238 |
+
- type: MaxSim_mrr@10
|
| 239 |
+
value: 0.4288015873015872
|
| 240 |
+
name: Maxsim Mrr@10
|
| 241 |
+
- type: MaxSim_map@100
|
| 242 |
+
value: 0.3297000135708943
|
| 243 |
+
name: Maxsim Map@100
|
| 244 |
+
- task:
|
| 245 |
+
type: py-late-information-retrieval
|
| 246 |
+
name: Py Late Information Retrieval
|
| 247 |
+
dataset:
|
| 248 |
+
name: NanoHotpotQA
|
| 249 |
+
type: NanoHotpotQA
|
| 250 |
+
metrics:
|
| 251 |
+
- type: MaxSim_accuracy@1
|
| 252 |
+
value: 0.94
|
| 253 |
+
name: Maxsim Accuracy@1
|
| 254 |
+
- type: MaxSim_accuracy@3
|
| 255 |
+
value: 0.94
|
| 256 |
+
name: Maxsim Accuracy@3
|
| 257 |
+
- type: MaxSim_accuracy@5
|
| 258 |
+
value: 0.98
|
| 259 |
+
name: Maxsim Accuracy@5
|
| 260 |
+
- type: MaxSim_accuracy@10
|
| 261 |
+
value: 1.0
|
| 262 |
+
name: Maxsim Accuracy@10
|
| 263 |
+
- type: MaxSim_precision@1
|
| 264 |
+
value: 0.94
|
| 265 |
+
name: Maxsim Precision@1
|
| 266 |
+
- type: MaxSim_precision@3
|
| 267 |
+
value: 0.5
|
| 268 |
+
name: Maxsim Precision@3
|
| 269 |
+
- type: MaxSim_precision@5
|
| 270 |
+
value: 0.31200000000000006
|
| 271 |
+
name: Maxsim Precision@5
|
| 272 |
+
- type: MaxSim_precision@10
|
| 273 |
+
value: 0.16599999999999995
|
| 274 |
+
name: Maxsim Precision@10
|
| 275 |
+
- type: MaxSim_recall@1
|
| 276 |
+
value: 0.47
|
| 277 |
+
name: Maxsim Recall@1
|
| 278 |
+
- type: MaxSim_recall@3
|
| 279 |
+
value: 0.75
|
| 280 |
+
name: Maxsim Recall@3
|
| 281 |
+
- type: MaxSim_recall@5
|
| 282 |
+
value: 0.78
|
| 283 |
+
name: Maxsim Recall@5
|
| 284 |
+
- type: MaxSim_recall@10
|
| 285 |
+
value: 0.83
|
| 286 |
+
name: Maxsim Recall@10
|
| 287 |
+
- type: MaxSim_ndcg@10
|
| 288 |
+
value: 0.8179728241272247
|
| 289 |
+
name: Maxsim Ndcg@10
|
| 290 |
+
- type: MaxSim_mrr@10
|
| 291 |
+
value: 0.9512222222222222
|
| 292 |
+
name: Maxsim Mrr@10
|
| 293 |
+
- type: MaxSim_map@100
|
| 294 |
+
value: 0.7611883462001594
|
| 295 |
+
name: Maxsim Map@100
|
| 296 |
+
- task:
|
| 297 |
+
type: py-late-information-retrieval
|
| 298 |
+
name: Py Late Information Retrieval
|
| 299 |
+
dataset:
|
| 300 |
+
name: NanoMSMARCO
|
| 301 |
+
type: NanoMSMARCO
|
| 302 |
+
metrics:
|
| 303 |
+
- type: MaxSim_accuracy@1
|
| 304 |
+
value: 0.42
|
| 305 |
+
name: Maxsim Accuracy@1
|
| 306 |
+
- type: MaxSim_accuracy@3
|
| 307 |
+
value: 0.66
|
| 308 |
+
name: Maxsim Accuracy@3
|
| 309 |
+
- type: MaxSim_accuracy@5
|
| 310 |
+
value: 0.68
|
| 311 |
+
name: Maxsim Accuracy@5
|
| 312 |
+
- type: MaxSim_accuracy@10
|
| 313 |
+
value: 0.78
|
| 314 |
+
name: Maxsim Accuracy@10
|
| 315 |
+
- type: MaxSim_precision@1
|
| 316 |
+
value: 0.42
|
| 317 |
+
name: Maxsim Precision@1
|
| 318 |
+
- type: MaxSim_precision@3
|
| 319 |
+
value: 0.22
|
| 320 |
+
name: Maxsim Precision@3
|
| 321 |
+
- type: MaxSim_precision@5
|
| 322 |
+
value: 0.136
|
| 323 |
+
name: Maxsim Precision@5
|
| 324 |
+
- type: MaxSim_precision@10
|
| 325 |
+
value: 0.07800000000000001
|
| 326 |
+
name: Maxsim Precision@10
|
| 327 |
+
- type: MaxSim_recall@1
|
| 328 |
+
value: 0.42
|
| 329 |
+
name: Maxsim Recall@1
|
| 330 |
+
- type: MaxSim_recall@3
|
| 331 |
+
value: 0.66
|
| 332 |
+
name: Maxsim Recall@3
|
| 333 |
+
- type: MaxSim_recall@5
|
| 334 |
+
value: 0.68
|
| 335 |
+
name: Maxsim Recall@5
|
| 336 |
+
- type: MaxSim_recall@10
|
| 337 |
+
value: 0.78
|
| 338 |
+
name: Maxsim Recall@10
|
| 339 |
+
- type: MaxSim_ndcg@10
|
| 340 |
+
value: 0.5976880189340548
|
| 341 |
+
name: Maxsim Ndcg@10
|
| 342 |
+
- type: MaxSim_mrr@10
|
| 343 |
+
value: 0.5393809523809523
|
| 344 |
+
name: Maxsim Mrr@10
|
| 345 |
+
- type: MaxSim_map@100
|
| 346 |
+
value: 0.5531015913611822
|
| 347 |
+
name: Maxsim Map@100
|
| 348 |
+
- task:
|
| 349 |
+
type: py-late-information-retrieval
|
| 350 |
+
name: Py Late Information Retrieval
|
| 351 |
+
dataset:
|
| 352 |
+
name: NanoNFCorpus
|
| 353 |
+
type: NanoNFCorpus
|
| 354 |
+
metrics:
|
