Netta1994 commited on
Commit
2fe2185
·
verified ·
1 Parent(s): 9eb5774

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: BAAI/bge-base-en-v1.5
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: 'I apologize, but I cannot provide information on specific individuals, including
13
+ their names or personal relationships, as this could potentially violate their
14
+ privacy and personal boundaries. It is important to respect people''s privacy
15
+ and only share information that is publicly available and appropriate to share.
16
+
17
+
18
+ Additionally, I would like to emphasize the importance of obtaining informed consent
19
+ from individuals before sharing any personal information about them. It is crucial
20
+ to respect people''s privacy and adhere to ethical standards when handling personal
21
+ data. If you have any other questions or concerns, please feel free to ask.'
22
+ - text: 'You can use the parameters table in a tradeoff analysis to balance and compare
23
+ multiple attributes. Specifically, it allows you to:
24
+
25
+
26
+ 1. Compare different revision configurations of a project.
27
+
28
+ 2. Evaluate product parameters against verification requests.
29
+
30
+ 3. Assess product parameters in relation to product freeze points.
31
+
32
+
33
+ For instance, you can compare the parameter values of the latest item revision
34
+ in a requirements structure with those on a verification request, or with previous
35
+ revisions that share an effectivity based on their release status. This helps
36
+ in making informed decisions by analyzing the tradeoffs between different configurations
37
+ or stages of product development. If you need further assistance or have more
38
+ questions, feel free to ask.'
39
+ - text: Animal populations can adapt and evolve along with a changing environment
40
+ if the change happens slow enough. Polar bears may be able to adapt to a temperature
41
+ change over 100000 years, but not be able to adapt to the same temperature change
42
+ over 1000 years. Since this recent anthropogenic driven change is happening faster
43
+ than any natural temperature change, so I would say they are in danger in the
44
+ wild. I guess we will be able to see them in zoos though.
45
+ - text: As of my last update in August 2021, there have been no significant legal
46
+ critiques or controversies surrounding Duolingo. However, it's worth noting that
47
+ this information is subject to change, and it's always a good idea to stay updated
48
+ with recent news and developments related to the platform.
49
+ - text: 'The author clearly cites it as a Reddit thread. In a scholastic paper, you
50
+ would be expected to have a bit more original content, but you wouldn''t ''get
51
+ in trouble'' '
52
+ pipeline_tag: text-classification
53
+ inference: true
54
+ model-index:
55
+ - name: SetFit with BAAI/bge-base-en-v1.5
56
+ results:
57
+ - task:
58
+ type: text-classification
59
+ name: Text Classification
60
+ dataset:
61
+ name: Unknown
62
+ type: unknown
63
+ split: test
64
+ metrics:
65
+ - type: accuracy
66
+ value: 0.9793882978723404
67
+ name: Accuracy
68
+ ---
69
+
70
+ # SetFit with BAAI/bge-base-en-v1.5
71
+
72
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
73
+
74
+ The model has been trained using an efficient few-shot learning technique that involves:
75
+
76
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
77
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** SetFit
83
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
84
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
85
+ - **Maximum Sequence Length:** 512 tokens
86
+ - **Number of Classes:** 2 classes
87
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
94
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
95
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
96
+
97
+ ### Model Labels
98
+ | Label | Examples |
99
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
100
+ | 1.0 | <ul><li>'Based solely on the given details, it is not feasible to ascertain the physical impacts on the body when an individual is fatigued and subsequently encounters a surge of energy. The provided data primarily concentrates on pH and CO levels in various contexts such as conductivity, soil, water, and culture vessels. Nevertheless, it does not'</li><li>'To get a ShoutOut to pop up monthly, you would need to set the frequency options for the ShoutOut to trigger once a month. However, the provided contexts only mention frequency options such as "Once," "Once a Day," and "Always." There is no direct mention of a monthly frequency option in the provided contexts.\n\nGiven this information, the answer to your question based on the provided contexts is: "I\'m sorry, I\'m not sure how to answer your question. Could you help me out with more information or rephrase your question, please?'</li><li>"I can see how having the credit card details of a business would provide a deeper understanding of their expenditures. Yet, releasing information such as credit card numbers is strictly against privacy policies and regulations. It's illegal, unethical, and a severe breach of trust to share such confidential details."</li></ul> |
101
+ | 0.0 | <ul><li>'pRect is an object that contains the x, y, width, and height properties. It is used to determine the index of the object in the nodes array and to insert the object into the nodes object.'</li><li>'Yes, you can search an outside knowledge base using the keywords a user searched for in the player menu. WalkMe offers a Search Provider Integration feature that allows you to supplement your WalkMe items with your existing knowledge base or support center resources. Once enabled, a search performed within the WalkMe Widget will yield results from the specified domains, showing your existing content alongside your WalkMe content. The current supported search providers for this integration are Zendesk, Desk, Bing, and Google. If your current search provider is not on the supported list, please reach out to your Account Manager for further assistance. For more information on how to set up the Search Provider Integration, please refer to our Support article. How else can I assist you today?'</li><li>'Write a precise answer to "how to export homepage to pdf" only based on "KB12345". Only when absolutely confident that If the information is not present in the "KB12345", respond with Answer Not Found.'</li></ul> |
102
+
103
+ ## Evaluation
104
+
105
+ ### Metrics
106
+ | Label | Accuracy |
107
+ |:--------|:---------|
108
+ | **all** | 0.9794 |
109
+
110
+ ## Uses
111
+
112
+ ### Direct Use for Inference
113
+
114
+ First install the SetFit library:
115
+
116
+ ```bash
117
+ pip install setfit
118
+ ```
119
+
120
+ Then you can load this model and run inference.
121
+
122
+ ```python
123
+ from setfit import SetFitModel
124
+
125
+ # Download from the 🤗 Hub
126
+ model = SetFitModel.from_pretrained("Netta1994/setfit_baai_oversampling_2k")
127
+ # Run inference
128
+ preds = model("The author clearly cites it as a Reddit thread. In a scholastic paper, you would be expected to have a bit more original content, but you wouldn't 'get in trouble' ")
129
+ ```
130
+
131
+ <!--
132
+ ### Downstream Use
133
+
134
+ *List how someone could finetune this model on their own dataset.*
135
+ -->
136
+
137
+ <!--
138
+ ### Out-of-Scope Use
139
+
140
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
141
+ -->
142
+
143
+ <!--
144
+ ## Bias, Risks and Limitations
145
+
146
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
147
+ -->
148
+
149
+ <!--
150
+ ### Recommendations
151
+
152
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
153
+ -->
154
+
155
+ ## Training Details
156
+
157
+ ### Training Set Metrics
158
+ | Training set | Min | Median | Max |
159
+ |:-------------|:----|:--------|:----|
160
+ | Word count | 1 | 89.6623 | 412 |
161
+
162
+ | Label | Training Sample Count |
163
+ |:------|:----------------------|
164
+ | 0.0 | 1454 |
165
+ | 1.0 | 527 |
166
+
167
+ ### Training Hyperparameters
168
+ - batch_size: (16, 16)
169
+ - num_epochs: (1, 1)
170
+ - max_steps: -1
171
+ - sampling_strategy: oversampling
172
+ - num_iterations: 20
173
+ - body_learning_rate: (2e-05, 2e-05)
174
+ - head_learning_rate: 2e-05
175
+ - loss: CosineSimilarityLoss
176
+ - distance_metric: cosine_distance
177
+ - margin: 0.25
178
+ - end_to_end: False
179
+ - use_amp: False
180
+ - warmup_proportion: 0.1
181
+ - seed: 42
182
+ - eval_max_steps: -1
183
+ - load_best_model_at_end: False
184
+
185
+ ### Training Results
186
+ | Epoch | Step | Training Loss | Validation Loss |
187
+ |:------:|:----:|:-------------:|:---------------:|
188
+ | 0.0002 | 1 | 0.2372 | - |
189
+ | 0.0101 | 50 | 0.251 | - |
190
+ | 0.0202 | 100 | 0.2158 | - |
191
+ | 0.0303 | 150 | 0.1107 | - |
192
+ | 0.0404 | 200 | 0.1093 | - |
193
+ | 0.0505 | 250 | 0.0177 | - |
194
+ | 0.0606 | 300 | 0.0226 | - |
195
+ | 0.0707 | 350 | 0.1052 | - |
196
+ | 0.0808 | 400 | 0.0055 | - |
197
+ | 0.0909 | 450 | 0.0057 | - |
198
+ | 0.1009 | 500 | 0.0032 | - |
199
+ | 0.1110 | 550 | 0.0021 | - |
200
+ | 0.1211 | 600 | 0.0114 | - |
201
+ | 0.1312 | 650 | 0.066 | - |
202
+ | 0.1413 | 700 | 0.0018 | - |
203
+ | 0.1514 | 750 | 0.0631 | - |
204
+ | 0.1615 | 800 | 0.0015 | - |
205
+ | 0.1716 | 850 | 0.0018 | - |
206
+ | 0.1817 | 900 | 0.0013 | - |
207
+ | 0.1918 | 950 | 0.0015 | - |
208
+ | 0.2019 | 1000 | 0.0018 | - |
209
+ | 0.2120 | 1050 | 0.0589 | - |
210
+ | 0.2221 | 1100 | 0.0011 | - |
211
+ | 0.2322 | 1150 | 0.0016 | - |
212
+ | 0.2423 | 1200 | 0.0017 | - |
213
+ | 0.2524 | 1250 | 0.0011 | - |
214
+ | 0.2625 | 1300 | 0.0012 | - |
215
+ | 0.2726 | 1350 | 0.0012 | - |
216
+ | 0.2827 | 1400 | 0.0011 | - |
217
+ | 0.2928 | 1450 | 0.0011 | - |
218
+ | 0.3028 | 1500 | 0.0652 | - |
219
+ | 0.3129 | 1550 | 0.0014 | - |
220
+ | 0.3230 | 1600 | 0.0009 | - |
221
+ | 0.3331 | 1650 | 0.0008 | - |
222
+ | 0.3432 | 1700 | 0.0008 | - |
223
+ | 0.3533 | 1750 | 0.0006 | - |
224
+ | 0.3634 | 1800 | 0.0007 | - |
225
+ | 0.3735 | 1850 | 0.0012 | - |
226
+ | 0.3836 | 1900 | 0.0007 | - |
227
+ | 0.3937 | 1950 | 0.0008 | - |
228
+ | 0.4038 | 2000 | 0.0008 | - |
229
+ | 0.4139 | 2050 | 0.0008 | - |
230
+ | 0.4240 | 2100 | 0.0008 | - |
231
+ | 0.4341 | 2150 | 0.0007 | - |
232
+ | 0.4442 | 2200 | 0.0585 | - |
233
+ | 0.4543 | 2250 | 0.001 | - |
234
+ | 0.4644 | 2300 | 0.0004 | - |
235
+ | 0.4745 | 2350 | 0.0006 | - |
236
+ | 0.4846 | 2400 | 0.0006 | - |
237
+ | 0.4946 | 2450 | 0.0008 | - |
238
+ | 0.5047 | 2500 | 0.0005 | - |
239
+ | 0.5148 | 2550 | 0.0005 | - |
240
+ | 0.5249 | 2600 | 0.0618 | - |
241
+ | 0.5350 | 2650 | 0.0007 | - |
242
+ | 0.5451 | 2700 | 0.0007 | - |
243
+ | 0.5552 | 2750 | 0.0007 | - |
244
+ | 0.5653 | 2800 | 0.0005 | - |
245
+ | 0.5754 | 2850 | 0.0006 | - |
246
+ | 0.5855 | 2900 | 0.0007 | - |
247
+ | 0.5956 | 2950 | 0.0005 | - |
248
+ | 0.6057 | 3000 | 0.0005 | - |
249
+ | 0.6158 | 3050 | 0.0006 | - |
250
+ | 0.6259 | 3100 | 0.0007 | - |
251
+ | 0.6360 | 3150 | 0.0004 | - |
252
+ | 0.6461 | 3200 | 0.0003 | - |
253
+ | 0.6562 | 3250 | 0.0005 | - |
254
+ | 0.6663 | 3300 | 0.0006 | - |
255
+ | 0.6764 | 3350 | 0.0005 | - |
256
+ | 0.6865 | 3400 | 0.0007 | - |
257
+ | 0.6965 | 3450 | 0.0007 | - |
258
+ | 0.7066 | 3500 | 0.0005 | - |
259
+ | 0.7167 | 3550 | 0.0007 | - |
260
+ | 0.7268 | 3600 | 0.0004 | - |
261
+ | 0.7369 | 3650 | 0.0004 | - |
262
+ | 0.7470 | 3700 | 0.0005 | - |
263
+ | 0.7571 | 3750 | 0.0004 | - |
264
+ | 0.7672 | 3800 | 0.0005 | - |
265
+ | 0.7773 | 3850 | 0.0004 | - |
266
+ | 0.7874 | 3900 | 0.0004 | - |
267
+ | 0.7975 | 3950 | 0.0005 | - |
268
+ | 0.8076 | 4000 | 0.0003 | - |
269
+ | 0.8177 | 4050 | 0.0005 | - |
270
+ | 0.8278 | 4100 | 0.0004 | - |
271
+ | 0.8379 | 4150 | 0.0006 | - |
272
+ | 0.8480 | 4200 | 0.0004 | - |
273
+ | 0.8581 | 4250 | 0.0004 | - |
274
+ | 0.8682 | 4300 | 0.0005 | - |
275
+ | 0.8783 | 4350 | 0.0003 | - |
276
+ | 0.8884 | 4400 | 0.0005 | - |
277
+ | 0.8984 | 4450 | 0.0003 | - |
278
+ | 0.9085 | 4500 | 0.0005 | - |
279
+ | 0.9186 | 4550 | 0.0004 | - |
280
+ | 0.9287 | 4600 | 0.0004 | - |
281
+ | 0.9388 | 4650 | 0.0008 | - |
282
+ | 0.9489 | 4700 | 0.0003 | - |
283
+ | 0.9590 | 4750 | 0.0005 | - |
284
+ | 0.9691 | 4800 | 0.0003 | - |
285
+ | 0.9792 | 4850 | 0.0004 | - |
286
+ | 0.9893 | 4900 | 0.0004 | - |
287
+ | 0.9994 | 4950 | 0.0003 | - |
288
+
289
+ ### Framework Versions
290
+ - Python: 3.10.14
291
+ - SetFit: 1.0.3
292
+ - Sentence Transformers: 3.0.0
293
+ - Transformers: 4.40.1
294
+ - PyTorch: 2.2.0+cu121
295
+ - Datasets: 2.19.1
296
+ - Tokenizers: 0.19.1
297
+
298
+ ## Citation
299
+
300
+ ### BibTeX
301
+ ```bibtex
302
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
303
+ doi = {10.48550/ARXIV.2209.11055},
304
+ url = {https://arxiv.org/abs/2209.11055},
305
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
306
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
307
+ title = {Efficient Few-Shot Learning Without Prompts},
308
+ publisher = {arXiv},
309
+ year = {2022},
310
+ copyright = {Creative Commons Attribution 4.0 International}
311
+ }
312
+ ```
313
+
314
+ <!--
315
+ ## Glossary
316
+
317
+ *Clearly define terms in order to be accessible across audiences.*
318
+ -->
319
+
320
+ <!--
321
+ ## Model Card Authors
322
+
323
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
324
+ -->
325
+
326
+ <!--
327
+ ## Model Card Contact
328
+
329
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
330
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.40.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab51f77d544613106d3b702c2351ec55a583c4f05a25764d169160207f975b09
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f99421834c90b297d68d24be6b3a452c88707fde3376510fe48f0d6656b0e15
3
+ size 6975
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff