Netta1994 commited on
Commit
e91f81b
1 Parent(s): 259d11f

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 'The percentage in the response status column indicates the total amount of
14
+ successful completion of response actions.
15
+
16
+
17
+ Reasoning:
18
+
19
+ 1. **Context Grounding**: The answer is well-supported by the document which states,
20
+ "percentage indicates the total amount of successful completion of response actions."
21
+
22
+ 2. **Relevance**: The answer directly addresses the specific question asked about
23
+ what the percentage in the response status column indicates.
24
+
25
+ 3. **Conciseness**: The answer is succinct and to the point without unnecessary
26
+ information.
27
+
28
+ 4. **Specificity**: The answer is specific to what is being asked, detailing exactly
29
+ what the percentage represents.
30
+
31
+ 5. **Accuracy**: The answer provides the correct key/value as per the document.
32
+
33
+
34
+ Final result: Good'
35
+ - text: 'Reasoning:
36
+
37
+ 1. **Context Grounding**: The provided document does outline steps to enable Endpoint
38
+ controls but doesn''t explicitly state their purpose.
39
+
40
+ 2. **Relevance**: The answer acknowledges the lack of specific information in
41
+ the document about the purpose of Endpoint controls.
42
+
43
+ 3. **Conciseness**: The answer is concise, directly addressing the lack of information.
44
+
45
+ 4. **Specificity**: The answer directly states that the document doesn''t answer
46
+ the query, suggesting further sources should be checked.
47
+
48
+ 5. **Detailed Key/Value/Event Name Check**: These elements do not apply to this
49
+ specific question.
50
+
51
+
52
+ Considering the criteria, the answer is accurate in indicating the document does
53
+ not provide the purpose of Endpoint controls and suggests looking for additional
54
+ sources.
55
+
56
+
57
+ Final Result: Good'
58
+ - text: 'Reasoning:
59
+
60
+
61
+ 1. **Context Grounding**: The answer refers to using the <ORGANIZATION> XDR to
62
+ collect and forward logs, but it does not directly mention the <ORGANIZATION>
63
+ XDR On-Site Collector Agent, although it is tangentially related.
64
+
65
+ 2. **Relevance**: The question specifically inquires about the purpose of the
66
+ <ORGANIZATION> XDR On-Site Collector Agent, not the general functionality of <ORGANIZATION>
67
+ XDR. The answer provided does not address the agent itself.
68
+
69
+ 3. **Conciseness**: The answer provided is concise but unfortunately lacks relevance
70
+ to the specific question being asked.
71
+
72
+ 4. **Specificity**: The answer is too general and doesn''t provide the specific
73
+ purpose of the On-Site Collector Agent.
74
+
75
+ 5. **Key/Value/Event Name**: The answer does not include any specific key, value,
76
+ or event name that would relate to discussing an On-Site Collector Agent.
77
+
78
+
79
+ Final result: **Bad**'
80
+ - text: "Reasoning:\n\n1. **Context Grounding**: The provided answer mentions the\
81
+ \ purpose of the <ORGANIZATION_2> email notifications checkbox in relation to\
82
+ \ enabling or disabling email notifications for users. However, the document explicitly\
83
+ \ states that notifications about stale and archived sensors are managed separately\
84
+ \ from other email preferences. The checkbox in the Users section determines whether\
85
+ \ users receive these specific notifications, which indicates a more precise purpose.\n\
86
+ \ \n2. **Relevance**: The response does relate to the question but lacks specificity\
87
+ \ about the type of notifications (stale/archived sensors) governed by the checkbox.\
88
+ \ It also fails to mention that these notifications are managed independently\
89
+ \ of other email preferences.\n \n3. **Conciseness**: The answer is concise but\
90
+ \ could be clearer about the specific type of notifications and their management.\n\
91
+ \ \n4. **Specificity**: The answer is somewhat general and does not fully capture\
92
+ \ the detailed function of the checkbox as described in the document.\n \n5.\
93
+ \ **Correct Key/Value/Event Name**: The answer correctly identifies the purpose\
94
+ \ of the checkbox but does not reflect the detailed context provided in the document\
95
+ \ regarding specific notifications (stale/archived sensors).\n\nFinal Result:\
96
+ \ Bad"
97
+ - text: "The provided answer \"..\\/..\\/_images\\/hunting_http://www.flores.net/\"\
98
+ \ does not match the correct URL as per the document content for the second query.\n\
99
+ \n**Reasoning:**\n1. **Context Grounding:**\n - The URL provided \"..\\/..\\\
100
+ /_images\\/hunting_http://www.flores.net/\" is not found in the provided document.\n\
101
+ \ - Instead, the correct URL as per the document for Query 2 is \"..\\/..\\\
102
+ /_images\\/hunting_http://miller.co\".\n\n2. **Relevance:**\n - The answer provided\
103
+ \ does not correspond to the specific question asked, which was about the URL\
104
+ \ for the second query. It deviates from the document and is incorrect.\n\n3.\
105
+ \ **Conciseness:**\n - The answer does not provide any extraneous information,\
106
+ \ but being incorrect, it fails at providing the relevant and necessary detail\
107
+ \ concisely.\n\n4. **Specificity:**\n - The answer is specific but incorrect.\
108
+ \ It provides a URL, but not the right one as required.\n\n5. **Accuracy of key/value/event\
109
+ \ name:**\n - The correct event (image URL) for the second query is \"..\\/..\\\
110
+ /_images\\/hunting_http://miller.co\" according to the document.\n\nFinal result:\
111
+ \ **Bad**"
112
+ inference: true
113
+ model-index:
114
+ - name: SetFit with BAAI/bge-base-en-v1.5
115
+ results:
116
+ - task:
117
+ type: text-classification
118
+ name: Text Classification
119
+ dataset:
120
+ name: Unknown
121
+ type: unknown
122
+ split: test
123
+ metrics:
124
+ - type: accuracy
125
+ value: 0.5070422535211268
126
+ name: Accuracy
127
+ ---
128
+
129
+ # SetFit with BAAI/bge-base-en-v1.5
130
+
131
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
132
+
133
+ The model has been trained using an efficient few-shot learning technique that involves:
134
+
135
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
136
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
137
+
138
+ ## Model Details
139
+
140
+ ### Model Description
141
+ - **Model Type:** SetFit
142
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
143
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
144
+ - **Maximum Sequence Length:** 512 tokens
145
+ - **Number of Classes:** 2 classes
146
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
147
+ <!-- - **Language:** Unknown -->
148
+ <!-- - **License:** Unknown -->
149
+
150
+ ### Model Sources
151
+
152
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
153
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
154
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
155
+
156
+ ### Model Labels
157
+ | Label | Examples |
158
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
159
+ | 0 | <ul><li>'Reasoning:\n1. **Context Grounding**: The response "It provides a comprehensive understanding of the situation" is too vague and not well-supported by the document provided. The document specifically discusses the importance of considering all answers to comprehensively determine if behavior is malicious.\n2. **Relevance**: While the response is somewhat related, it does not specifically address why considering all the answers together is significant. The document talks about the threat qualification steps and emphasizes the importance of examining multiple indicators to correctly assess the situation.\n3. **Conciseness**: The answer is concise but lacks detail.\n4. **Specificity**: The response is too general and lacks the specific details necessary to fully answer the question as supported by the document.\n5. **Key/Value/Event Name**: Not applicable in this evaluation.\n\nFinal Result: Bad'</li><li>"The given answer does not address the specific question asked. The document contains detailed steps on how to exclude a MalOp during the remediation phase, which directly relates to the question. However, the answer provided claims that the information doesn't cover this specific query and suggests referring to additional sources, which is incorrect. \n\nReasoning:\n1. **Context Grounding:** The provided document clearly offers steps on how to exclude a MalOp, hence the answer is not grounded in the context of the document.\n2. **Relevance:** The question asked is directly related to the steps to exclude a MalOp, yet the response does not address these steps.\n3. **Conciseness:** The response suggests looking elsewhere, which is not concise or needed since the information is already present in the document.\n4. **Specificity:** The document contains specific steps and details regarding the MalOp exclusion process, which the answer fails to capture.\n\nFinal Result: **Bad**"</li><li>'Reasoning:\n\n1. **Context Grounding**: The answer directly reflects a step in the document which states that if a file is quarantined, it should be un-quarantined before submission.\n2. **Relevance**: The answer specifically addresses the asked question regarding the procedure to follow if a file is quarantined.\n3. **Conciseness**: The response is very concise and directly addresses the action to take.\n4. **Specificity**: The answer pinpoints the exact action required for quarantined files as mentioned in the document.\n\nFinal result: Good'</li></ul> |
160
+ | 1 | <ul><li>"Reasoning:\n1. **Context Grounding**: The provided document specifies that after configuring a sensor, the computer will generate a memory dump file containing the RAM contents at the time of failure, which supports the given answer.\n2. **Relevance**: The answer directly responds to the question by stating what the computer will generate in the event of a system failure.\n3. **Conciseness**: The answer is brief and directly answers the question without any extraneous information.\n4. **Specificity**: The answer is not overly general; it correctly identifies that the dump file will contain the contents of the sensor's RAM at the time of the failure, aligning with the document.\n5. **Key/Value/Event name**: The answer correctly identifies the relevant outcome, which is the generation of a memory dump file containing the sensor's RAM contents.\n\nFinal Result: Good"</li><li>"Reasoning:\n\n1. Context Grounding: The answer is concise and based on the provided document. Both the detected purpose (identify cyber security threats) and the mechanism (using the <ORGANIZATION> engine with AI, ML, and behavioral analysis) are aligned with the document's contents.\n2. Relevance: The answer directly addresses the specific question asked about the purpose of the <ORGANIZATION_2> platforms threat detection abilities.\n3. Conciseness: The answer is clear and to the point without unnecessary information. \n4. Specificity: The answer accurately identifies the relevant purpose mentioned in the document. \n5. Key/Value/Event: The question does not prompt for key, value, or event name, so this criterion is not applicable here.\n\nFinal Result: Good"</li><li>"The information provided directly addresses the question by assessing the presence of relevant text in the given document. The response accurately identifies that the document does not mention or cover a fifth scenario.\n\n1. **Context Grounding**: The answer is well-supported by the document and maintains a clear link to the given text, confirming the absence of a fifth scenario.\n2. **Relevance**: The answer clearly addresses the specific question asked, ensuring no deviation.\n3. **Conciseness**: The answer is clear and to the point, avoiding any unnecessary information.\n4. **Specifics**: The answer is specific in confirming the lack of content related to a fifth scenario, ensuring correctness.\n5. **Key/Value/Event Name Identification**: Given the document only contains four scenarios, the identification of a fifth scenario's severity score is inherently impossible and is aptly noted.\n\nFinal Verdict: **Good**"</li></ul> |
161
+
162
+ ## Evaluation
163
+
164
+ ### Metrics
165
+ | Label | Accuracy |
166
+ |:--------|:---------|
167
+ | **all** | 0.5070 |
168
+
169
+ ## Uses
170
+
171
+ ### Direct Use for Inference
172
+
173
+ First install the SetFit library:
174
+
175
+ ```bash
176
+ pip install setfit
177
+ ```
178
+
179
+ Then you can load this model and run inference.
180
+
181
+ ```python
182
+ from setfit import SetFitModel
183
+
184
+ # Download from the 🤗 Hub
185
+ model = SetFitModel.from_pretrained("Netta1994/setfit_baai_cybereason_gpt-4o_cot-instructions_only_reasoning_1726752054.560885")
186
+ # Run inference
187
+ preds = model("The percentage in the response status column indicates the total amount of successful completion of response actions.
188
+
189
+ Reasoning:
190
+ 1. **Context Grounding**: The answer is well-supported by the document which states, \"percentage indicates the total amount of successful completion of response actions.\"
191
+ 2. **Relevance**: The answer directly addresses the specific question asked about what the percentage in the response status column indicates.
192
+ 3. **Conciseness**: The answer is succinct and to the point without unnecessary information.
193
+ 4. **Specificity**: The answer is specific to what is being asked, detailing exactly what the percentage represents.
194
+ 5. **Accuracy**: The answer provides the correct key/value as per the document.
195
+
196
+ Final result: Good")
197
+ ```
198
+
199
+ <!--
200
+ ### Downstream Use
201
+
202
+ *List how someone could finetune this model on their own dataset.*
203
+ -->
204
+
205
+ <!--
206
+ ### Out-of-Scope Use
207
+
208
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
209
+ -->
210
+
211
+ <!--
212
+ ## Bias, Risks and Limitations
213
+
214
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
215
+ -->
216
+
217
+ <!--
218
+ ### Recommendations
219
+
220
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
221
+ -->
222
+
223
+ ## Training Details
224
+
225
+ ### Training Set Metrics
226
+ | Training set | Min | Median | Max |
227
+ |:-------------|:----|:---------|:----|
228
+ | Word count | 70 | 112.1739 | 168 |
229
+
230
+ | Label | Training Sample Count |
231
+ |:------|:----------------------|
232
+ | 0 | 34 |
233
+ | 1 | 35 |
234
+
235
+ ### Training Hyperparameters
236
+ - batch_size: (16, 16)
237
+ - num_epochs: (5, 5)
238
+ - max_steps: -1
239
+ - sampling_strategy: oversampling
240
+ - num_iterations: 20
241
+ - body_learning_rate: (2e-05, 2e-05)
242
+ - head_learning_rate: 2e-05
243
+ - loss: CosineSimilarityLoss
244
+ - distance_metric: cosine_distance
245
+ - margin: 0.25
246
+ - end_to_end: False
247
+ - use_amp: False
248
+ - warmup_proportion: 0.1
249
+ - l2_weight: 0.01
250
+ - seed: 42
251
+ - eval_max_steps: -1
252
+ - load_best_model_at_end: False
253
+
254
+ ### Training Results
255
+ | Epoch | Step | Training Loss | Validation Loss |
256
+ |:------:|:----:|:-------------:|:---------------:|
257
+ | 0.0058 | 1 | 0.2538 | - |
258
+ | 0.2890 | 50 | 0.2672 | - |
259
+ | 0.5780 | 100 | 0.2355 | - |
260
+ | 0.8671 | 150 | 0.0836 | - |
261
+ | 1.1561 | 200 | 0.0038 | - |
262
+ | 1.4451 | 250 | 0.0024 | - |
263
+ | 1.7341 | 300 | 0.0021 | - |
264
+ | 2.0231 | 350 | 0.0018 | - |
265
+ | 2.3121 | 400 | 0.0017 | - |
266
+ | 2.6012 | 450 | 0.0015 | - |
267
+ | 2.8902 | 500 | 0.0014 | - |
268
+ | 3.1792 | 550 | 0.0014 | - |
269
+ | 3.4682 | 600 | 0.0013 | - |
270
+ | 3.7572 | 650 | 0.0013 | - |
271
+ | 4.0462 | 700 | 0.0013 | - |
272
+ | 4.3353 | 750 | 0.0013 | - |
273
+ | 4.6243 | 800 | 0.0012 | - |
274
+ | 4.9133 | 850 | 0.0012 | - |
275
+
276
+ ### Framework Versions
277
+ - Python: 3.10.14
278
+ - SetFit: 1.1.0
279
+ - Sentence Transformers: 3.1.0
280
+ - Transformers: 4.44.0
281
+ - PyTorch: 2.4.1+cu121
282
+ - Datasets: 2.19.2
283
+ - Tokenizers: 0.19.1
284
+
285
+ ## Citation
286
+
287
+ ### BibTeX
288
+ ```bibtex
289
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
290
+ doi = {10.48550/ARXIV.2209.11055},
291
+ url = {https://arxiv.org/abs/2209.11055},
292
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
293
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
294
+ title = {Efficient Few-Shot Learning Without Prompts},
295
+ publisher = {arXiv},
296
+ year = {2022},
297
+ copyright = {Creative Commons Attribution 4.0 International}
298
+ }
299
+ ```
300
+
301
+ <!--
302
+ ## Glossary
303
+
304
+ *Clearly define terms in order to be accessible across audiences.*
305
+ -->
306
+
307
+ <!--
308
+ ## Model Card Authors
309
+
310
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
311
+ -->
312
+
313
+ <!--
314
+ ## Model Card Contact
315
+
316
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
317
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9031e514bc3a2175cd17303d484d4fe48fbfef604576bc5aeb918c472da12e09
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4158d18d42ec33df74ebc374891ae197f8cab798c5af4fba2a12936920d69f0
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff