Netta1994 commited on
Commit
02df371
·
verified ·
1 Parent(s): 7f98193

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 'Reasoning:
14
+
15
+ The answer correctly identifies the year 1842, aligning directly with the details
16
+ provided in the document, addressing the specific question asked without any deviation.
17
+
18
+
19
+ Evaluation:'
20
+ - text: 'Reasoning:
21
+
22
+ Correct- the answer correctly cites that the average student travels more than
23
+ 750 miles to study at Notre Dame, as found in the document.
24
+
25
+ Evaluation:'
26
+ - text: 'Reasoning:
27
+
28
+ Everything stated in the answer is directly supported by the document and is relevant
29
+ to the question asked. The answer concisely provides the specific information
30
+ required without deviating into unnecessary details.
31
+
32
+
33
+ Evaluation:'
34
+ - text: 'Reasoning:
35
+
36
+ contradiction - The answer includes incorrect information regarding Karl Marx
37
+ that is not supported by the document and is not relevant to the question. The
38
+ correct aspect is that "The Review of Politics was inspired by German Catholic
39
+ journals."
40
+
41
+
42
+ Evaluation:'
43
+ - text: 'Reasoning:
44
+
45
+ The answer is correctly grounded in the provided document, which specifies that
46
+ Forbes.com ranked Notre Dame 8th among research universities. It is also relevant
47
+ to the specific question asked, and the response is clear and concise without
48
+ additional unnecessary information.
49
+
50
+
51
+ Evaluation:'
52
+ inference: true
53
+ model-index:
54
+ - name: SetFit with BAAI/bge-base-en-v1.5
55
+ results:
56
+ - task:
57
+ type: text-classification
58
+ name: Text Classification
59
+ dataset:
60
+ name: Unknown
61
+ type: unknown
62
+ split: test
63
+ metrics:
64
+ - type: accuracy
65
+ value: 0.8983050847457628
66
+ name: Accuracy
67
+ ---
68
+
69
+ # SetFit with BAAI/bge-base-en-v1.5
70
+
71
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
72
+
73
+ The model has been trained using an efficient few-shot learning technique that involves:
74
+
75
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
76
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** SetFit
82
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
83
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
84
+ - **Maximum Sequence Length:** 512 tokens
85
+ - **Number of Classes:** 2 classes
86
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
87
+ <!-- - **Language:** Unknown -->
88
+ <!-- - **License:** Unknown -->
89
+
90
+ ### Model Sources
91
+
92
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
93
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
94
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
95
+
96
+ ### Model Labels
97
+ | Label | Examples |
98
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
99
+ | 1 | <ul><li>"Reasoning:\ncontext grounded - The answer correctly includes Joan Gaspart's presidency resignation due to the team's poor performance in the 2003 season, whichis supported by the document.\nEvaluation:"</li><li>'Reasoning:\nwrong name - The name "Father Josh Carrier" does not appear in the document; the correct name is "Father Joseph Carrier."\nEvaluation:'</li><li>"Reasoning:\nhallucination - The answer is incorrect, and it's contradicted.\nEvaluation:"</li></ul> |
100
+ | 0 | <ul><li>'Reasoning:\nhallucination - The answer contains information that contradicts what appears in the document.\nEvaluation:'</li><li>'Reasoning:\nirrelevant - The answeris not relevant to what is asked.\nEvaluation:'</li><li>'Reasoning:\nContradiction - The answer states Manhattan, but the document clearly indicates that Queens is the borough with the highest population of Asian-Americans.\n\nEvaluation:'</li></ul> |
101
+
102
+ ## Evaluation
103
+
104
+ ### Metrics
105
+ | Label | Accuracy |
106
+ |:--------|:---------|
107
+ | **all** | 0.8983 |
108
+
109
+ ## Uses
110
+
111
+ ### Direct Use for Inference
112
+
113
+ First install the SetFit library:
114
+
115
+ ```bash
116
+ pip install setfit
117
+ ```
118
+
119
+ Then you can load this model and run inference.