| 355 |
+
- type: MaxSim_accuracy@1
|
| 356 |
+
value: 0.46
|
| 357 |
+
name: Maxsim Accuracy@1
|
| 358 |
+
- type: MaxSim_accuracy@3
|
| 359 |
+
value: 0.58
|
| 360 |
+
name: Maxsim Accuracy@3
|
| 361 |
+
- type: MaxSim_accuracy@5
|
| 362 |
+
value: 0.62
|
| 363 |
+
name: Maxsim Accuracy@5
|
| 364 |
+
- type: MaxSim_accuracy@10
|
| 365 |
+
value: 0.68
|
| 366 |
+
name: Maxsim Accuracy@10
|
| 367 |
+
- type: MaxSim_precision@1
|
| 368 |
+
value: 0.46
|
| 369 |
+
name: Maxsim Precision@1
|
| 370 |
+
- type: MaxSim_precision@3
|
| 371 |
+
value: 0.38
|
| 372 |
+
name: Maxsim Precision@3
|
| 373 |
+
- type: MaxSim_precision@5
|
| 374 |
+
value: 0.324
|
| 375 |
+
name: Maxsim Precision@5
|
| 376 |
+
- type: MaxSim_precision@10
|
| 377 |
+
value: 0.272
|
| 378 |
+
name: Maxsim Precision@10
|
| 379 |
+
- type: MaxSim_recall@1
|
| 380 |
+
value: 0.04276439372638386
|
| 381 |
+
name: Maxsim Recall@1
|
| 382 |
+
- type: MaxSim_recall@3
|
| 383 |
+
value: 0.07977851865112022
|
| 384 |
+
name: Maxsim Recall@3
|
| 385 |
+
- type: MaxSim_recall@5
|
| 386 |
+
value: 0.11439841040272719
|
| 387 |
+
name: Maxsim Recall@5
|
| 388 |
+
- type: MaxSim_recall@10
|
| 389 |
+
value: 0.1391695106171535
|
| 390 |
+
name: Maxsim Recall@10
|
| 391 |
+
- type: MaxSim_ndcg@10
|
| 392 |
+
value: 0.34241148621124995
|
| 393 |
+
name: Maxsim Ndcg@10
|
| 394 |
+
- type: MaxSim_mrr@10
|
| 395 |
+
value: 0.5320000000000001
|
| 396 |
+
name: Maxsim Mrr@10
|
| 397 |
+
- type: MaxSim_map@100
|
| 398 |
+
value: 0.14897381866568696
|
| 399 |
+
name: Maxsim Map@100
|
| 400 |
+
- task:
|
| 401 |
+
type: py-late-information-retrieval
|
| 402 |
+
name: Py Late Information Retrieval
|
| 403 |
+
dataset:
|
| 404 |
+
name: NanoNQ
|
| 405 |
+
type: NanoNQ
|
| 406 |
+
metrics:
|
| 407 |
+
- type: MaxSim_accuracy@1
|
| 408 |
+
value: 0.42
|
| 409 |
+
name: Maxsim Accuracy@1
|
| 410 |
+
- type: MaxSim_accuracy@3
|
| 411 |
+
value: 0.68
|
| 412 |
+
name: Maxsim Accuracy@3
|
| 413 |
+
- type: MaxSim_accuracy@5
|
| 414 |
+
value: 0.74
|
| 415 |
+
name: Maxsim Accuracy@5
|
| 416 |
+
- type: MaxSim_accuracy@10
|
| 417 |
+
value: 0.84
|
| 418 |
+
name: Maxsim Accuracy@10
|
| 419 |
+
- type: MaxSim_precision@1
|
| 420 |
+
value: 0.42
|
| 421 |
+
name: Maxsim Precision@1
|
| 422 |
+
- type: MaxSim_precision@3
|
| 423 |
+
value: 0.23333333333333328
|
| 424 |
+
name: Maxsim Precision@3
|
| 425 |
+
- type: MaxSim_precision@5
|
| 426 |
+
value: 0.15200000000000002
|
| 427 |
+
name: Maxsim Precision@5
|
| 428 |
+
- type: MaxSim_precision@10
|
| 429 |
+
value: 0.086
|
| 430 |
+
name: Maxsim Precision@10
|
| 431 |
+
- type: MaxSim_recall@1
|
| 432 |
+
value: 0.4
|
| 433 |
+
name: Maxsim Recall@1
|
| 434 |
+
- type: MaxSim_recall@3
|
| 435 |
+
value: 0.66
|
| 436 |
+
name: Maxsim Recall@3
|
| 437 |
+
- type: MaxSim_recall@5
|
| 438 |
+
value: 0.72
|
| 439 |
+
name: Maxsim Recall@5
|
| 440 |
+
- type: MaxSim_recall@10
|
| 441 |
+
value: 0.79
|
| 442 |
+
name: Maxsim Recall@10
|
| 443 |
+
- type: MaxSim_ndcg@10
|
| 444 |
+
value: 0.6184738987111722
|
| 445 |
+
name: Maxsim Ndcg@10
|
| 446 |
+
- type: MaxSim_mrr@10
|
| 447 |
+
value: 0.5763888888888888
|
| 448 |
+
name: Maxsim Mrr@10
|
| 449 |
+
- type: MaxSim_map@100
|
| 450 |
+
value: 0.5642312927870203
|
| 451 |
+
name: Maxsim Map@100
|
| 452 |
+
- task:
|
| 453 |
+
type: py-late-information-retrieval
|
| 454 |
+
name: Py Late Information Retrieval
|
| 455 |
+
dataset:
|
| 456 |
+
name: NanoQuoraRetrieval
|
| 457 |
+
type: NanoQuoraRetrieval
|
| 458 |
+
metrics:
|
| 459 |
+
- type: MaxSim_accuracy@1
|
| 460 |
+
value: 0.8
|
| 461 |
+
name: Maxsim Accuracy@1
|
| 462 |
+
- type: MaxSim_accuracy@3
|
| 463 |
+
value: 0.92
|
| 464 |
+
name: Maxsim Accuracy@3
|
| 465 |
+
- type: MaxSim_accuracy@5
|
| 466 |
+
value: 0.94
|
| 467 |
+
name: Maxsim Accuracy@5
|
| 468 |
+
- type: MaxSim_accuracy@10
|
| 469 |
+
value: 0.96
|
| 470 |
+
name: Maxsim Accuracy@10
|
| 471 |
+
- type: MaxSim_precision@1
|
| 472 |
+
value: 0.8
|
| 473 |
+
name: Maxsim Precision@1
|
| 474 |
+
- type: MaxSim_precision@3
|
| 475 |
+
value: 0.3399999999999999
|
| 476 |
+
name: Maxsim Precision@3
|
| 477 |
+
- type: MaxSim_precision@5
|
| 478 |
+
value: 0.22399999999999998
|
| 479 |
+
name: Maxsim Precision@5
|
| 480 |
+
- type: MaxSim_precision@10
|
| 481 |
+
value: 0.11999999999999998
|
| 482 |
+
name: Maxsim Precision@10
|
| 483 |
+
- type: MaxSim_recall@1
|
| 484 |
+
value: 0.7239999999999999
|
| 485 |
+
name: Maxsim Recall@1
|
| 486 |
+
- type: MaxSim_recall@3
|
| 487 |
+
value: 0.8473333333333334
|
| 488 |
+
name: Maxsim Recall@3
|
| 489 |
+
- type: MaxSim_recall@5
|
| 490 |
+
value: 0.9006666666666666
|
| 491 |
+
name: Maxsim Recall@5
|
| 492 |
+
- type: MaxSim_recall@10
|
| 493 |
+
value: 0.9373333333333334
|
| 494 |
+
name: Maxsim Recall@10
|
| 495 |
+
- type: MaxSim_ndcg@10
|
| 496 |
+
value: 0.863105292852843
|
| 497 |
+
name: Maxsim Ndcg@10
|
| 498 |
+
- type: MaxSim_mrr@10
|
| 499 |
+
value: 0.8611904761904764
|
| 500 |
+
name: Maxsim Mrr@10
|
| 501 |
+
- type: MaxSim_map@100
|
| 502 |
+
value: 0.8312823701317842
|
| 503 |
+
name: Maxsim Map@100
|
| 504 |
+
- task:
|
| 505 |
+
type: py-late-information-retrieval
|
| 506 |
+
name: Py Late Information Retrieval
|
| 507 |
+
dataset:
|
| 508 |
+
name: NanoSCIDOCS
|
| 509 |
+
type: NanoSCIDOCS
|
| 510 |
+
metrics:
|
| 511 |
+
- type: MaxSim_accuracy@1
|
| 512 |
+
value: 0.42
|
| 513 |
+
name: Maxsim Accuracy@1
|
| 514 |
+
- type: MaxSim_accuracy@3
|
| 515 |
+
value: 0.58
|
| 516 |
+
name: Maxsim Accuracy@3
|
| 517 |
+
- type: MaxSim_accuracy@5
|
| 518 |
+
value: 0.64
|
| 519 |
+
name: Maxsim Accuracy@5
|
| 520 |
+
- type: MaxSim_accuracy@10
|
| 521 |
+
value: 0.7
|
| 522 |
+
name: Maxsim Accuracy@10
|
| 523 |
+
- type: MaxSim_precision@1
|
| 524 |
+
value: 0.42
|
| 525 |
+
name: Maxsim Precision@1
|
| 526 |
+
- type: MaxSim_precision@3
|
| 527 |
+
value: 0.2866666666666667
|
| 528 |
+
name: Maxsim Precision@3
|
| 529 |
+
- type: MaxSim_precision@5
|
| 530 |
+
value: 0.20799999999999996
|
| 531 |
+
name: Maxsim Precision@5
|
| 532 |
+
- type: MaxSim_precision@10
|
| 533 |
+
value: 0.138
|
| 534 |
+
name: Maxsim Precision@10
|
| 535 |
+
- type: MaxSim_recall@1
|
| 536 |
+
value: 0.085
|
| 537 |
+
name: Maxsim Recall@1
|
| 538 |
+
- type: MaxSim_recall@3
|
| 539 |
+
value: 0.17666666666666664
|
| 540 |
+
name: Maxsim Recall@3
|
| 541 |
+
- type: MaxSim_recall@5
|
| 542 |
+
value: 0.21366666666666667
|
| 543 |
+
name: Maxsim Recall@5
|
| 544 |
+
- type: MaxSim_recall@10
|
| 545 |
+
value: 0.2826666666666667
|
| 546 |
+
name: Maxsim Recall@10
|
| 547 |
+
- type: MaxSim_ndcg@10
|
| 548 |
+
value: 0.2889801789850345
|
| 549 |
+
name: Maxsim Ndcg@10
|
| 550 |
+
- type: MaxSim_mrr@10
|
| 551 |
+
value: 0.5005
|
| 552 |
+
name: Maxsim Mrr@10
|
| 553 |
+
- type: MaxSim_map@100
|
| 554 |
+
value: 0.21685607444339383
|
| 555 |
+
name: Maxsim Map@100
|
| 556 |
+
- task:
|
| 557 |
+
type: py-late-information-retrieval
|
| 558 |
+
name: Py Late Information Retrieval
|
| 559 |
+
dataset:
|
| 560 |
+
name: NanoArguAna
|
| 561 |
+
type: NanoArguAna
|
| 562 |
+
metrics:
|
| 563 |
+
- type: MaxSim_accuracy@1
|
| 564 |
+
value: 0.2
|
| 565 |
+
name: Maxsim Accuracy@1
|
| 566 |
+
- type: MaxSim_accuracy@3
|
| 567 |
+
value: 0.44
|
| 568 |
+
name: Maxsim Accuracy@3
|
| 569 |
+
- type: MaxSim_accuracy@5
|
| 570 |
+
value: 0.5
|
| 571 |
+
name: Maxsim Accuracy@5
|
| 572 |
+
- type: MaxSim_accuracy@10
|
| 573 |
+
value: 0.64
|
| 574 |
+
name: Maxsim Accuracy@10
|
| 575 |
+
- type: MaxSim_precision@1
|
| 576 |
+
value: 0.2
|
| 577 |
+
name: Maxsim Precision@1
|
| 578 |
+
- type: MaxSim_precision@3
|
| 579 |
+
value: 0.14666666666666664
|
| 580 |
+
name: Maxsim Precision@3
|
| 581 |
+
- type: MaxSim_precision@5
|
| 582 |
+
value: 0.1
|
| 583 |
+
name: Maxsim Precision@5
|
| 584 |
+
- type: MaxSim_precision@10
|
| 585 |
+
value: 0.064
|
| 586 |
+
name: Maxsim Precision@10
|
| 587 |
+
- type: MaxSim_recall@1
|
| 588 |
+
value: 0.2
|
| 589 |
+
name: Maxsim Recall@1
|
| 590 |
+
- type: MaxSim_recall@3
|
| 591 |
+
value: 0.44
|
| 592 |
+
name: Maxsim Recall@3
|
| 593 |
+
- type: MaxSim_recall@5
|
| 594 |
+
value: 0.5
|
| 595 |
+
name: Maxsim Recall@5
|
| 596 |
+
- type: MaxSim_recall@10
|
| 597 |
+
value: 0.64
|
| 598 |
+
name: Maxsim Recall@10
|
| 599 |
+
- type: MaxSim_ndcg@10
|
| 600 |
+
value: 0.4151392430544827
|
| 601 |
+
name: Maxsim Ndcg@10
|
| 602 |
+
- type: MaxSim_mrr@10
|
| 603 |
+
value: 0.3440555555555555
|
| 604 |
+
name: Maxsim Mrr@10
|
| 605 |
+
- type: MaxSim_map@100
|
| 606 |
+
value: 0.3521906424035335
|
| 607 |
+
name: Maxsim Map@100
|
| 608 |
+
- task:
|
| 609 |
+
type: py-late-information-retrieval
|
| 610 |
+
name: Py Late Information Retrieval
|
| 611 |
+
dataset:
|
| 612 |
+
name: NanoSciFact
|
| 613 |
+
type: NanoSciFact
|
| 614 |
+
metrics:
|
| 615 |
+
- type: MaxSim_accuracy@1
|
| 616 |
+
value: 0.58
|
| 617 |
+
name: Maxsim Accuracy@1
|
| 618 |
+
- type: MaxSim_accuracy@3
|
| 619 |
+
value: 0.76
|
| 620 |
+
name: Maxsim Accuracy@3
|
| 621 |
+
- type: MaxSim_accuracy@5
|
| 622 |
+
value: 0.82
|
| 623 |
+
name: Maxsim Accuracy@5
|
| 624 |
+
- type: MaxSim_accuracy@10
|
| 625 |
+
value: 0.86
|
| 626 |
+
name: Maxsim Accuracy@10
|
| 627 |
+
- type: MaxSim_precision@1
|
| 628 |
+
value: 0.58
|
| 629 |
+
name: Maxsim Precision@1
|
| 630 |
+
- type: MaxSim_precision@3
|
| 631 |
+
value: 0.2733333333333333
|
| 632 |
+
name: Maxsim Precision@3
|
| 633 |
+
- type: MaxSim_precision@5
|
| 634 |
+
value: 0.18
|
| 635 |
+
name: Maxsim Precision@5
|
| 636 |
+
- type: MaxSim_precision@10
|
| 637 |
+
value: 0.09399999999999999
|
| 638 |
+
name: Maxsim Precision@10
|
| 639 |
+
- type: MaxSim_recall@1
|
| 640 |
+
value: 0.555
|
| 641 |
+
name: Maxsim Recall@1
|
| 642 |
+
- type: MaxSim_recall@3
|
| 643 |
+
value: 0.735
|
| 644 |
+
name: Maxsim Recall@3
|
| 645 |
+
- type: MaxSim_recall@5
|
| 646 |
+
value: 0.8
|
| 647 |
+
name: Maxsim Recall@5
|
| 648 |
+
- type: MaxSim_recall@10
|
| 649 |
+
value: 0.84
|
| 650 |
+
name: Maxsim Recall@10
|
| 651 |
+
- type: MaxSim_ndcg@10
|
| 652 |
+
value: 0.7153590631749926
|
| 653 |
+
name: Maxsim Ndcg@10
|
| 654 |
+
- type: MaxSim_mrr@10
|
| 655 |
+
value: 0.6798333333333333
|
| 656 |
+
name: Maxsim Mrr@10
|
| 657 |
+
- type: MaxSim_map@100
|
| 658 |
+
value: 0.6760413640032285
|
| 659 |
+
name: Maxsim Map@100
|
| 660 |
+
- task:
|
| 661 |
+
type: py-late-information-retrieval
|
| 662 |
+
name: Py Late Information Retrieval
|
| 663 |
+
dataset:
|
| 664 |
+
name: NanoTouche2020
|
| 665 |
+
type: NanoTouche2020
|
| 666 |
+
metrics:
|
| 667 |
+
- type: MaxSim_accuracy@1
|
| 668 |
+
value: 0.7551020408163265
|
| 669 |
+
name: Maxsim Accuracy@1
|
| 670 |
+
- type: MaxSim_accuracy@3
|
| 671 |
+
value: 1.0
|
| 672 |
+
name: Maxsim Accuracy@3
|
| 673 |
+
- type: MaxSim_accuracy@5
|
| 674 |
+
value: 1.0
|
| 675 |
+
name: Maxsim Accuracy@5
|
| 676 |
+
- type: MaxSim_accuracy@10
|
| 677 |
+
value: 1.0
|
| 678 |
+
name: Maxsim Accuracy@10
|
| 679 |
+
- type: MaxSim_precision@1
|
| 680 |
+
value: 0.7551020408163265
|
| 681 |
+
name: Maxsim Precision@1
|
| 682 |
+
- type: MaxSim_precision@3
|
| 683 |
+
value: 0.6734693877551019
|
| 684 |
+
name: Maxsim Precision@3
|
| 685 |
+
- type: MaxSim_precision@5
|
| 686 |
+
value: 0.6000000000000001
|
| 687 |
+
name: Maxsim Precision@5
|
| 688 |
+
- type: MaxSim_precision@10
|
| 689 |
+
value: 0.5285714285714286
|
| 690 |
+
name: Maxsim Precision@10
|
| 691 |
+
- type: MaxSim_recall@1
|
| 692 |
+
value: 0.050375728116040484
|
| 693 |
+
name: Maxsim Recall@1
|
| 694 |
+
- type: MaxSim_recall@3
|
| 695 |
+
value: 0.13379303377518686
|
| 696 |
+
name: Maxsim Recall@3
|
| 697 |
+
- type: MaxSim_recall@5
|
| 698 |
+
value: 0.19744749683082305
|
| 699 |
+
name: Maxsim Recall@5
|
| 700 |
+
- type: MaxSim_recall@10
|
| 701 |
+
value: 0.3328396127707909
|
| 702 |
+
name: Maxsim Recall@10
|
| 703 |
+
- type: MaxSim_ndcg@10
|
| 704 |
+
value: 0.5927407647152685
|
| 705 |
+
name: Maxsim Ndcg@10
|
| 706 |
+
- type: MaxSim_mrr@10
|
| 707 |
+
value: 0.8639455782312924
|
| 708 |
+
name: Maxsim Mrr@10
|
| 709 |
+
- type: MaxSim_map@100
|
| 710 |
+
value: 0.4115661843314275
|
| 711 |
+
name: Maxsim Map@100
|
| 712 |
+
- task:
|
| 713 |
+
type: nano-beir
|
| 714 |
+
name: Nano BEIR
|
| 715 |
+
dataset:
|
| 716 |
+
name: NanoBEIR mean
|
| 717 |
+
type: NanoBEIR_mean
|
| 718 |
+
metrics:
|
| 719 |
+
- type: MaxSim_accuracy@1
|
| 720 |
+
value: 0.5350078492935635
|
| 721 |
+
name: Maxsim Accuracy@1
|
| 722 |
+
- type: MaxSim_accuracy@3
|
| 723 |
+
value: 0.7000000000000001
|
| 724 |
+
name: Maxsim Accuracy@3
|
| 725 |
+
- type: MaxSim_accuracy@5
|
| 726 |
+
value: 0.743076923076923
|
| 727 |
+
name: Maxsim Accuracy@5
|
| 728 |
+
- type: MaxSim_accuracy@10
|
| 729 |
+
value: 0.8107692307692307
|
| 730 |
+
name: Maxsim Accuracy@10
|
| 731 |
+
- type: MaxSim_precision@1
|
| 732 |
+
value: 0.5350078492935635
|
| 733 |
+
name: Maxsim Precision@1
|
| 734 |
+
- type: MaxSim_precision@3
|
| 735 |
+
value: 0.33026687598116167
|
| 736 |
+
name: Maxsim Precision@3
|
| 737 |
+
- type: MaxSim_precision@5
|
| 738 |
+
value: 0.24923076923076928
|
| 739 |
+
name: Maxsim Precision@5
|
| 740 |
+
- type: MaxSim_precision@10
|
| 741 |
+
value: 0.1795824175824176
|
| 742 |
+
name: Maxsim Precision@10
|
| 743 |
+
- type: MaxSim_recall@1
|
| 744 |
+
value: 0.3058804107585258
|
| 745 |
+
name: Maxsim Recall@1
|
| 746 |
+
- type: MaxSim_recall@3
|
| 747 |
+
value: 0.45537049602453755
|
| 748 |
+
name: Maxsim Recall@3
|
| 749 |
+
- type: MaxSim_recall@5
|
| 750 |
+
value: 0.5031511327862271
|
| 751 |
+
name: Maxsim Recall@5
|
| 752 |
+
- type: MaxSim_recall@10
|
| 753 |
+
value: 0.5851700658324468
|
| 754 |
+
name: Maxsim Recall@10
|
| 755 |
+
- type: MaxSim_ndcg@10
|
| 756 |
+
value: 0.5599166277934665
|
| 757 |
+
name: Maxsim Ndcg@10
|
| 758 |
+
- type: MaxSim_mrr@10
|
| 759 |
+
value: 0.6282656549799407
|
| 760 |
+
name: Maxsim Mrr@10
|
| 761 |
+
- type: MaxSim_map@100
|
| 762 |
+
value: 0.4817505346586929
|
| 763 |
+
name: Maxsim Map@100
|
| 764 |
+
---
|
| 765 |
+
|
| 766 |
+
# ColBERT MUVERA Micro
|
| 767 |
+
|
| 768 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the [msmarco-en-bge-gemma-unnormalized](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma-unnormalized) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
| 769 |
+
|
| 770 |
+
This model is trained with un-normalized scores, making it compatible with [MUVERA fixed-dimensional encoding](https://arxiv.org/abs/2405.19504).
|
| 771 |
+
|
| 772 |
+
## Usage (txtai)
|
| 773 |
+
|
| 774 |
+
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
|
| 775 |
+
|
| 776 |
+
_Note: txtai 9.0+ is required for late interaction model support_
|
| 777 |
+
|
| 778 |
+
```python
|
| 779 |
+
import txtai
|
| 780 |
+
|
| 781 |
+
embeddings = txtai.Embeddings(
|
| 782 |
+
sparse="neuml/colbert-muvera-micro",
|
| 783 |
+
content=True
|
| 784 |
+
)
|
| 785 |
+
embeddings.index(documents())
|
| 786 |
+
|
| 787 |
+
# Run a query
|
| 788 |
+
embeddings.search("query to run")
|
| 789 |
+
```
|
| 790 |
+
|
| 791 |
+
Late interaction models excel as reranker pipelines.
|
| 792 |
+
|
| 793 |
+
```python
|
| 794 |
+
from txtai.pipeline import Reranker, Similarity
|
| 795 |
+
|
| 796 |
+
similarity = Similarity(path="neuml/colbert-muvera-micro", lateencode=True)
|
| 797 |
+
ranker = Reranker(embeddings, similarity)
|
| 798 |
+
ranker("query to run")
|
| 799 |
+
```
|
| 800 |
+
|
| 801 |
+
## Usage (PyLate)
|
| 802 |
+
|
| 803 |
+
Alternatively, the model can be loaded with [PyLate](https://github.com/lightonai/pylate).
|
| 804 |
+
|
| 805 |
+
```python
|
| 806 |
+
from pylate import rank, models
|
| 807 |
+
|
| 808 |
+
queries = [
|
| 809 |
+
"query A",
|
| 810 |
+
"query B",
|
| 811 |
+
]
|
| 812 |
+
|
| 813 |
+
documents = [
|
| 814 |
+
["document A", "document B"],
|
| 815 |
+
["document 1", "document C", "document B"],
|
| 816 |
+
]
|
| 817 |
+
|
| 818 |
+
documents_ids = [
|
| 819 |
+
[1, 2],
|
| 820 |
+
[1, 3, 2],
|
| 821 |
+
]
|
| 822 |
+
|
| 823 |
+
model = models.ColBERT(
|
| 824 |
+
model_name_or_path="neuml/colbert-muvera-micro",
|
| 825 |
+
)
|
| 826 |
+
|
| 827 |
+
queries_embeddings = model.encode(
|
| 828 |
+
queries,
|
| 829 |
+
is_query=True,
|
| 830 |
+
)
|
| 831 |
+
|
| 832 |
+
documents_embeddings = model.encode(
|
| 833 |
+
documents,
|
| 834 |
+
is_query=False,
|
| 835 |
+
)
|
| 836 |
+
|
| 837 |
+
reranked_documents = rank.rerank(
|
| 838 |
+
documents_ids=documents_ids,
|
| 839 |
+
queries_embeddings=queries_embeddings,
|
| 840 |
+
documents_embeddings=documents_embeddings,
|
| 841 |
+
)
|
| 842 |
+
```
|
| 843 |
+
|
| 844 |
+
### Full Model Architecture
|
| 845 |
+
|
| 846 |
+
```
|
| 847 |
+
ColBERT(
|
| 848 |
+
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertModel
|
| 849 |
+
(1): Dense({'in_features': 128, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 850 |
+
)
|
| 851 |
+
```
|
| 852 |
+
|
| 853 |
+
## Evaluation
|
| 854 |
+
|
| 855 |
+
### BEIR Subset
|
| 856 |
+
|
| 857 |
+
The following table shows a subset of BEIR scored with the [txtai benchmarks script](https://github.com/neuml/txtai/blob/master/examples/benchmarks.py).
|
| 858 |
+
|
| 859 |
+
Scores reported are `ndcg@10` and grouped into the following three categories.
|
| 860 |
+
|
| 861 |
+
#### FULL multi-vector maxsim
|
| 862 |
+
|
| 863 |
+
| Model | Parameters | ArguAna | NFCorpus | SciFact | Average |
|
| 864 |
+
|:------------------|:-----------|:---------|:---------|:--------|:--------|
|
| 865 |
+
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.4440 | 0.3649 | 0.7423 | 0.5171 |
|
| 866 |
+
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4595 | 0.3165 | 0.6456 | 0.4739 |
|
| 867 |
+
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.3947** | **0.3235** | **0.6676** | **0.4619** |
|
| 868 |
+
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.4455 | 0.3502 | 0.7145 | 0.5034 |
|
| 869 |
+
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.4946 | 0.3717 | 0.7529 | 0.5397 |
|
| 870 |
+
|
| 871 |
+
#### MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper
|
| 872 |
+
|
| 873 |
+
| Model | Parameters | ArguAna | NFCorpus | SciFact | Average |
|
| 874 |
+
|:------------------|:-----------|:---------|:---------|:--------|:--------|
|
| 875 |
+
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0317 | 0.1135 | 0.0836 | 0.0763 |
|
| 876 |
+
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4562 | 0.3025 | 0.6278 | 0.4622 |
|
| 877 |
+
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.3849** | **0.3095** | **0.6464** | **0.4469** |
|
| 878 |
+
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.4451 | 0.3537 | 0.7148 | 0.5045 |
|
| 879 |
+
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0265 | 0.1052 | 0.0556 | 0.0624 |
|
| 880 |
+
|
| 881 |
+
#### MUVERA encoding only
|
| 882 |
+
|
| 883 |
+
| Model | Parameters | ArguAna | NFCorpus | SciFact | Average |
|
| 884 |
+
|:------------------|:-----------|:---------|:---------|:--------|:--------|
|
| 885 |
+
| [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0024 | 0.0201 | 0.0047 | 0.0091 |
|
| 886 |
+
| [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3463 | 0.2356 | 0.5002 | 0.3607 |
|
| 887 |
+
| [**ColBERT MUVERA Micro**](https://huggingface.co/neuml/colbert-muvera-micro) | **4M** | **0.2795** | **0.2348** | **0.4875** | **0.3339** |
|
| 888 |
+
| [ColBERT MUVERA Small](https://huggingface.co/neuml/colbert-muvera-small) | 33M | 0.3850 | 0.2928 | 0.6357 | 0.4378 |
|
| 889 |
+
| [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0003 | 0.0203 |0.0013 | 0.0073 |
|
| 890 |
+
|
| 891 |
+
_Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts._
|
| 892 |
+
|
| 893 |
+
As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this [GitHub Issue](https://github.com/lightonai/pylate/issues/142) for more.
|
| 894 |
+
|
| 895 |
+
**In reviewing the scores, this model is surprisingly and unreasonably competitive with the original ColBERT v2 model at only 3% of the size!**
|
| 896 |
+
|
| 897 |
+
### Nano BEIR
|
| 898 |
+
* Dataset: `NanoBEIR_mean`
|
| 899 |
+
* Evaluated with <code>pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator</code>
|
| 900 |
+
|
| 901 |
+
| Metric | Value |
|
| 902 |
+
|:--------------------|:-----------|
|
| 903 |
+
| MaxSim_accuracy@1 | 0.535 |
|
| 904 |
+
| MaxSim_accuracy@3 | 0.7 |
|
| 905 |
+
| MaxSim_accuracy@5 | 0.7431 |
|
| 906 |
+
| MaxSim_accuracy@10 | 0.8108 |
|
| 907 |
+
| MaxSim_precision@1 | 0.535 |
|
| 908 |
+
| MaxSim_precision@3 | 0.3303 |
|
| 909 |
+
| MaxSim_precision@5 | 0.2492 |
|
| 910 |
+
| MaxSim_precision@10 | 0.1796 |
|
| 911 |
+
| MaxSim_recall@1 | 0.3059 |
|
| 912 |
+
| MaxSim_recall@3 | 0.4554 |
|
| 913 |
+
| MaxSim_recall@5 | 0.5032 |
|
| 914 |
+
| MaxSim_recall@10 | 0.5852 |
|
| 915 |
+
| **MaxSim_ndcg@10** | **0.5599** |
|
| 916 |
+
| MaxSim_mrr@10 | 0.6283 |
|
| 917 |
+
| MaxSim_map@100 | 0.4818 |
|
| 918 |
+
|
| 919 |
+
## Training Details
|
| 920 |
+
|
| 921 |
+
### Training Hyperparameters
|
| 922 |
+
|
| 923 |
+
#### Non-Default Hyperparameters
|
| 924 |
+
|
| 925 |
+
- `eval_strategy`: steps
|
| 926 |
+
- `per_device_train_batch_size`: 32
|
| 927 |
+
- `learning_rate`: 0.0003
|
| 928 |
+
- `num_train_epochs`: 1
|
| 929 |
+
- `warmup_ratio`: 0.05
|
| 930 |
+
- `bf16`: True
|
| 931 |
+
|
| 932 |
+
#### All Hyperparameters
|
| 933 |
+
<details><summary>Click to expand</summary>
|
| 934 |
+
|
| 935 |
+
- `overwrite_output_dir`: False
|
| 936 |
+
- `do_predict`: False
|
| 937 |
+
- `eval_strategy`: steps
|
| 938 |
+
- `prediction_loss_only`: True
|
| 939 |
+
- `per_device_train_batch_size`: 32
|
| 940 |
+
- `per_device_eval_batch_size`: 8
|
| 941 |
+
- `per_gpu_train_batch_size`: None
|
| 942 |
+
- `per_gpu_eval_batch_size`: None
|
| 943 |
+
- `gradient_accumulation_steps`: 1
|
| 944 |
+
- `eval_accumulation_steps`: None
|
| 945 |
+
- `torch_empty_cache_steps`: None
|
| 946 |
+
- `learning_rate`: 0.0003
|
| 947 |
+
- `weight_decay`: 0.0
|
| 948 |
+
- `adam_beta1`: 0.9
|
| 949 |
+
- `adam_beta2`: 0.999
|
| 950 |
+
- `adam_epsilon`: 1e-08
|
| 951 |
+
- `max_grad_norm`: 1.0
|
| 952 |
+
- `num_train_epochs`: 1
|
| 953 |
+
- `max_steps`: -1
|
| 954 |
+
- `lr_scheduler_type`: linear
|
| 955 |
+
- `lr_scheduler_kwargs`: {}
|
| 956 |
+
- `warmup_ratio`: 0.05
|
| 957 |
+
- `warmup_steps`: 0
|
| 958 |
+
- `log_level`: passive
|
| 959 |
+
- `log_level_replica`: warning
|
| 960 |
+
- `log_on_each_node`: True
|
| 961 |
+
- `logging_nan_inf_filter`: True
|
| 962 |
+
- `save_safetensors`: True
|
| 963 |
+
- `save_on_each_node`: False
|
| 964 |
+
- `save_only_model`: False
|
| 965 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 966 |
+
- `no_cuda`: False
|
| 967 |
+
- `use_cpu`: False
|
| 968 |
+
- `use_mps_device`: False
|
| 969 |
+
- `seed`: 42
|
| 970 |
+
- `data_seed`: None
|
| 971 |
+
- `jit_mode_eval`: False
|
| 972 |
+
- `use_ipex`: False
|
| 973 |
+
- `bf16`: True
|
| 974 |
+
- `fp16`: False
|
| 975 |
+
- `fp16_opt_level`: O1
|
| 976 |
+
- `half_precision_backend`: auto
|
| 977 |
+
- `bf16_full_eval`: False
|
| 978 |
+
- `fp16_full_eval`: False
|
| 979 |
+
- `tf32`: None
|
| 980 |
+
- `local_rank`: 0
|
| 981 |
+
- `ddp_backend`: None
|
| 982 |
+
- `tpu_num_cores`: None
|
| 983 |
+
- `tpu_metrics_debug`: False
|
| 984 |
+
- `debug`: []
|
| 985 |
+
- `dataloader_drop_last`: False
|
| 986 |
+
- `dataloader_num_workers`: 0
|
| 987 |
+
- `dataloader_prefetch_factor`: None
|
| 988 |
+
- `past_index`: -1
|
| 989 |
+
- `disable_tqdm`: False
|
| 990 |
+
- `remove_unused_columns`: True
|
| 991 |
+
- `label_names`: None
|
| 992 |
+
- `load_best_model_at_end`: False
|
| 993 |
+
- `ignore_data_skip`: False
|
| 994 |
+
- `fsdp`: []
|
| 995 |
+
- `fsdp_min_num_params`: 0
|
| 996 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 997 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 998 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 999 |
+
- `deepspeed`: None
|
| 1000 |
+
- `label_smoothing_factor`: 0.0
|
| 1001 |
+
- `optim`: adamw_torch
|
| 1002 |
+
- `optim_args`: None
|
| 1003 |
+
- `adafactor`: False
|
| 1004 |
+
- `group_by_length`: False
|
| 1005 |
+
- `length_column_name`: length
|
| 1006 |
+
- `ddp_find_unused_parameters`: None
|
| 1007 |
+
- `ddp_bucket_cap_mb`: None
|
| 1008 |
+
- `ddp_broadcast_buffers`: False
|
| 1009 |
+
- `dataloader_pin_memory`: True
|
| 1010 |
+
- `dataloader_persistent_workers`: False
|
| 1011 |
+
- `skip_memory_metrics`: True
|
| 1012 |
+
- `use_legacy_prediction_loop`: False
|
| 1013 |
+
- `push_to_hub`: False
|
| 1014 |
+
- `resume_from_checkpoint`: None
|
| 1015 |
+
- `hub_model_id`: None
|
| 1016 |
+
- `hub_strategy`: every_save
|
| 1017 |
+
- `hub_private_repo`: None
|
| 1018 |
+
- `hub_always_push`: False
|
| 1019 |
+
- `gradient_checkpointing`: False
|
| 1020 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1021 |
+
- `include_inputs_for_metrics`: False
|
| 1022 |
+
- `include_for_metrics`: []
|
| 1023 |
+
- `eval_do_concat_batches`: True
|
| 1024 |
+
- `fp16_backend`: auto
|
| 1025 |
+
- `push_to_hub_model_id`: None
|
| 1026 |
+
- `push_to_hub_organization`: None
|
| 1027 |
+
- `mp_parameters`:
|
| 1028 |
+
- `auto_find_batch_size`: False
|
| 1029 |
+
- `full_determinism`: False
|
| 1030 |
+
- `torchdynamo`: None
|
| 1031 |
+
- `ray_scope`: last
|
| 1032 |
+
- `ddp_timeout`: 1800
|
| 1033 |
+
- `torch_compile`: False
|
| 1034 |
+
- `torch_compile_backend`: None
|
| 1035 |
+
- `torch_compile_mode`: None
|
| 1036 |
+
- `include_tokens_per_second`: False
|
| 1037 |
+
- `include_num_input_tokens_seen`: False
|
| 1038 |
+
- `neftune_noise_alpha`: None
|
| 1039 |
+
- `optim_target_modules`: None
|
| 1040 |
+
- `batch_eval_metrics`: False
|
| 1041 |
+
- `eval_on_start`: False
|
| 1042 |
+
- `use_liger_kernel`: False
|
| 1043 |
+
- `eval_use_gather_object`: False
|
| 1044 |
+
- `average_tokens_across_devices`: False
|
| 1045 |
+
- `prompts`: None
|
| 1046 |
+
- `batch_sampler`: batch_sampler
|
| 1047 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1048 |
+
|
| 1049 |
+
</details>
|
| 1050 |
+
|
| 1051 |
+
### Framework Versions
|
| 1052 |
+
- Python: 3.10.18
|
| 1053 |
+
- Sentence Transformers: 4.0.2
|
| 1054 |
+
- PyLate: 1.3.0
|
| 1055 |
+
- Transformers: 4.52.3
|
| 1056 |
+
- PyTorch: 2.8.0+cu128
|
| 1057 |
+
- Accelerate: 1.10.1
|
| 1058 |
+
- Datasets: 4.0.0
|
| 1059 |
+
- Tokenizers: 0.21.4
|
| 1060 |
+
|
| 1061 |
+
## Citation
|
| 1062 |
+
|
| 1063 |
+
### BibTeX
|
| 1064 |
+
|
| 1065 |
+
#### Sentence Transformers
|
| 1066 |
+
```bibtex
|
| 1067 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1068 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1069 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1070 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1071 |
+
month = "11",
|
| 1072 |
+
year = "2019",
|
| 1073 |
+
publisher = "Association for Computational Linguistics",
|
| 1074 |
+
url = "https://arxiv.org/abs/1908.10084"
|
| 1075 |
+
}
|
| 1076 |
+
```
|
| 1077 |
+
|
| 1078 |
+
#### PyLate
|
| 1079 |
+
```bibtex
|
| 1080 |
+
@misc{PyLate,
|
| 1081 |
+
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
|
| 1082 |
+
author={Chaffin, Antoine and Sourty, Raphaël},
|
| 1083 |
+
url={https://github.com/lightonai/pylate},
|
| 1084 |
+
year={2024}
|
| 1085 |
+
}
|
| 1086 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[D] ": 30523,
|
| 3 |
+
"[Q] ": 30522
|
| 4 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 128,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 512,
|
| 12 |
+
"layer_norm_eps": 1e-12,
|
| 13 |
+
"max_position_embeddings": 512,
|
| 14 |
+
"model_type": "bert",
|
| 15 |
+
"num_attention_heads": 2,
|
| 16 |
+
"num_hidden_layers": 2,
|
| 17 |
+
"pad_token_id": 0,
|
| 18 |
+
"position_embedding_type": "absolute",
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.52.3",
|
| 21 |
+
"type_vocab_size": 2,
|
| 22 |
+
"use_cache": true,
|
| 23 |
+
"vocab_size": 30524
|
| 24 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.0.2",
|
| 4 |
+
"transformers": "4.52.3",
|
| 5 |
+
"pytorch": "2.8.0+cu128"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "MaxSim",
|
| 10 |
+
"query_prefix": "[Q] ",
|
| 11 |
+
"document_prefix": "[D] ",
|
| 12 |
+
"query_length": 32,
|
| 13 |
+
"document_length": 300,
|
| 14 |
+
"attend_to_expansion_tokens": false,
|
| 15 |
+
"skiplist_words": [
|
| 16 |
+
"!",
|
| 17 |
+
"\"",
|
| 18 |
+
"#",
|
| 19 |
+
"$",
|
| 20 |
+
"%",
|
| 21 |
+
"&",
|
| 22 |
+
"'",
|
| 23 |
+
"(",
|
| 24 |
+
")",
|
| 25 |
+
"*",
|
| 26 |
+
"+",
|
| 27 |
+
",",
|
| 28 |
+
"-",
|
| 29 |
+
".",
|
| 30 |
+
"/",
|
| 31 |
+
":",
|
| 32 |
+
";",
|
| 33 |
+
"<",
|
| 34 |
+
"=",
|
| 35 |
+
">",
|
| 36 |
+
"?",
|
| 37 |
+
"@",
|
| 38 |
+
"[",
|
| 39 |
+
"\\",
|
| 40 |
+
"]",
|
| 41 |
+
"^",
|
| 42 |
+
"_",
|
| 43 |
+
"`",
|
| 44 |
+
"{",
|
| 45 |
+
"|",
|
| 46 |
+
"}",
|
| 47 |
+
"~"
|
| 48 |
+
],
|
| 49 |
+
"do_query_expansion": true
|
| 50 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be7739300d0ea06e2463db6c50f2e790d25d4f629493fc68dd1e1a2a376f04e8
|
| 3 |
+
size 17548936
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Dense",
|
| 12 |
+
"type": "pylate.models.Dense.Dense"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 299,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[MASK]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"30522": {
|
| 44 |
+
"content": "[Q] ",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": true,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": false
|
| 50 |
+
},
|
| 51 |
+
"30523": {
|
| 52 |
+
"content": "[D] ",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": true,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": false
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"clean_up_tokenization_spaces": true,
|
| 61 |
+
"cls_token": "[CLS]",
|
| 62 |
+
"do_basic_tokenize": true,
|
| 63 |
+
"do_lower_case": true,
|
| 64 |
+
"extra_special_tokens": {},
|
| 65 |
+
"mask_token": "[MASK]",
|
| 66 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 67 |
+
"never_split": null,
|
| 68 |
+
"pad_token": "[MASK]",
|
| 69 |
+
"sep_token": "[SEP]",
|
| 70 |
+
"strip_accents": null,
|
| 71 |
+
"tokenize_chinese_chars": true,
|
| 72 |
+
"tokenizer_class": "BertTokenizer",
|
| 73 |
+
"unk_token": "[UNK]"
|
| 74 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|