Delete model.py
Browse files
model.py
DELETED
@@ -1,359 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
from utils import DEVICE
|
5 |
-
|
6 |
-
class PromeLayerNorm(nn.Module):
|
7 |
-
def __init__(self, epsilon=1e-5):
|
8 |
-
super().__init__()
|
9 |
-
self.epsilon = epsilon
|
10 |
-
|
11 |
-
def forward(self, x):
|
12 |
-
g = torch.nn.Parameter(torch.ones(x.shape[-1])).to(x.device)
|
13 |
-
b = torch.nn.Parameter(torch.zeros(x.shape[-1])).to(x.device)
|
14 |
-
|
15 |
-
u = x.mean(-1, keepdim=True)
|
16 |
-
s = (x - u).pow(2).mean(-1, keepdim=True)
|
17 |
-
x = (x - u) * torch.rsqrt(s + self.epsilon)
|
18 |
-
x = x * g + b
|
19 |
-
|
20 |
-
return x
|
21 |
-
|
22 |
-
class PromeStand(nn.Module):
|
23 |
-
def __init__(self, epsilon=1e-5):
|
24 |
-
super().__init__()
|
25 |
-
self.epsilon = epsilon
|
26 |
-
|
27 |
-
def forward(self, x):
|
28 |
-
"""
|
29 |
-
x: Input tensor
|
30 |
-
"""
|
31 |
-
mean = x.mean() + self.epsilon
|
32 |
-
std = x.std() + self.epsilon
|
33 |
-
x = x - mean
|
34 |
-
x = x / std
|
35 |
-
return x
|
36 |
-
|
37 |
-
class PromeEmbedding(nn.Module):
|
38 |
-
"""
|
39 |
-
This class implements a Prome embedding layer.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
vocab_size (int): The size of the vocabulary.
|
43 |
-
embedding_dim (int): The dimension of the embedding.
|
44 |
-
padding_idx (int, optional): The padding index. If this is not None, then the padding index will be masked out when calculating the embedding.
|
45 |
-
|
46 |
-
Returns:
|
47 |
-
torch.Tensor: A tensor of shape (batch_size, sequence_length, embedding_dim).
|
48 |
-
"""
|
49 |
-
def __init__(self, vocab_size, embedding_dim, padding_idx = None):
|
50 |
-
super().__init__()
|
51 |
-
self.embedding_dim = embedding_dim
|
52 |
-
self.weight = torch.nn.Parameter(torch.randn(vocab_size, embedding_dim))
|
53 |
-
self.padding_idx = padding_idx
|
54 |
-
self.context_matrix = torch.nn.Parameter(torch.randn(vocab_size, embedding_dim))
|
55 |
-
|
56 |
-
def forward(self, input_ids):
|
57 |
-
"""
|
58 |
-
Calculates the embedding for the given input IDs.
|
59 |
-
|
60 |
-
Args:
|
61 |
-
input_ids (torch.Tensor): A tensor of shape (batch_size, sequence_length).
|
62 |
-
|
63 |
-
Returns:
|
64 |
-
torch.Tensor: A tensor of shape (batch_size, sequence_length, embedding_dim).
|
65 |
-
"""
|
66 |
-
input_ids = input_ids.long()
|
67 |
-
if self.padding_idx is not None:
|
68 |
-
input_ids = input_ids.masked_fill(input_ids == self.padding_idx, 0)
|
69 |
-
|
70 |
-
# get symbol vector
|
71 |
-
embeddings = self.weight[input_ids]
|
72 |
-
|
73 |
-
# Dynamically update context vector based on input embeddings
|
74 |
-
context_vectors = self.context_matrix[input_ids]
|
75 |
-
|
76 |
-
# Modify embeddings using context vector
|
77 |
-
output = embeddings + context_vectors
|
78 |
-
|
79 |
-
return output
|
80 |
-
|
81 |
-
class AttentionHead(nn.Module):
|
82 |
-
"""
|
83 |
-
One head of the self-attention layer
|
84 |
-
"""
|
85 |
-
|
86 |
-
def __init__(self, head_size, num_embed, block_size, dropout):
|
87 |
-
super().__init__()
|
88 |
-
self.key = nn.Linear(num_embed, head_size, bias=False)
|
89 |
-
self.query = nn.Linear(num_embed, head_size, bias=False)
|
90 |
-
self.value = nn.Linear(num_embed, head_size, bias=False)
|
91 |
-
# tril is a lower triangular matrix. it is not a parameter
|
92 |
-
# of the model, so we assign it to the module using register_buffer
|
93 |
-
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
|
94 |
-
|
95 |
-
# layer norm
|
96 |
-
self.norm = PromeStand()
|
97 |
-
|
98 |
-
# Dropout
|
99 |
-
self.dropout = nn.Dropout(dropout)
|
100 |
-
|
101 |
-
|
102 |
-
def forward(self, x):
|
103 |
-
B, T, C = x.shape
|
104 |
-
key = self.key(x)
|
105 |
-
query = self.query(x)
|
106 |
-
# compute attention scores
|
107 |
-
# (B, T, C) @ (B, C, T) -> (B, T, T)
|
108 |
-
wei = (query @ key.transpose(-2, -1)) * C ** -0.5
|
109 |
-
# Tril matrix (lower triagular matrix) is used to mask
|
110 |
-
# future positions (setting them to -inf) so that the
|
111 |
-
# decoder "learns" to predict next words
|
112 |
-
wei = wei.masked_fill(self.tril[:T, :T] == 0, -float("inf")) # (B,T,T)
|
113 |
-
wei = F.silu(F.softmax(wei, dim=-1))
|
114 |
-
# scale
|
115 |
-
# multiplicative attention
|
116 |
-
score = -1 / (C ** -0.5)
|
117 |
-
wei.mul_(score)
|
118 |
-
# weighted aggregation of the values
|
119 |
-
value = self.value(x)
|
120 |
-
out = wei @ value # (B,T,T) @ (B,T,C) ---> (B,T,C)
|
121 |
-
|
122 |
-
return out
|
123 |
-
|
124 |
-
class MultiHeadAttention(nn.Module):
|
125 |
-
"""
|
126 |
-
Multiple Heads of self-attention in parallel
|
127 |
-
"""
|
128 |
-
|
129 |
-
def __init__(self, num_heads, head_size, num_embed, block_size, dropout):
|
130 |
-
super().__init__()
|
131 |
-
self.heads = nn.ModuleList(
|
132 |
-
[
|
133 |
-
AttentionHead(
|
134 |
-
head_size=head_size,
|
135 |
-
num_embed=num_embed,
|
136 |
-
block_size=block_size,
|
137 |
-
dropout=dropout
|
138 |
-
)
|
139 |
-
for _ in range(num_heads)
|
140 |
-
]
|
141 |
-
)
|
142 |
-
self.proj = nn.Linear(num_embed, num_embed)
|
143 |
-
self.dropout = nn.Dropout(dropout)
|
144 |
-
self.norm = PromeStand()
|
145 |
-
|
146 |
-
def forward(self, x):
|
147 |
-
# output of the self-attention
|
148 |
-
out = torch.concat([h(x) for h in self.heads], dim=-1)
|
149 |
-
# standartization
|
150 |
-
out = self.norm(out + x)
|
151 |
-
# apply the linear projection layer
|
152 |
-
out = self.dropout(self.proj(out))
|
153 |
-
|
154 |
-
return out
|
155 |
-
|
156 |
-
|
157 |
-
class MLP(nn.Module):
|
158 |
-
def __init__(self, num_embed, hidden_dim, dropout=0.1):
|
159 |
-
super().__init__()
|
160 |
-
self.dropout = nn.Dropout(dropout)
|
161 |
-
self.fc1 = nn.Linear(num_embed, hidden_dim)
|
162 |
-
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
163 |
-
self.fc3 = nn.Linear(hidden_dim, num_embed)
|
164 |
-
|
165 |
-
def forward(self, x):
|
166 |
-
x = self.fc1(x)
|
167 |
-
x = F.silu(x)
|
168 |
-
x = self.fc2(x)
|
169 |
-
x = self.dropout(x)
|
170 |
-
x = F.silu(x)
|
171 |
-
x = self.fc3(x)
|
172 |
-
return x
|
173 |
-
|
174 |
-
|
175 |
-
class TransformerBlock(nn.Module):
|
176 |
-
"""
|
177 |
-
This calss will group together MultiHead Attention and
|
178 |
-
FeedForward NN, so that we can copy it in Transformer
|
179 |
-
"""
|
180 |
-
|
181 |
-
def __init__(self, num_heads, block_size, num_embed, hidden_dim, dropout):
|
182 |
-
super().__init__()
|
183 |
-
head_size = num_embed // num_heads
|
184 |
-
self.mha = MultiHeadAttention(
|
185 |
-
num_heads=num_heads,
|
186 |
-
head_size=head_size,
|
187 |
-
num_embed=num_embed,
|
188 |
-
block_size=block_size,
|
189 |
-
dropout=dropout
|
190 |
-
)
|
191 |
-
self.mlp = MLP(num_embed=num_embed, hidden_dim = hidden_dim, dropout=dropout)
|
192 |
-
# add the layer normalization
|
193 |
-
self.ln = PromeStand(num_embed)
|
194 |
-
|
195 |
-
self.dropout = nn.Dropout(dropout)
|
196 |
-
|
197 |
-
def forward(self, x):
|
198 |
-
"""
|
199 |
-
Decodes the input sequence.
|
200 |
-
|
201 |
-
Args:
|
202 |
-
x (torch.Tensor): A tensor of shape (batch_size, sequence_length, embedding_dim).
|
203 |
-
memory (torch.Tensor): A tensor of shape (batch_size, memory_length, embedding_dim).
|
204 |
-
|
205 |
-
Returns:
|
206 |
-
torch.Tensor: A tensor of shape (batch_size, sequence_length, embedding_dim).
|
207 |
-
"""
|
208 |
-
y = x
|
209 |
-
|
210 |
-
x = self.ln(x)
|
211 |
-
x = self.mha(x)
|
212 |
-
x = self.dropout(x)
|
213 |
-
x += y
|
214 |
-
y = x
|
215 |
-
x = self.ln(x)
|
216 |
-
x = self.mlp(x)
|
217 |
-
x = self.mha(x)
|
218 |
-
x += y
|
219 |
-
x = self.dropout(x)
|
220 |
-
|
221 |
-
return x
|
222 |
-
|
223 |
-
|
224 |
-
class TransformerDecoder(nn.Module):
|
225 |
-
"""
|
226 |
-
This class implements a Transformer decoder.
|
227 |
-
|
228 |
-
Args:
|
229 |
-
num_heads (int): The number of attention heads.
|
230 |
-
block_size (int): The size of the input sequence.
|
231 |
-
num_embed (int): The dimension of the embedding.
|
232 |
-
num_layers (int): The number of decoder blocks.
|
233 |
-
dropout (float): The dropout rate.
|
234 |
-
|
235 |
-
Returns:
|
236 |
-
torch.Tensor: A tensor of shape (batch_size, sequence_length, embedding_dim).
|
237 |
-
"""
|
238 |
-
def __init__(self, num_heads, block_size, num_embed, hidden_dim, num_layers, dropout):
|
239 |
-
super().__init__()
|
240 |
-
|
241 |
-
# Create the embedding layer.
|
242 |
-
self.pemb = PromeEmbedding(block_size, num_embed)
|
243 |
-
|
244 |
-
# Create a sequential block of Transformer blocks.
|
245 |
-
self.blocks = nn.Sequential(
|
246 |
-
*[
|
247 |
-
TransformerBlock(
|
248 |
-
num_heads=num_heads,
|
249 |
-
block_size=block_size,
|
250 |
-
num_embed=num_embed,
|
251 |
-
hidden_dim = hidden_dim,
|
252 |
-
dropout=dropout
|
253 |
-
)
|
254 |
-
for _ in range(num_layers)
|
255 |
-
]
|
256 |
-
)
|
257 |
-
|
258 |
-
# Create a softmax layer.
|
259 |
-
self.softmax = nn.Softmax(dim=-1)
|
260 |
-
|
261 |
-
def forward(self, x):
|
262 |
-
"""
|
263 |
-
Decodes the input sequence.
|
264 |
-
|
265 |
-
Args:
|
266 |
-
x (torch.Tensor): A tensor of shape (batch_size, sequence_length).
|
267 |
-
|
268 |
-
Returns:
|
269 |
-
torch.Tensor: A tensor of shape (batch_size, sequence_length, embedding_dim).
|
270 |
-
"""
|
271 |
-
|
272 |
-
# Add positional encodings to the input sequence.
|
273 |
-
x = x + self.pemb(torch.arange(x.size(1)))
|
274 |
-
|
275 |
-
x = self.blocks(x)
|
276 |
-
|
277 |
-
# Apply a softmax layer to the output of the last Transformer block.
|
278 |
-
x = self.softmax(x)
|
279 |
-
|
280 |
-
return x
|
281 |
-
|
282 |
-
class Transformer(nn.Module):
|
283 |
-
def __init__(self, **kwargs):
|
284 |
-
super().__init__()
|
285 |
-
# a simple lookup table that stores embeddings of a fixed dictionary and size
|
286 |
-
# each token directly reads off the logits for the next token from a lookup table
|
287 |
-
# see more: https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
|
288 |
-
self.vocab_size = kwargs.get("vocab_size", 100)
|
289 |
-
self.num_embed = kwargs.get("num_embed", 32)
|
290 |
-
self.block_size = kwargs.get("block_size", 8)
|
291 |
-
self.num_heads = kwargs.get("num_heads", 4)
|
292 |
-
self.num_layers = kwargs.get("num_layers", 4)
|
293 |
-
self.hidden_dim = kwargs.get("hidden_dim", 768)
|
294 |
-
self.dropout = kwargs.get("dropout", 0.2)
|
295 |
-
# each token reads the logits for the next token from a lookup table
|
296 |
-
self.token_embedding_table = PromeEmbedding(self.vocab_size, self.num_embed)
|
297 |
-
# each position from 0 to block_size-1 will get its embedding
|
298 |
-
self.position_embedding_table = PromeEmbedding(self.block_size, self.num_embed)
|
299 |
-
|
300 |
-
self.decoder = TransformerDecoder(self.num_heads, self.block_size, self.num_embed, self.hidden_dim, self.num_layers, self.dropout)
|
301 |
-
|
302 |
-
# we add the layer norm before the Linear layer
|
303 |
-
self.dropout = nn.Dropout(self.dropout)
|
304 |
-
self.ln_f = PromeLayerNorm(self.num_embed)
|
305 |
-
self.lm_head = nn.Linear(self.num_embed, self.vocab_size)
|
306 |
-
|
307 |
-
def forward(self, idx, targets=None):
|
308 |
-
B, T = idx.shape
|
309 |
-
# idx and targets are (B,T) tensor of integers
|
310 |
-
# the token_emb is (B, T, C), C = NUM_EMBED
|
311 |
-
token_emb = self.token_embedding_table(idx)
|
312 |
-
# (T, C)
|
313 |
-
posit_emb = self.position_embedding_table(torch.arange(T, device=DEVICE))
|
314 |
-
|
315 |
-
x = token_emb + posit_emb
|
316 |
-
|
317 |
-
# apply dropout
|
318 |
-
x = self.dropout(x)
|
319 |
-
|
320 |
-
# apply one head of self-attention
|
321 |
-
x = self.decoder(x)
|
322 |
-
|
323 |
-
# apply normalization
|
324 |
-
x = self.ln_f(x)
|
325 |
-
|
326 |
-
# (B, T, vocab_size)
|
327 |
-
logits = self.lm_head(x)
|
328 |
-
|
329 |
-
# Compute the loss
|
330 |
-
if targets != None:
|
331 |
-
# cross_entropy accepts inputs in a (batch_size, num_classes)
|
332 |
-
# so we need to reformat our logits dimensions to
|
333 |
-
# (batch_size * time, dim_vocabulary), time = block_size
|
334 |
-
B, T, C = logits.shape
|
335 |
-
logits = torch.reshape(logits, (B * T, C))
|
336 |
-
targets = torch.reshape(targets, (B * T, ))
|
337 |
-
loss = F.cross_entropy(logits, targets)
|
338 |
-
else:
|
339 |
-
loss = None
|
340 |
-
|
341 |
-
return logits, loss
|
342 |
-
|
343 |
-
def generate(self, idx: torch.Tensor, max_new_tokens: int, block_size: int):
|
344 |
-
# idx is (B, T) array of indices in the current context
|
345 |
-
for _ in range(max_new_tokens):
|
346 |
-
# crop the context too the last block_size tokens
|
347 |
-
# because tokens don't communicate between blocks
|
348 |
-
idx_crop = idx[:, -block_size:]
|
349 |
-
# get the predictions
|
350 |
-
logits, loss = self.forward(idx_crop)
|
351 |
-
# focus only on the last time step
|
352 |
-
logits = logits[:, -1, :] # becomes (B, C)
|
353 |
-
# apply softmax to get probabilities
|
354 |
-
probs = F.softmax(logits, dim=-1) # (B, C)
|
355 |
-
# sample from the distribution with probabilities probs
|
356 |
-
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
|
357 |
-
# append sampled index to the running sequence
|
358 |
-
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
|
359 |
-
return idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|