120
+
121
+ ```python
122
+ from setfit import SetFitModel
123
+
124
+ # Download from the 🤗 Hub
125
+ model = SetFitModel.from_pretrained("Netta1994/setfit_baai_squad_gpt-4o_improved-cot-instructions_chat_few_shot_remove_final_evaluat")
126
+ # Run inference
127
+ preds = model("Reasoning:
128
+ Correct- the answer correctly cites that the average student travels more than 750 miles to study at Notre Dame, as found in the document.
129
+ Evaluation:")
130
+ ```
131
+
132
+ <!--
133
+ ### Downstream Use
134
+
135
+ *List how someone could finetune this model on their own dataset.*
136
+ -->
137
+
138
+ <!--
139
+ ### Out-of-Scope Use
140
+
141
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
142
+ -->
143
+
144
+ <!--
145
+ ## Bias, Risks and Limitations
146
+
147
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
148
+ -->
149
+
150
+ <!--
151
+ ### Recommendations
152
+
153
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
154
+ -->
155
+
156
+ ## Training Details
157
+
158
+ ### Training Set Metrics
159
+ | Training set | Min | Median | Max |
160
+ |:-------------|:----|:--------|:----|
161
+ | Word count | 3 | 34.4637 | 148 |
162
+
163
+ | Label | Training Sample Count |
164
+ |:------|:----------------------|
165
+ | 0 | 79 |
166
+ | 1 | 100 |
167
+
168
+ ### Training Hyperparameters
169
+ - batch_size: (16, 16)
170
+ - num_epochs: (1, 1)
171
+ - max_steps: -1
172
+ - sampling_strategy: oversampling
173
+ - num_iterations: 20
174
+ - body_learning_rate: (2e-05, 2e-05)
175
+ - head_learning_rate: 2e-05
176
+ - loss: CosineSimilarityLoss
177
+ - distance_metric: cosine_distance
178
+ - margin: 0.25
179
+ - end_to_end: False
180
+ - use_amp: False
181
+ - warmup_proportion: 0.1
182
+ - l2_weight: 0.01
183
+ - seed: 42
184
+ - eval_max_steps: -1
185
+ - load_best_model_at_end: False
186
+
187
+ ### Training Results
188
+ | Epoch | Step | Training Loss | Validation Loss |
189
+ |:------:|:----:|:-------------:|:---------------:|
190
+ | 0.0022 | 1 | 0.2446 | - |
191
+ | 0.1116 | 50 | 0.2299 | - |
192
+ | 0.2232 | 100 | 0.1175 | - |
193
+ | 0.3348 | 150 | 0.0861 | - |
194
+ | 0.4464 | 200 | 0.0436 | - |
195
+ | 0.5580 | 250 | 0.0235 | - |
196
+ | 0.6696 | 300 | 0.0262 | - |
197
+ | 0.7812 | 350 | 0.0146 | - |
198
+ | 0.8929 | 400 | 0.015 | - |
199
+
200
+ ### Framework Versions
201
+ - Python: 3.10.14
202
+ - SetFit: 1.1.0
203
+ - Sentence Transformers: 3.1.1
204
+ - Transformers: 4.44.0
205
+ - PyTorch: 2.4.0+cu121
206
+ - Datasets: 3.0.0
207
+ - Tokenizers: 0.19.1
208
+
209
+ ## Citation
210
+
211
+ ### BibTeX
212
+ ```bibtex
213
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
214
+ doi = {10.48550/ARXIV.2209.11055},
215
+ url = {https://arxiv.org/abs/2209.11055},
216
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
217
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
218
+ title = {Efficient Few-Shot Learning Without Prompts},
219
+ publisher = {arXiv},
220
+ year = {2022},
221
+ copyright = {Creative Commons Attribution 4.0 International}
222
+ }
223
+ ```
224
+
225
+ <!--
226
+ ## Glossary
227
+
228
+ *Clearly define terms in order to be accessible across audiences.*
229
+ -->
230
+
231
+ <!--
232
+ ## Model Card Authors
233
+
234
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
235
+ -->
236
+
237
+ <!--
238
+ ## Model Card Contact
239
+
240
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
241
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:903dfb878b72f6c5666440620fb7bdf8213d78ea3bf92e3653f55cc653b8d0f9
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3246b8e46b6a7b38be17b55bb54a5a4472aa78f6153dd05cdefeff58be93be6
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff